年终活动
搜索
    上传资料 赚现金

    2021-2022学年度强化训练沪教版七年级数学第二学期第十四章三角形难点解析试卷(精选含答案)

    2021-2022学年度强化训练沪教版七年级数学第二学期第十四章三角形难点解析试卷(精选含答案)第1页
    2021-2022学年度强化训练沪教版七年级数学第二学期第十四章三角形难点解析试卷(精选含答案)第2页
    2021-2022学年度强化训练沪教版七年级数学第二学期第十四章三角形难点解析试卷(精选含答案)第3页
    还剩26页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学沪教版 (五四制)七年级下册第十四章 三角形综合与测试课后练习题

    展开

    这是一份初中数学沪教版 (五四制)七年级下册第十四章 三角形综合与测试课后练习题,共29页。试卷主要包含了如图,为估计池塘岸边A,下列命题是真命题的是等内容,欢迎下载使用。
    沪教版七年级数学第二学期第十四章三角形难点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、如图,已知的外角,,那么的度数是(    A.30° B.40° C.50° D.60°2、如图,在中,AD平分BC于点D,在AB上截取,则的度数为(     A.30° B.20° C.10° D.15°3、一个三角形三个内角的度数分别是xyz.若,则这个三角形是(    A.等腰三角形 B.等边三角形 C.等腰直角三角形 D.不存在4、如图,为估计池塘岸边AB两点的距离,小方在池塘的一侧选取一点OOA=15米,OB=10米,AB间的距离不可能是(  )A.5米 B.10米 C.15米 D.20米5、以下列各组线段为边,能组成三角形的是(    A.3cm,4cm,5cm B.3cm,3cm,6cm C.5cm,10cm,4cm D.1cm,2cm,3cm6、如图,是对应角,是对应边,则下列结论中一定成立的是(   A. B.C. D.7、BP∠ABC的平分线,CP∠ACB的邻补角的平分线,∠ABP=20°,∠ACP=50°,则∠P=(     A.30° B.40° C.50° D.60°8、下列命题是真命题的是(    A.等腰三角形的角平分线、中线、高线互相重合B.一个三角形被截成两个三角形,每个三角形的内角和是90度C.有两个角是60°的三角形是等边三角形D.在ABC中,,则ABC为直角三角形9、如图,AD的角平分线,,垂足为F.若,则的度数为(    A.35° B.40° C.45° D.50°10、如图,,点E在线段AB上,,则的度数为(  )A.20° B.25° C.30° D.40°第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在中,,一条线段PQ两点分别在线段的垂线上移动,若以ABC为顶点的三角形与以APQ为顶点的三角形全等,则的长为_________.2、如图,一把直尺的一边缘经过直角三角形的直角顶点,交斜边于点;直尺的另一边缘分别交于点,若,则___________度.3、一个等腰三角形的一边长为2,另一边长为9,则它的周长是________________.4、如图,在△ABC中,点DBC边延长线上一点,若∠ACD=75°,∠A=45°,则∠B的度数为__________.5、如图,在△ABC中,∠ACB=90°,点DAB上,将△ABC沿CD折叠,点A落在BC边上的点处,若∠B=35°,则的度数为___________.三、解答题(10小题,每小题5分,共计50分)1、如图,已知△ABC≌△DEB,点EAB上,ACBD交于点FAB=6,BC=3,∠C=55°,∠D=25°.(1)求AE的长度;(2)求∠AED的度数.2、如图,在中,,点D内一点,连接CD,过点C,连接ADBE.求证:3、如图,在△ABC中,ADBE,∠DAC=10°,AE是∠BAC的外角∠MAC的平分线,BF平分∠ABCAE于点F,求∠AFB的度数.4、如图,在△ABC中,AB=ACCDAB于点D,∠A=50°,求∠BCD的度数.5、如图,的中线,分别过点及其延长线的垂线,垂足分别为(1)求证:(2)若的面积为8,的面积为6,求的面积.6、已知:如图,AD是等腰三角形ABC的底边BC上的中线,DEAB,交AC于点E.求证:△AED是等腰三角形.7、如图,四边形中,于点(1)如图1,求证:(2)如图2,延长的延长线于点,点上,连接,且,求证:(3)如图3,在(2)的条件下,点的延长线上,连接于点,连接,且,当时,求的长.8、周老师带领同学们在数学课上探究下面命题的正确性:顶角为36°的等腰三角形具有一种特性,即经过它某一顶点的一条直线可把它分成两个小等腰三角形.为此,请你完成下列问题:(1)已知:如图①,在中,,直线BD平分AC于点D.求证:都是等腰三角形;(2)在证明了该命题后,小尹同学发现:图②、③两个等腰三角形也具有这种特性,请你在图②、图③中分别画出一条直线,把它们分成两个小等腰三角形,并在图中标出所有等腰三角形两个底角的度数;(3)接着,小尹又发现:还有一些非等腰三角形也具有这样的特性:即过它其中一个顶点画一条直线可以将原三角形分成两个小等腰三角形,请你画出一个具有这种特性的三角形的示意图,并在图中标出可能的各内角的度数.(4)请你写出两个符合(3)中一般规律的非等腰三角形的特征.9、如图,在中,BD的角平分线,点EAB边上,.求的周长.10、如图,在中,分别是上的高和中线,,求的长. -参考答案-一、单选题1、B【分析】根据三角形的外角性质解答即可.【详解】解:∵∠ACD=60°,∠B=20°,∴∠A=∠ACD−∠B=60°−20°=40°,故选:B.【点睛】此题考查三角形的外角性质,关键是根据三角形外角性质解答.2、B【分析】利用已知条件证明△ADE≌△ADCSAS),得到∠DEA=∠C,根据外角的性质可求的度数.【详解】解:∵AD是∠BAC的平分线,∴∠EAD=∠CAD在△ADE和△ADC中,∴△ADE≌△ADCSAS),∴∠DEA=∠C,∠DEA=∠B +故选:B【点睛】本题考查了全等三角形的性质与判定,解决本题的关键是证明△ADE≌△ADC3、C【分析】根据绝对值及平方的非负性可得,再由三角形内角和定理将两个式子代入求解可得,即可确定三角形的形状.【详解】解:解得:∴三角形为等腰直角三角形,故选:C.【点睛】题目主要考查绝对值及平方的非负性,三角形内角和定理,等腰三角形的判定等,理解题意,列出式子求解是解题关键.4、A【分析】根据三角形的三边关系得出5<AB<25,根据AB的范围判断即可.【详解】解:连接AB根据三角形的三边关系定理得:15﹣10<AB<15+10,即:5<AB<25,AB间的距离在5和25之间,AB间的距离不可能是5米;故选:A【点睛】本题主要考查对三角形的三边关系定理的理解和掌握,能正确运用三角形的三边关系定理是解此题的关键.5、A【分析】三角形的任意两条之和大于第三边,任意两边之差小于第三边,根据原理再分别计算每组线段当中较短的两条线段之和,再与最长的线段进行比较,若和大于最长的线段的长度,则三条线段能构成三角形,否则,不能构成三角形,从而可得答案.【详解】解: 所以以3cm,4cm,5cm为边能构成三角形,故A符合题意; 所以以3cm,3cm,6cm为边不能构成三角形,故B不符合题意; 所以以5cm,10cm,4cm为边不能构成三角形,故C不符合题意; 所以以1cm,2cm,3cm为边不能构成三角形,故D不符合题意;故选A【点睛】本题考查的是三角形的三边之间的关系,掌握“利用三角形三边之间的关系判定三条线段能否组成三角形”是解本题的关键.6、D【分析】根据全等三角形的性质求解即可.【详解】解:∵是对应角,是对应边,∴选项A、B、C错误,D正确,故选:D.【点睛】本题考查全等三角形的性质,熟练掌握全等三角形的性质是解答的关键.7、A【分析】根据角平分线的定义以及一个三角形的外角等于与它不相邻的两个内角和,可求出∠P的度数.【详解】BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,∴∠ABP=∠CBP=20°,∠ACP=∠MCP=50°,∵∠PCM是△BCP的外角,∴∠P=∠PCM−∠CBP=50°−20°=30°,故选:A.【点睛】本题考查三角形外角性质以及角平分线的定义,解题时注意:一个三角形的外角等于与它不相邻的两个内角的和.8、C【分析】分别根据等腰三角形的性质、三角形的内角和定理、等边三角形的判定,直角三角形的判定即可判断.【详解】A.等腰三角形中顶角角平分线、底边上的中线和底边上的高线互相重合,即三线合一,故此选项错误;B.三角形的内角和为180°,故此选项错误;C.有两个角是60°,则第三个角为,所以三角形是等边三角形,故此选项正确;D.设,则,故,解得,所以,此三角形不是直角三角形,故此选项错误.故选:C.【点睛】本题考查等腰三角形的性质,直角三角形的定义以及三角形内角和,掌握相关概念是解题的关键.9、B【分析】根据三角形的内角和求出∠ACB=90°,利用三角形全等,求出DCDE,再利用外角求出答案.【详解】解:∵∠CAB=40°,∠B=50°,∴∠ACB=180°−40°−50°=90°,CEAD∴∠AFC=∠AFE=90°,AD是△ABC的角平分线,∴∠CAD=∠EAD×40°=20°,又∵AFAF∴△ACF≌△AEFASAACAEADAD,∠CAD=∠EAD∴△ACD≌△AED  SAS),DCDE∴∠DCE=∠DEC∵∠ACE=90°−20°=70°,∴∠DCE=∠DEC=∠ACB−∠ACE=90°−70°=20°,∴∠BDE=∠DCE+∠DEC=20°+20°=40°,故选:B【点睛】考查角平分线、全等三角形的判定和性质、三角形的内角和等知识,根据三角形的内角和求出相应各个角的度数是解决问题的关键.10、C【分析】根据全等三角形的性质可证得BC=CE,∠ACB=∠DCE即∠ACD=∠BCE,根据等腰三角形的性质和三角形的内角和定理求解∠B=∠BEC和∠BCE即可.【详解】解:∵BC=CE,∠ACB=∠DCE∴∠B=∠BEC,∠ACD=∠BCE,∴∠ACD=∠BCE=180°-2×75°=30°,故选:C.【点睛】本题考查全等三角形的性质、等腰三角形的性质、三角形的内角和定理,熟练掌握全等三角形的性质和等腰三角形的性质是解答的关键.二、填空题1、6cm或12cm【分析】先根据题意得到∠BCA=∠PAQ=90°,则以ABC为顶点的三角形与以APQ为顶点的三角形全等,只有△ACB≌△QAP和△ACB≌△PAQ两种情况,由此利用全等三角形的性质求解即可.【详解】解:∵AXAC的垂线,∴∠BCA=∠PAQ=90°,∴以ABC为顶点的三角形与以APQ为顶点的三角形全等,只有△ACB≌△QAP和△ACB≌△PAQ两种情况,当△ACB≌△QAP当△ACB≌△PAQ故答案为:6cm或12cm.【点睛】本题主要考查了全等三角形的性质,熟知全等三角形的性质是解题的关键.2、20【分析】利用平行线的性质求出∠1,再利用三角形外角的性质求出∠DCB即可.【详解】解:∵EFCD∵∠1是△DCB的外角,∠1-∠B=50°-30°=20º,故答案为:20.【点睛】本题考查了平行线的性质,三角形外角的性质等知识,解题的关键是熟练掌握基本知识.3、20【分析】题目给出等腰三角形有两条边长为2和9,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【详解】解:分两种情况:当腰为2时,2+2<9,所以不能构成三角形;当腰为9时,2+9>9,所以能构成三角形,周长是:2+9+9=20.故答案为:20.【点睛】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.4、30°【分析】根据三角形的外角的性质,即可求解.【详解】解:∵∵∠ACD=75°,∠A=45°,故答案为:30°【点睛】本题主要考查了三角形的外角性质,熟练掌握三角形的一个外角等于与它不相邻的两个内角的和是解题的关键.5、20°度【分析】先根据三角形内角和求出∠A,利用翻折不变性得出,再根据三角形外角的性质即可解决问题.【详解】解:,∠B=35°,是由翻折得到,故答案为:20°.【点睛】本题考查三角形内角和定理和三角形外角的性质,翻折变换等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.三、解答题1、(1);(2)【分析】(1)先根据全等三角形的性质可得,再根据线段的和差即可得;(2)先根据全等三角形的性质可得,再根据三角形的外角性质即可得.【详解】解:(1)∵(2)∵【点睛】本题考查全等三角形的性质等知识点,熟练掌握全等三角形的对应角和对应边相等是解题关键.2、证明见解析.【分析】先根据角的和差可得,再根据三角形全等的判定定理证出,然后根据全等三角形的性质即可得证.【详解】证明:中,【点睛】本题考查了三角形全等的判定定理与性质等知识点,熟练掌握三角形全等的判定方法是解题关键.3、∠AFB=40°.【分析】由题意易得∠ADC=90°,∠ACB=80°,然后可得,进而根据三角形外角的性质可求解.【详解】解:∵ADBE∴∠ADC=90°,∵∠DAC=10°,∴∠ACB=90°﹣∠DAC=90°﹣10°=80°,AE是∠MAC的平分线,BF平分∠ABC又∵∠MAE=∠ABF+∠AFB,∠MAC=∠ABC+∠ACB∴∠AFB=∠MAE﹣∠ABF【点睛】本题主要考查三角形外角的性质及角平分线的定义,熟练掌握三角形外角的性质及角平分线的定义是解题的关键.4、25°【分析】直接利用等腰三角形的性质得出∠ABC=∠ACB=65°,进而利用三角形内角和定理得出答案.【详解】AB=AC,∠A=50°,∴∠ABC=∠ACB=65°,CDBC于点D∴∠BCD的度数为:180°−90°−65°=25°.【点睛】此题主要考查了等腰三角形的性质,正确得出∠B的度数是解题关键.5、(1)见解析(2)的面积为20.【分析】(1)根据已知条件得到,然后利用全等三角形的判定,进行证明即可.(2)分别根据的面积,用CF表示AFDF,通过,得到,用CF表示出AE的长,最后利用面积公式求解即可.(1)(1)解:由题意可知: 的中线 (2)解:的面积为8,的面积为6.,即 ,即 由(1)可知: 【点睛】本题主要是考查了全等三角形的判定和性质,熟练根据条件证明三角形全等,利用其性质,证明对应边相等,这是解决本题的关键.6、见解析【分析】根据等腰三角形的性质得到∠BAD=∠CAD,根据平行线的性质得到∠ADE=∠BAD,等量代换得到∠ADE=∠CAD于是得到结论.【详解】解:∵△ABC是等腰三角形,AB=ACAD是底边BC上的中线,∴∠BAD=∠CADDEAB∴∠ADE=∠BAD∴∠ADE=∠CADAE=ED∴△AED是等腰三角形.【点睛】本题主要考查等腰三角形的判定与性质以及平行线的性质,熟练掌握等腰三角形的判定和性质定理是解题的关键.7、(1)见解析;(2)见解析;(3)2【分析】(1)过点B于点Q,根据AAS证明△,再证明四边形是矩形得BQ=CG,从而得出结论;(2) 在GF上截取GH=GE,连接AH,证明AH=FHGE=GH即可;(3) 过点A于点P,在FC上截取,连接,证明,可证明ACEH的垂直平分线,再证明和△可求出,从而可得结论.【详解】解:(1)证明:过点B于点Q,如图1∴△∴四边形是矩形(2)在GF上截取GH=GE,连接AH,如图2,(3)过点A于点P,在FC上截取,连接,如图3,由(1)、(2)知,∴∠∴∠∴∠ACEH的垂直平分线,又∵∴∠∴∠∵∠ ∴∠ ∵∠,即 ,即 中, ∴△【点睛】本题考查的是全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理是解题的关键.8、(1)见详解;(2)见详解;(3)见详解;(4)见详解;【分析】(1)根据等边对等角,及角平分线定义易得∠1=∠2=36°,∠C=72°,那么∠BDC=72°,则可得AD=BD=CB,所以△ABD与△DBC都是等腰三角形;(2)把等腰直角三角形分为两个小的等腰直角三角形即可,把108°的角分为36°和72°即可;(3)利用直角三角形的中线等于直角三角形斜边的一半可得任意直角三角形的中线把直角三角形分为两个等腰三角形;由(1),(2)易得所知的两个角要么是2倍关系,要么是3倍关系,可猜测只要所给的三个角中有2个角是2倍或3倍关系都可得到上述图形;(4)按照发现的(3)的特点来写,注意去掉特殊三角形的形式.(1)证明:在△ABC中,∵AB=AC∴∠ABC=∠C∵∠A=36°,∴∠ABC=∠C=(180°-∠A)=72°,BD平分∠ABC∴∠1=∠2=36°∴∠3=∠1+∠A=72°,∴∠1=∠A,∠3=∠CAD=BDBD=BC∴△ABD与△BDC都是等腰三角形(2)解:如下图所示:(3)解:如图所示:(4)解:特征一:直角三角形(直角边不等);特征二:2倍内角关系,在△ABC中,∠A=2∠B,0°<∠B<45°,其中,∠B≠30°;【点睛】本题考查了等腰三角形的判定;注意应根据题中所给的范例用类比的方法推测出把一般三角形分为两个等腰三角形的一般结论.9、【分析】由题意结合角平分线性质和全等三角形判定得出,进而依据的周长进行求解即可.【详解】解:∵,BD的角平分线,,中,,的周长.【点睛】本题考查全等三角形的判定与性质以及角平分线性质,熟练掌握利用全等三角形的判定与性质以及角平分线性质进行边的等量替换是解题的关键.10、6cm【分析】先根据中线的定义结合已知条件求得AB,然后再运用三角形的面积公式求解即可.【详解】解:∵边上的中线,的中点,=.【点睛】本题主要考查了三角形的中线的定义以及三角形的面积公式,掌握三角形中线的定义成为解答本题的关键. 

    相关试卷

    初中数学沪教版 (五四制)七年级下册第十四章 三角形综合与测试一课一练:

    这是一份初中数学沪教版 (五四制)七年级下册第十四章 三角形综合与测试一课一练,共30页。试卷主要包含了下列叙述正确的是,已知长方形纸片ABCD,点E,如图,点A等内容,欢迎下载使用。

    初中数学沪教版 (五四制)七年级下册第十四章 三角形综合与测试练习:

    这是一份初中数学沪教版 (五四制)七年级下册第十四章 三角形综合与测试练习,共33页。试卷主要包含了如图,为估计池塘岸边A等内容,欢迎下载使用。

    初中数学第十四章 三角形综合与测试巩固练习:

    这是一份初中数学第十四章 三角形综合与测试巩固练习,共33页。试卷主要包含了若一个三角形的三个外角之比为3等内容,欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map