年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    2021-2022学年度强化训练沪教版七年级数学第二学期第十四章三角形重点解析练习题(无超纲)

    2021-2022学年度强化训练沪教版七年级数学第二学期第十四章三角形重点解析练习题(无超纲)第1页
    2021-2022学年度强化训练沪教版七年级数学第二学期第十四章三角形重点解析练习题(无超纲)第2页
    2021-2022学年度强化训练沪教版七年级数学第二学期第十四章三角形重点解析练习题(无超纲)第3页
    还剩30页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    数学七年级下册第十四章 三角形综合与测试课堂检测

    展开

    这是一份数学七年级下册第十四章 三角形综合与测试课堂检测,共33页。试卷主要包含了如图,直线l1l2,被直线l3,已知等内容,欢迎下载使用。
    沪教版七年级数学第二学期第十四章三角形重点解析
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、下列说法不正确的是( )
    A.有两边对应相等的两个直角三角形全等;
    B.等边三角形的底角与顶角相等;
    C.有一个角是的直角三角形是等腰直角三角形;
    D.如果点与点到直线的距离相等,那么点与点关于直线对称.
    2、我们称网格线的交点为格点.如图,在4×4的长方形网格中有两个格点A、B,连接AB,在网格中再找一个格点C,使得△ABC是等腰直角三角形,则满足条件的格点C的个数是(  )

    A.3 B.4 C.5 D.6
    3、如图,已知,要使,添加的条件不正确的是( )

    A. B. C. D.
    4、满足下列条件的两个三角形不一定全等的是( )
    A.周长相等的两个三角形 B.有一腰和底边对应相等的两个等腰三角形
    C.三边都对应相等的两个三角形 D.两条直角边对应相等的两个直角三角形
    5、如图,直线l1l2,被直线l3、l4所截,并且l3⊥l4,∠1=46°,则∠2等于(  )

    A.56° B.34° C.44° D.46°
    6、如图,△ABC中,∠ABC与∠ACB的平分线交于点F,过点F作DE∥BC交AB于点D,交AC于点E,那么下列结论:①△BDF是等腰三角形;②DE=BD+CE;③若∠A=50°,则∠BFC=115°;④DF=EF.其中正确的有( )

    A.1个 B.2个 C.3个 D.4个
    7、已知:如图,D、E分别在AB、AC上,若AB=AC,AD=AE,∠A=60°,∠B=25°,则∠BDC的度数是(  )

    A.95° B.90° C.85° D.80°
    8、小明把一副含有45°,30°角的直角三角板如图摆放其中∠C=∠F=90°,∠A=45°,∠D=30°,则∠a+∠β等于( )

    A.180° B.210° C.360° D.270°
    9、下列各条件中,不能作出唯一的的是( )
    A.,, B.,,
    C.,, D.,,
    10、如图,∠BAD=90°,AC平分∠BAD,CB=CD,则∠B与∠ADC满足的数量关系为(  )

    A.∠B=∠ADC B.2∠B=∠ADC
    C.∠B+∠ADC=180° D.∠B+∠ADC=90°
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、如图,已知∠A=60°,∠B=20°,∠C=30°,则∠BDC的度数为_____.

    2、如图,△ABC中,AB平分∠DAC,AB⊥BC,垂足为B,若∠ADC与∠ACB互补,BC=5,则CD的长为_________.

    3、如图,在中,,,E为BC延长线上一点,与的平分线相交于点D,则∠D的度数为______.

    4、如图,在中,,一条线段,P,Q两点分别在线段和的垂线上移动,若以A、B、C为顶点的三角形与以A、P、Q为顶点的三角形全等,则的长为_________.

    5、如图,在△ABC中,点D在CB的延长线上,∠A=60°,∠ABD=110°,则∠C等于___.

    三、解答题(10小题,每小题5分,共计50分)
    1、如图,在△ABC中,AD⊥BE,∠DAC=10°,AE是∠BAC的外角∠MAC的平分线,BF平分∠ABC交AE于点F,求∠AFB的度数.

    2、如图,是的中线,分别过点、作及其延长线的垂线,垂足分别为、.

    (1)求证:;
    (2)若的面积为8,的面积为6,求的面积.
    3、在中,,,点D是直线AC上一动点,连接BD并延长至点E,使.过点E作于点F.

    (1)如图1,当点D在线段AC上(点D不与点A和点C重合)时,此时DF与DC的数量关系是______.
    (2)如图2,当点D在线段AC的延长线上时,依题意补全图形,并证明:.
    (3)当点D在线段CA的延长线上时,直接用等式表示线段AD,AF,EF之间的数量关系是______.

    4、如图,在△ABC中, AB=AC,AD是△ABC的中线,BE平分∠ABC交AD于点E,连接EC.求证:CE平分∠ACB.

    5、如图,等边△ABC中,点D在BC上,CE=CD,∠BCE=60°,连接AD、BE.

    (1)如图1,求证:AD=BE;
    (2)如图2,延长AD交BE于点F,连接DE、CF,在不添加任何辅助线和其它字母的情况下,请直接写出等于120°的角.
    6、中,CD平分,点E是BC上一动点,连接AE交CD于点D.

    (1)如图1,若,AE平分,则的度数为______;
    (2)如图2,若,,,则的度数为______;
    (3)如图3,在BC的右侧过点C作,交AE延长线于点F,且,.试判断AB与CF的位置关系,并证明你的结论.
    7、如图,在长方形ABCD中,AD=3,DC=5,动点M从A点出发沿线段AD—DC以每秒1个单位长度的速度向终点C运动;动点N同时从C点出发沿线段CD—DA以每秒3个单位长度的速度向终点A运动.ME⊥PQ于点E,NF⊥PQ于点F,设运动的时间为秒.
    (1)在运动过程中当M、N两点相遇时,求t的值.
    (2)在整个运动过程中,求DM的长.(用含t的代数式表示)
    (3)当DEM与DFN全等时,请直接写出所有满足条件的DN的长.

    8、如图,点在上,点在上,,∠=∠.求证:.

    9、如图,点D,E在△ABC的边BC上,AB=AC,AD=AE,求证:BD=CE.

    10、命题:如图,已知,共线,(1),那么.

    (1)从①和②两个条件中,选择一个填入横线,使得上述命题为真命题,你选择的条件为_______(填序号);
    (2)根据你选择的条件,判定的方法是________;
    (3)根据你选择的条件,完成的证明.

    -参考答案-
    一、单选题
    1、D
    【分析】
    利用全等三角形的判定、等边三角形的判定及轴对称的性质分别判断后即可确定不正确的选项.
    【详解】
    解:A、有两边对应相等的两个直角三角形全等,正确;
    B、等边三角形的三个内角都是60°,所以等边三角形的底角与顶角相等,正确;
    C、有一个角是的直角三角形是等腰直角三角形,正确;
    D、当点与点在直线的同侧时,点与点关于直线不对称,错误,
    故选:D.
    【点睛】
    本题考查了命题与定理的知识,解题的关键是了解全等三角形的判定、等边三角形的判定及轴对称的性质等知识,属于基础定理,难度不大.
    2、A
    【分析】
    根据题意,结合图形,分两种情况讨论:①AB为等腰直角△ABC底边;②AB为等腰直角△ABC其中的一条腰.
    【详解】
    解:如图:分情况讨论:

    ①AB为等腰直角△ABC底边时,符合条件的格点C点有0个;
    ②AB为等腰直角△ABC其中的一条腰时,符合条件的格点C点有3个.
    故共有3个点,
    故选:A.
    【点睛】
    本题考查了等腰三角形的性质和判定;解答本题关键是根据题意,画出符合实际条件的图形,数形结合的思想是数学解题中很重要的解题思想.
    3、D
    【分析】
    已知条件AB=AC,还有公共角∠A,然后再结合选项所给条件和全等三角形的判定定理进行分析即可.
    【详解】
    解:A、添加BD=CE可得AD=AE,可利用利用SAS定理判定△ABE≌△ACD,故此选项不合题意;
    B、添加∠ADC=∠AEB可利用AAS定理判定△ABE≌△ACD,故此选项不合题意;
    C、添加∠B=∠C可利用ASA定理判定△ABE≌△ACD,故此选项不合题意;
    D、添加BE=CD不能判定△ABE≌△ACD,故此选项符合题意;
    故选:D.
    【点睛】
    本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL(直角三角形),掌握三角形全等的判定方法是解题关键.
    4、A
    【分析】
    根据全等三角形的判定方法求解即可.判定三角形全等的方法有:SSS,SAS对各选项进行一一判断即可.
    【详解】
    解:A、周长相等的两个三角形不一定全等,符合题意;
    B、有一腰和底边对应相等的两个等腰三角形根据三边对应相等判定定理可判定全等,不符合题意;
    C、三边都对应相等的两个三角形根据三边对应相等判定定理可判定全等,不符合题意;
    D、两条直角边对应相等的两个直角三角形根据SAS判定定理可判定全等,不符合题意.
    故选:A.
    【点睛】
    此题考查了全等三角形的判定方法,解题的关键是熟练掌握全等三角形的判定方法.判定三角形全等的方法有:SSS,SAS,AAS,ASA,HL(直角三角形).
    5、C
    【分析】
    依据l1∥l2,即可得到∠3=∠1=46°,再根据l3⊥l4,可得∠2=90°﹣46°=44°.
    【详解】
    解:如图:

    ∵l1∥l2,∠1=46°,
    ∴∠3=∠1=46°,
    又∵l3⊥l4,
    ∴∠2=90°﹣46°=44°,
    故选:C.
    【点睛】
    本题考查了平行线性质以及三角形内角和,平行线的性质:两直线平行,同位角相等以及三角形内角和是180°.
    6、C
    【分析】
    根据平行线的性质和角平分线的定义以及等腰三角形的判定和性质逐个判定即可解答.
    【详解】
    解:∵BF是∠AB的角平分线,
    ∴∠DBF=∠CBF,
    ∵DE∥BC,
    ∴∠DFB=∠CBF,
    ∴∠DBF=∠DFB,
    ∴BD=DF,
    ∴△BDF是等腰三角形;故①正确;
    同理,EF=CE,
    ∴DE=DF+EF=BD+CE,故②正确;
    ∵∠A=50°,
    ∴∠ABC+∠ACB=130°,
    ∵BF平分∠ABC,CF平分∠ACB,
    ∴,
    ∴∠FBC+∠FCB=(∠ABC+∠ACB)=65°,
    ∴∠BFC=180°﹣65°=115°,故③正确;
    当△ABC为等腰三角形时,DF=EF,
    但△ABC不一定是等腰三角形,
    ∴DF不一定等于EF,故④错误.
    故选:C.
    【点睛】
    本题主要考查等腰三角形的性质、角平分线的定义及平行线的性质等知识点,根据两直线平行、内错角相等以及等角对等边来判定等腰三角形是解答本题的关键.
    7、C
    【分析】
    根据SAS证△ABE≌△ACD,推出∠C=∠B,求出∠C的度数,根据三角形的外角性质得出∠BDC=∠A+∠C,代入求出即可.
    【详解】
    解:在△ABE和△ACD中,

    ∴△ABE≌△ACD(SAS),
    ∴∠C=∠B,
    ∵∠B=25°,
    ∴∠C=25°,
    ∵∠A=60°,
    ∴∠BDC=∠A+∠C=85°,
    故选C.
    【点睛】
    本题主要考查了全等三角形的性质与判定,三角形外角的性质,解题的关键在于能够熟练掌握全等三角形的性质与判定条件.
    8、B
    【分析】
    已知,得到,根据外角性质,得到,,再将两式相加,等量代换,即可得解;
    【详解】
    解:如图所示,

    ∵,
    ∴,
    ∵,,
    ∴,
    ∵,,
    ∴,
    ∵,,
    ∴;
    故选D.
    【点睛】
    本题主要考查了三角形外角定理的应用,准确分析计算是解题的关键.
    9、B
    【分析】
    根据三角形全等的判定及三角形三边关系即可得出结果.
    【详解】
    解:A、,不能组成三角形;
    B、根据不可以确定选项中条件能作出唯一三角形;
    C、根据可以确定选项中条件能作出唯一三角形;
    D、根据可以确定选项中条件能作出唯一三角形;
    故答案为:B.
    【点睛】
    本题考查确定唯一三角形所需要的条件及三角形三边关系,解题关键在于对全等判定条件的理解.
    10、C
    【分析】
    由题意在射线AD上截取AE=AB,连接CE,根据SAS不难证得△ABC≌△AEC,从而得BC=EC,∠B=∠AEC,可求得CD=CE,得∠CDE=∠CED,证得∠B=∠CDE,即可得出结果.
    【详解】
    解:在射线AD上截取AE=AB,连接CE,如图所示:

    ∵∠BAD=90°,AC平分∠BAD,
    ∴∠BAC=∠EAC,
    在△ABC与△AEC中,

    ∴△ABC≌△AEC(SAS),
    ∴BC=EC,∠B=∠AEC,
    ∵CB=CD,
    ∴CD=CE,
    ∴∠CDE=∠CED,
    ∴∠B=∠CDE,
    ∵∠ADC+∠CDE=180°,
    ∴∠ADC+∠B=180°.
    故选:C.
    【点睛】
    本题主要考查全等三角形的判定与性质,解答的关键是作出适当的辅助线AE,CE.
    二、填空题
    1、110°
    【分析】
    延长BD交AC于点E,根据三角形的外角性质计算,得到答案.
    【详解】
    延长BD交AC于点E,
    ∵∠DEC是△ABE的外角,∠A=60°,∠B=20°,
    ∴∠DEC=∠A+∠B=80°,
    则∠BDC=∠DEC+∠C=110°,

    故答案为:110°.
    【点睛】
    本题考查了三角形外角的性质,三角形的一个外角等于与它不相邻的两个内角的和,作辅助线DE是解题的关键.
    2、10
    【分析】
    构造,再证得,求得EB=BC,再通过等量代换、等角的补角相等求得∠E=∠CDE,则CE=2BC=10.
    【详解】
    解:延长AD.和CB交于点E.

    ∵AB平分∠DAC
    ∴∠EAB=∠CAB
    又∵
    ∴∠ABE=∠ABC
    又∵AB=AB

    ∴BC=EB=5,∠E=∠ACB,
    又∵
    ∴∠ACB=∠CDE
    ∴∠E=∠CDE
    ∴.CD=CE
    又∵CE=2BC=10
    ∴CD=10
    故答案为:10.
    【点睛】
    本题考查了全等三角形的性质和判定,等角的补角相等,能根据全等三角形的性质找到角与角之间的关系是解答此题的关键.
    3、20°度
    【分析】
    根据角平分线的性质得到,再利用三角形外角的性质计算.
    【详解】
    解:∵与的平分线相交于点D,
    ∴,
    ∵∠ACE=∠A+∠ABC,∠DCE=∠D+∠DBC,
    ∴∠D=∠DCE-∠DBC=,
    故答案为:20°.
    【点睛】
    此题考查了三角形的外角性质及角平分线的性质,熟记三角形外角的性质定理是解题的关键.
    4、6cm或12cm
    【分析】
    先根据题意得到∠BCA=∠PAQ=90°,则以A、B、C为顶点的三角形与以A、P、Q为顶点的三角形全等,只有△ACB≌△QAP和△ACB≌△PAQ两种情况,由此利用全等三角形的性质求解即可.
    【详解】
    解:∵AX是AC的垂线,
    ∴∠BCA=∠PAQ=90°,
    ∴以A、B、C为顶点的三角形与以A、P、Q为顶点的三角形全等,只有△ACB≌△QAP和△ACB≌△PAQ两种情况,
    当△ACB≌△QAP,
    ∴;
    当△ACB≌△PAQ,
    ∴,
    故答案为:6cm或12cm.

    【点睛】
    本题主要考查了全等三角形的性质,熟知全等三角形的性质是解题的关键.
    5、50°
    【分析】
    首先根据平角的概念求出的度数,然后根据三角形内角和定理即可求出的度数.
    【详解】
    解:∵∠ABD=110°,
    ∴,

    故答案为:50°.
    【点睛】
    此题考查了平角的概念,三角形三角形内角和定理,解题的关键是熟练掌握平角的概念,三角形三角形内角和定理.
    三、解答题
    1、∠AFB=40°.
    【分析】
    由题意易得∠ADC=90°,∠ACB=80°,然后可得,进而根据三角形外角的性质可求解.
    【详解】
    解:∵AD⊥BE,
    ∴∠ADC=90°,
    ∵∠DAC=10°,
    ∴∠ACB=90°﹣∠DAC=90°﹣10°=80°,
    ∵AE是∠MAC的平分线,BF平分∠ABC,
    ∴,
    又∵∠MAE=∠ABF+∠AFB,∠MAC=∠ABC+∠ACB,
    ∴∠AFB=∠MAE﹣∠ABF=.
    【点睛】
    本题主要考查三角形外角的性质及角平分线的定义,熟练掌握三角形外角的性质及角平分线的定义是解题的关键.
    2、
    (1)见解析
    (2)的面积为20.
    【分析】
    (1)根据已知条件得到、,然后利用全等三角形的判定,进行证明即可.
    (2)分别根据和的面积,用CF表示AF、DF,通过,得到,,用CF表示出AE的长,最后利用面积公式求解即可.
    (1)
    (1)解:由题意可知:
    是的中线

    在与中


    (2)
    解:的面积为8,的面积为6.
    ,即
    ,即
    由(1)可知:



    【点睛】
    本题主要是考查了全等三角形的判定和性质,熟练根据条件证明三角形全等,利用其性质,证明对应边相等,这是解决本题的关键.
    3、(1)(2)见解析(3)
    【分析】
    (1)利用边相等和角相等,直接证明,即可得到结论.
    (2)利用边相等和角相等,直接证明,得到和,最后通过边与边之间的关系,即可证明结论成立.
    (3)要证明,先利用边相等和角相等,直接证明,得到和,最后通过边与边之间的关系,即可证明结论成立.
    【详解】
    (1)解:
    ,,

    在和中,



    (2)解:当点D在线段AC的延长线上时,如下图所示:

    ,,

    在和中,


    ,,

    (3)解:,如下图所示:

    ,,

    在和中,


    ,,

    【点睛】
    本题主要是考查了三角形全等的判定和性质,熟练利用条件证明三角形全等,然后利用边相等以及边与边之间关系,即可证明结论成立,这是解决该题的关键.
    4、见解析
    【分析】
    根据等腰三角形的性质,可得∠ADB=∠ADC=90°,∠ABC=∠ACB,BD=CD,从而得到△BDE≌△CDE,进而得到∠DCE=∠DBE,再由BE平分∠ABC,可得 ,进而得到,即可求证.
    【详解】
    解:∵AB=AC,AD是△ABC的中线,
    ∴∠ADB=∠ADC=90°,∠ABC=∠ACB,BD=CD,
    ∵DE=DE,
    ∴△BDE≌△CDE,
    ∴∠DCE=∠DBE,
    ∵BE平分∠ABC,
    ∴ ,
    ∴,
    ∴,
    ∴CE平分∠ACB.
    【点睛】
    本题主要考查了等腰三角形的性质,全等三角形的判定和性质,熟练掌握等腰三角形的两底角相等,等腰三角形“三线合一”是解题的关键.
    5、(1)见解析;(2)等于120°的角有∠BFC、∠BDE、∠DFE=120°.
    【分析】
    (1)利用SAS证明△ADC≌△BEC,即可证明AD=BE;
    (2)证明△CDE为等边三角形,可求得∠BDE=120°;利用全等三角形的性质可求得∠BFD=∠BCA=60°,推出∠DFE=120°;同理可推出∠BFC=∠AFC+∠BFD=120°.
    【详解】
    (1)证明:等边△ABC中,CA=CB,∠ACB=60°,
    ∵CE=CD,∠BCE=60°,
    ∴△ADC≌△BEC(SAS),
    ∴AD=BE;
    (2)等于120°的角有∠BFC、∠BDE、∠DFE=120°.
    ∵CE=CD,∠BCE=60°,
    ∴△CDE为等边三角形,
    ∴∠CDE=60°,
    ∴∠BDE=120°;
    ∵△ADC≌△BEC,
    ∴∠DAC=∠EBC,
    又∠BDF=∠ADC,
    ∴∠BFD=∠BCA=60°,
    ∴∠DFE=120°;
    同理可求得∠AFC=∠ABC=60°,
    ∴∠BFC=∠AFC+∠BFD=120°;

    综上,等于120°的角有∠BFC、∠BDE、∠DFE=120°.
    【点睛】
    本题考查了全等三角形的判定和性质,等边三角形的判定和性质,熟记各图形的性质并准确识图是解题的关键.
    6、(1)40°;(2)10°;(3)AB∥CF,理由见解析
    【分析】
    (1)根据三角形的角和定理和角平分线的定义可求得∠BAC+∠ACB=140°即可求解;
    (2)根据三角形的外角性质求得∠B+∠BAE=47°即可求解;
    (3)延长AC到G,根据等腰三角形的性质和三角形的外角性质得到∠FCG=2∠F,再根据角平分线的定义和等角的余角相等得到∠BCF=2∠F,则有∠B=∠BCF,根据平行线在判定即可得出结论.
    【详解】
    解:(1)∵∠ADC=110°,
    ∴∠DAC+∠DCA=180°-110°=70°,
    ∵AE平分∠BAC,CD平分∠ACB,
    ∴∠BAC=2∠DAC,∠ACB=2∠DCA,
    ∴∠BAC+∠ACB=2(∠DAC+∠DCA)=140°,
    ∴∠B=180°-(∠BAC+∠ACB)=180°-140°=40°,
    故答案为:40°;
    (2)∵∠ADC=∠DCE+∠DEC=100°,∠DCE=53°,
    ∴∠DEC=100°-53°=47°,
    ∴∠B+∠BAE=∠DEC=47°,
    ∵∠B-∠BAE=27°,
    ∴∠BAE=10°,
    故答案为:10°;
    (3)AB∥CF,理由为:
    如图,延长AC到G,
    ∵AC=CF,
    ∴∠F=∠FAC,
    ∴∠FCG=∠F+∠FAC=2∠F,
    ∵CF⊥CD,
    ∴∠BCF+∠BCD=90°,∠FCG+∠ACD=90°,
    ∵CD平分∠ACB,
    ∴∠BCD=∠ACD,
    ∴∠BCF=∠FCG=2∠F,
    ∵∠B=2∠F,
    ∴∠B=∠BCF,
    ∴AB∥CF.

    【点睛】
    本题考查角平分线的定义、三角形的内角和定理、三角形的外角性质、等腰三角形的性质、等角的余角相等、平行线的判定,熟练掌握相关知识的联系与运用是解答的关键.
    7、(1)2;(2)当0≤t≤3时,DM=3-t,当3<t≤8时,DM=t-3;(3)2或1
    【分析】
    (1)根据题意得: ,解得:,即可求解;
    (2)根据题意得:当0≤t≤3时,AM=t,则DM=3-t,当3<t≤8时,DM=t-3,即可求解;
    (3)根据ME⊥PQ,NF⊥PQ,可得∠DEM=∠DFN=90°,再由∠ADC=90°,可得∠DME =∠FDN,从而得到当DEM与DFN全等时,DM=DN,根据题意可得M到达点D时, ,M到达点C时, ,N到达点D时, ,N到达点A时,,然后分两种情况:当时和当时,即可求解.
    【详解】
    解:(1)根据题意得: ,解得:,
    即在运动过程中当M、N两点相遇时,t的值为2;
    (2)根据题意得:当0≤t≤3时,AM=t,则DM=3-t,
    当3<t≤8时,DM=t-3;
    (3)∵ME⊥PQ,NF⊥PQ,
    ∴∠DEM=∠DFN=90°,
    ∴∠EDM+ ∠DME =90°,
    ∵∠ADC=90°,
    ∴∠EDM+∠FDN =90°,
    ∴∠DME =∠FDN,
    ∴当DEM与DFN全等时,DM=DN,
    ∵M到达点D时, ,M到达点C时, ,
    N到达点D时, ,N到达点A时,,
    当时,DM=3-t,CN=3t,则DN=5-3t,
    ∴3-t=5-3t,解得:t=1,
    ∴此时DN=5-3t=2,
    当时,DM=3-t,DN=3t-5,
    ∴3-t=3t-5,解得: ,
    ∴DN=3t-5=1,
    综上所述,当DEM与DFN全等时,所有满足条件的DN的长为2或1.
    【点睛】
    本题主要考查了全等三角形的判定和性质,动点问题,利用分类讨论思想解答是解题的关键.
    8、见解析
    【分析】
    根据已知条件和公共角,直接根据角边角证明,进而即可证明
    【详解】
    在与中,

    ∴.
    ∴.
    【点睛】
    本题考查了全等三角形的性质与判定,掌握全等三角形的性质与判定是解题的关键.
    9、见解析
    【分析】
    过A作AF⊥BC于F,根据等腰三角形的性质得出BF=CF,DF=EF,即可求出答案.
    【详解】
    证明:如图,过A作AF⊥BC于F,

    ∵AB=AC,AD=AE,
    ∴BF=CF,DF=EF,
    ∴BF-DF=CF-EF,
    ∴BD=CE.
    【点睛】
    本题考查了等腰三角形的性质的应用,注意:等腰三角形的底边上的高,底边上的中线,顶角的平分线互相重合.
    10、
    (1)①
    (2)SAS
    (3)见解析
    【分析】
    (1)根据全等三角形的判定方法分析得出答案;
    (2)根据(1)直接填写即可;
    (3)利用SAS进行证明.
    (1)
    解:∵,
    ∴∠A=∠F,
    ∵AC=EF,
    ∴当时,可根据SAS证明;
    当时,不能证明,
    故答案为:①;
    (2)
    解:当时,可根据SAS证明,
    故答案为:SAS;
    (3)
    证明:在△ABC和△FDE中,

    ∴.
    【点睛】
    此题考查了添加条件证明两个三角形全等,正确掌握全等三角形的判定定理是解题的关键.

    相关试卷

    沪教版 (五四制)七年级下册第十四章 三角形综合与测试巩固练习:

    这是一份沪教版 (五四制)七年级下册第十四章 三角形综合与测试巩固练习,共30页。试卷主要包含了如图,点D,下列三角形与下图全等的三角形是等内容,欢迎下载使用。

    沪教版 (五四制)七年级下册第十四章 三角形综合与测试同步达标检测题:

    这是一份沪教版 (五四制)七年级下册第十四章 三角形综合与测试同步达标检测题,共33页。试卷主要包含了三角形的外角和是,有下列说法等内容,欢迎下载使用。

    初中第十四章 三角形综合与测试课后复习题:

    这是一份初中第十四章 三角形综合与测试课后复习题,共32页。试卷主要包含了已知长方形纸片ABCD,点E,有下列说法等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map