终身会员
搜索
    上传资料 赚现金

    2021-2022学年度强化训练沪教版七年级数学第二学期第十四章三角形达标测试试题(含详细解析)

    立即下载
    加入资料篮
    2021-2022学年度强化训练沪教版七年级数学第二学期第十四章三角形达标测试试题(含详细解析)第1页
    2021-2022学年度强化训练沪教版七年级数学第二学期第十四章三角形达标测试试题(含详细解析)第2页
    2021-2022学年度强化训练沪教版七年级数学第二学期第十四章三角形达标测试试题(含详细解析)第3页
    还剩27页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    数学第十四章 三角形综合与测试一课一练

    展开

    这是一份数学第十四章 三角形综合与测试一课一练,共30页。试卷主要包含了如图,ABC≌DEF,点B,下列四个命题是真命题的有等内容,欢迎下载使用。
    沪教版七年级数学第二学期第十四章三角形达标测试
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、如图,△ ABC≌△CDA,∠BAC=80°,∠ABC=65°,则∠CAD的度数为( )

    A.35° B.65° C.55° D.40°
    2、如图,在△ABC和△DEF中,∠A=∠D,AF=DC,添加下列条件中的一个仍无法证明△ABC≌△DEF的是(  )

    A.BC=EF B.AB=DE C.∠B=∠E D.∠ACB=∠DFE
    3、BP是∠ABC的平分线,CP是∠ACB的邻补角的平分线,∠ABP=20°,∠ACP=50°,则∠P=( )

    A.30° B.40° C.50° D.60°
    4、等腰三角形的一个角是80°,则它的一个底角的度数是( )
    A.50° B.80° C.50°或80° D.100°或80°
    5、如图,已知为的外角,,,那么的度数是( )

    A.30° B.40° C.50° D.60°
    6、下列各条件中,不能作出唯一的的是( )
    A.,, B.,,
    C.,, D.,,
    7、如图,已知,要使,添加的条件不正确的是( )

    A. B. C. D.
    8、如图,ABC≌DEF,点B、E、C、F在同一直线上,若BC=7,EC=4,则CF的长是( )

    A.2 B.3 C.4 D.7
    9、下列四个命题是真命题的有(  )
    ①同位角相等;
    ②相等的角是对顶角;
    ③直角三角形两个锐角互余;
    ④三个内角相等的三角形是等边三角形.
    A.1个 B.2个 C.3个 D.4个
    10、定理:三角形的一个外角等于与它不相邻的两个内角的和.已知:如图,∠ACD是△ABC的外角.求证:∠ACD=∠A+∠B.
    证法1:如图,
    ∵∠A=70°,∠B=63°,
    且∠ACD=133°(量角器测量所得)
    又∵133°=70°+63°(计算所得)
    ∴∠ACD=∠A+∠B(等量代换).
    证法2:如图,
    ∵∠A+∠B+∠ACB=180°(三角形内角和定理),
    又∵∠ACD+∠ACB=180°(平角定义),
    ∴∠ACD+∠ACB=∠A+∠B+∠ACB(等量代换).
    ∴∠ACD=∠A+∠B(等式性质).
    下列说法正确的是(  )

    A.证法1用特殊到一般法证明了该定理
    B.证法1只要测量够100个三角形进行验证,就能证明该定理
    C.证法2还需证明其他形状的三角形,该定理的证明才完整
    D.证法2用严谨的推理证明了该定理
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、如图,在中,,交BC的延长线于点E,若,点C是BE中点,则______°.

    2、如图,已知点是射线上一点,过作交射线于点,交射线于点,给出下列结论:①是的余角;②图中互余的角共有3对;③的补角只有;④与互补的角共有3个,其中正确结论有______(把你认为正确的结论的序号都填上).

    3、如图,直线ED把分成一个和四边形BDEC,的周长一定大于四边形BDEC的周长,依据的原理是____________________________________.

    4、如图,将绕点顺时针旋转得到,点的对应点恰好落在边上,则_______.(用含的式子表示)

    5、如图,在△ABC中,∠C=62°,△ABC两个外角的角平分线相交于G,则∠G的度数为_____.

    三、解答题(10小题,每小题5分,共计50分)
    1、如图,在△ABC中,AD⊥BE,∠DAC=10°,AE是∠BAC的外角∠MAC的平分线,BF平分∠ABC交AE于点F,求∠AFB的度数.

    2、已知:如图,点B、C在线段AD的异侧,点E、F分别是线段AB、CD上的点,∠AEG=∠AGE,∠C=∠DGC.
    (1)求证:AB//CD;
    (2)若∠AGE+∠AHF=180°,求证:∠B=∠C;
    (3)在(2)的条件下,若∠BFC=4∠C,求∠D的度数.

    3、如图所示,四边形ABCD中,ADC的角平分线DE与BCD的角平分线CA相交于E点,已知:ACB=32°,CDE=58°.

    (1)求DEC的度数;
    (2)试说明直线
    4、如图,点D在AC上,BC,DE交于点F,,,.

    (1)求证:;
    (2)若,求∠CDE的度数.
    5、如图,已知点E、C在线段BF上,,,.求证:ΔABC≅ΔDEF.

    6、如图,,,E为BC中点,DE平分.

    (1)求证:平分;
    (2)求证:;
    (3)求证:.
    7、直线l经过点A,在直线l上方,.
    (1)如图1,,过点B,C作直线l的垂线,垂足分别为D、E.求证:
    (2)如图2,D,A,E三点在直线l上,若(为任意锐角或钝角),猜想线段DE、BD、CE有何数量关系?并给出证明.
    (3)如图3,过点B作直线l上的垂线,垂足为F,点D是BF延长线上的一个动点,连结AD,作,使得,连结DE,CE.直线l与CE交于点G.求证:G是CE的中点.

    8、如图,在中,,AD是角平分线,E是AB边上一点,连接ED,CB是的平分线,ED的延长线与CF交于点F.

    (1)求证:;
    (2)若,,则______度.
    9、如图是由边长为1的小等边三角形构成的网格,每个小等边三角形的顶点为格点,线段的端点都在格点上.要求以为边画一个等腰,且使得点为格点.请在下面的网格图中画出3种不同的等腰.

    10、已知,如图,AB=AD,∠B=∠D,∠1=∠2=60°.

    (1)求证:△ADE≌△ABC;
    (2)求证:AE=CE.

    -参考答案-
    一、单选题
    1、A
    【分析】
    先根据三角形内角和定理求出∠ACB=35°,再根据全等三角形性质即可求出∠CAD=35°.
    【详解】
    解:∵∠BAC=80°,∠ABC=65°,
    ∴∠ACB=180°-∠BAC-∠ABC=35°,
    ∵△ABC≌△CDA,
    ∴∠CAD=∠ACB=35°.
    故选:A
    【点睛】
    本题考查了三角形的内角和定理,全等三角形的性质,熟知两个定理是解题关键.
    2、A
    【分析】
    根据AF=DC求出AC=DF,再根据全等三角形的判定定理逐个判断即可.
    【详解】
    解:∵AF=DC,
    ∴AF+FC=DC+FC,
    即AC=DF,
    A、BC=EF,AC=DF,∠A=∠D,不符合全等三角形的判定定理,不能推出△ABC≌△DEF,故本选项符合题意;
    B、AB=DE,∠A=∠D,AC=DF,符合全等三角形的判定定理SAS,能推出△ABC≌△DEF,故本选项不符合题意;
    C.∠B=∠E,∠A=∠D,AC=DF,符合全等三角形的判定定理AAS,能推出△ABC≌△DEF,故本选项不符合题意;
    D.∠ACB=∠DFE,AC=DF,∠A=∠D,符合全等三角形的判定定理ASA,能推出△ABC≌△DEF,故本选项不符合题意;
    故选:A.
    【点睛】
    本题考查了全等三角形的判定定理,能熟记全等三角形的判定定理是解此题的关键,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,两直角三角形全等还有HL.
    3、A
    【分析】
    根据角平分线的定义以及一个三角形的外角等于与它不相邻的两个内角和,可求出∠P的度数.
    【详解】
    ∵BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,
    ∴∠ABP=∠CBP=20°,∠ACP=∠MCP=50°,
    ∵∠PCM是△BCP的外角,
    ∴∠P=∠PCM−∠CBP=50°−20°=30°,
    故选:A.
    【点睛】
    本题考查三角形外角性质以及角平分线的定义,解题时注意:一个三角形的外角等于与它不相邻的两个内角的和.
    4、C
    【分析】
    已知给出一个角的的度数为80º,没有明确是顶角还是底角,要分类讨论,联合内角和求出底角即可.
    【详解】
    解:等腰三角形的一个角是80°,
    当80º为底角时,它的一个底角是80º,
    当80º为顶角时,它的一个底角是,
    则它的一个底角是50º或80º.
    故选:C.
    【点睛】
    本题考查等腰三角形的性质,内角和定理,掌握分类讨论的思想是解决问题的关键.
    5、B
    【分析】
    根据三角形的外角性质解答即可.
    【详解】
    解:∵∠ACD=60°,∠B=20°,
    ∴∠A=∠ACD−∠B=60°−20°=40°,
    故选:B.
    【点睛】
    此题考查三角形的外角性质,关键是根据三角形外角性质解答.
    6、B
    【分析】
    根据三角形全等的判定及三角形三边关系即可得出结果.
    【详解】
    解:A、,不能组成三角形;
    B、根据不可以确定选项中条件能作出唯一三角形;
    C、根据可以确定选项中条件能作出唯一三角形;
    D、根据可以确定选项中条件能作出唯一三角形;
    故答案为:B.
    【点睛】
    本题考查确定唯一三角形所需要的条件及三角形三边关系,解题关键在于对全等判定条件的理解.
    7、D
    【分析】
    已知条件AB=AC,还有公共角∠A,然后再结合选项所给条件和全等三角形的判定定理进行分析即可.
    【详解】
    解:A、添加BD=CE可得AD=AE,可利用利用SAS定理判定△ABE≌△ACD,故此选项不合题意;
    B、添加∠ADC=∠AEB可利用AAS定理判定△ABE≌△ACD,故此选项不合题意;
    C、添加∠B=∠C可利用ASA定理判定△ABE≌△ACD,故此选项不合题意;
    D、添加BE=CD不能判定△ABE≌△ACD,故此选项符合题意;
    故选:D.
    【点睛】
    本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL(直角三角形),掌握三角形全等的判定方法是解题关键.
    8、B
    【分析】
    根据全等三角形的性质可得,根据即可求得答案.
    【详解】
    解:ABC≌DEF,

    点B、E、C、F在同一直线上,BC=7,EC=4,

    故选B
    【点睛】
    本题考查了全等三角形的性质,掌握全等三角形的性质是解题的关键.
    9、B
    【分析】
    利用平行线的性质、对顶角的定义、直角三角形的性质及等边三角形的性质分别判断后即可确定正确的选项.
    【详解】
    ①两直线平行,同位角相等,故错误,是假命题;
    ②相等的角是对顶角,错误,是假命题;
    ③直角三角形两个锐角互余,正确,是真命题;
    ④三个内角相等的三角形是等边三角形,正确,是真命题,
    综上所述真命题有2个,
    故选:B.
    【点睛】
    本题考查了命题真假的判断,要说明一个命题是正确的,需要根据命题的题设和已学的有关公理、定理进行说明、推理、证明,正确的命题叫做真命题,错误的命题叫做假命题.
    10、D
    【分析】
    利用测量的方法只能是验证,用定理,定义,性质结合严密的逻辑推理推导新的结论才是证明,再逐一分析各选项即可得到答案.
    【详解】
    解:证法一只是利用特殊值验证三角形的一个外角等于与它不相邻的两个内角的和,
    证法2才是用严谨的推理证明了该定理,
    故A不符合题意,C不符合题意,D符合题意,
    证法1测量够100个三角形进行验证,也只是验证,不能证明该定理,故B不符合题意;
    故选D
    【点睛】
    本题考查的是三角形的外角的性质的验证与证明,理解验证与证明的含义及证明的方法是解本题的关键.
    二、填空题
    1、67.5°
    【分析】
    连接AE,先得出∠BAC=∠BAE,再根据,得出∠BAC=22.5°,最后得出结果.
    【详解】
    解:连接AE,
    ∵点C是BE中点,
    ∴BC=CE,
    ∵∠ACB=90°,
    ∴AC⊥BE,
    ∴AB=AE,
    ∴∠BAC=∠BAE,
    ∵DE⊥AB,
    ∴∠ADE=90°,
    ∵,
    ∴∠AED=∠DAE=45°,
    ∴∠BAC=∠BAE=22.5°,
    ∴∠B=90°-∠BAC=67.5°.
    故答案为:67.5°.

    【点睛】
    本题考查了线段垂直平分线的性质,等腰三角形的性质及直角三角形的性质,正确作出辅助线是解题的关键.
    2、①④
    【分析】
    根据垂直定义可得∠BAC=90°,∠ADC=∠ADB=∠CAE=90°,结合三角形的内角和,然后再根据余角定义和补角定义逐一进行分析即可.
    【详解】
    解: ,

    是的余角;故①符合题意;


    互为余角,互为余角,

    互为余角,
    所以图中互余的角共有4对,故②不符合题意;

    与互补;
    ∵∠1+∠DAC=90°,∠BAD+∠DAC=90°,
    ∴∠1=∠BAD,
    ∵∠BAD+∠DAE=180°,
    ∴∠1+∠DAE=180°,
    ∴∠1与∠DAE互补, 故③不符合题意;


    所以与互补的角有 共3个,故④符合题意;
    所以正确的结论有:①④
    故答案为:①④
    【点睛】
    本题考查的是垂直的定义,互余,互补的含义,三角形的内角和定理,掌握“互为余角的两个角之和为 互为补角是两个角之和为”是解本题的关键.
    3、三角形两边之和大于第三边
    【分析】
    表示出和四边形BDEC的周长,再结合中的三边关系比较即可.
    【详解】
    解:的周长=
    四边形BDEC的周长=
    ∵在中

    即的周长一定大于四边形BDEC的周长,
    ∴依据是:三角形两边之和大于第三边;
    故答案为三角形两边之和大于第三边
    【点睛】
    本题考查了三角形三边关系定理,关键是熟悉三角形两边之和大于第三边的知识点.
    4、
    【分析】
    由旋转的性质可得∠DAB=,AD=AB,∠B,进而即可求解.
    【详解】
    解:∵将绕点顺时针旋转得到,
    ∴∠DAB=,AD=AB,∠B,
    ∵∠B=,
    ∴,
    故答案是:.
    【点睛】
    本题考查了旋转的性质,等腰三角形的性质,掌握旋转的性质是本题的关键.
    5、59°
    【分析】
    先利用三角形内角和定理求出∠CAB+∠CBA=180°-∠C=118°,从而利用三角形外角的性质求出∠DAB+∠EBA=2∠C+∠CAB+∠CBA=242°,再由角平分线的定义求出,由此求解即可.
    【详解】
    解:∵∠C=62°,
    ∴∠CAB+∠CBA=180°-∠C=118°,
    ∵∠DAB=∠C+∠CBA,∠EBA=∠C+∠CAB,
    ∴∠DAB+∠EBA=2∠C+∠CAB+∠CBA=242°,
    ∵△ABC两个外角的角平分线相交于G,
    ∴,,
    ∴,
    ∴∠G=180°-∠GAB-∠GBA=59°,
    故答案为:59°.

    【点睛】
    本题主要考查了三角形内角和定理,三角形外角的性质,角平分线的定义,熟知相关知识是解题的关键.
    三、解答题
    1、∠AFB=40°.
    【分析】
    由题意易得∠ADC=90°,∠ACB=80°,然后可得,进而根据三角形外角的性质可求解.
    【详解】
    解:∵AD⊥BE,
    ∴∠ADC=90°,
    ∵∠DAC=10°,
    ∴∠ACB=90°﹣∠DAC=90°﹣10°=80°,
    ∵AE是∠MAC的平分线,BF平分∠ABC,
    ∴,
    又∵∠MAE=∠ABF+∠AFB,∠MAC=∠ABC+∠ACB,
    ∴∠AFB=∠MAE﹣∠ABF=.
    【点睛】
    本题主要考查三角形外角的性质及角平分线的定义,熟练掌握三角形外角的性质及角平分线的定义是解题的关键.
    2、(1)见解析;(2)见解析;(3)108°
    【分析】
    (1)根据对顶角相等结合已知条件得出∠AEG=∠C,根据内错角相等两直线平行即可证得结论;
    (2)由∠AGE+∠AHF=180°等量代换得∠DGC+∠AHF=180°可判断EC//BF,两直线平行同位角相等得出∠B=∠AEG,结合(1)得出结论;
    (3)由(2)证得EC//BF,得∠BFC+∠C=180°,求得∠C的度数,由三角形内角和定理求得∠D的度数.
    【详解】
    证明:(1)∵∠AEG=∠AGE,∠C=∠DGC,∠AGE=∠DGC
    ∴∠AEG=∠C
    ∴AB//CD
    (2)∵∠AGE=∠DGC,∠AGE+∠AHF=180°
    ∴∠DGC+∠AHF=180°
    ∴EC//BF
    ∴∠B=∠AEG
    由(1)得∠AEG=∠C
    ∴∠B=∠C
    (3)由(2)得EC//BF
    ∴∠BFC+∠C=180°
    ∵∠BFC=4∠C
    ∴∠C=36°
    ∴∠DGC=36°
    ∵∠C+∠DGC+∠D=180°
    ∴∠D=108°
    【点睛】
    此题考查了平行线的判定与性质,三角形内角和定理,熟记“内错角相等,两直线平行”、“同旁内角互补,两直线平行”及“两直线平行,同旁内角互补”是解题的关键.
    3、(1)90°;(2)见解析
    【分析】
    (1)根据三角形内角和定理即可求解;
    (2)首先求得∠ADC的度数和∠DCB的度数,根据同旁内角互补,两直线平行即可证得.
    【详解】
    解:(1)∵AC是BCD的平分线


    ∴∠DEC=180°-∠ACD-∠CDE=180°-32°-58°=90°;
    (2)∵DE平分∠ADC,CA平分∠BCD
    ∴∠ADC=2∠CDE=116°,∠BCD=2∠ACD=64°
    ∵∠ADC+∠BCD=116°+64°=180°

    【点睛】
    本题主要考查了角平分线,平行线的判定以及三角形内角和定理,熟练掌握相关性质和定理是解答本题的关键.
    4、
    (1)证明见解析;
    (2)∠CDE=20°.
    【分析】
    (1)由“SAS”可证△ABC≌△DBE;
    (2)由全等三角形的性质可得∠C=∠E,由三角形的外角性质可求解.
    (1)
    证明:∵∠ABD=∠CBE,
    ∴∠ABD+∠DBC=∠CBE+∠DBC,
    即:∠ABC=∠DBE,
    在△ABC和△DBE中,

    ∴△ABC≌△DBE(SAS);
    (2)
    解:由(1)可知:△ABC≌△DBE,
    ∴∠C=∠E,
    ∵∠DFB=∠C+∠CDE,
    ∠DFB=∠E+∠CBE,
    ∴∠CDE=∠CBE,
    ∵∠ABD=∠CBE=20°,
    ∴∠CDE=20°.
    【点睛】
    本题考查了全等三角形的判定和性质,三角形的外角性质,证明三角形全等是解题的关键.
    5、见解析
    【分析】
    由平行线的性质可证明.再由,可推出.最后即可利用“ASA”直接证明.
    【详解】
    证明:


    ,即.
    ∴在和中,

    【点睛】
    本题考查三角形全等的判定,平行线的性质,线段的和与差.掌握三角形全等的判定条件是解答本题的关键.
    6、(1)见解析;(2)见解析;(3)见解析
    【分析】
    (1)延长DE交AB延长线于F,由∠B=∠C=90°,推出AB∥CD,则∠CDE=∠F,再由DE平分∠ADC,即可推出∠ADF=∠F,得到AD=AF,即△ADF是等腰三角形,然后证明△CDE≌△BFE得到DE=FE,即E是DF的中点,即可证明AE平分∠BAD;
    (2)由(1)即可用三线合一定理证明;
    (3)由△CDE≌△BFE,得到CD=BF,则AD=AF=AB+BF=AB+CD.
    【详解】
    解:(1)如图所示,延长DE交AB延长线于F,
    ∵∠B=∠C=90°,
    ∴AB∥CD,
    ∴∠CDE=∠F,
    ∵DE平分∠ADC,
    ∴∠CDE=∠ADE,
    ∴∠ADF=∠F,
    ∴AD=AF,
    ∴△ADF是等腰三角形,
    ∵E是BC的中点,
    ∴CE=BE,
    ∴△CDE≌△BFE(AAS),
    ∴DE=FE,
    ∴E是DF的中点,
    ∴AE平分∠BAD;

    (2)由(1)得△ADF是等腰三角形,AD=AF,E是DF的中点,
    ∴AE⊥DE;
    (3)∵△CDE≌△BFE,
    ∴CD=BF,
    ∴AD=AF=AB+BF=AB+CD.
    【点睛】
    本题主要考查了平行线的性质与判定,全等三角形的性质与判定,等腰三角形的性质与判定,熟知相关知识是解题的关键.
    7、(1)见解析;(2)猜想:,见解析;(3)见解析
    【分析】
    (1)先证明和,再根据证明即可;
    (2)根据AAS证明得,,进一步可得出结论;
    (3)分别过点C、E作,,同(1)可证,,得出CM=EN,证明得,从而可得结论.
    【详解】
    解:(1)证明:∵,,
    ∴,

    ∵,

    ∴,
    在与中


    (2)猜想:,

    ∴,

    ∴,
    在与中

    ∴,
    ∴,,

    (3)分别过点C、E作,,
    同(1)可证,,
    ∴,
    ∴,
    ∵,,

    在与中

    ∴,
    ∴,
    ∴G为CE的中点.

    【点睛】
    本题考查了全等三角形的判定与性质、垂线的定义、角的互余关系,证得△ABD≌△CAE是解决问题的关键.
    8、(1)见解析,(2)46
    【分析】
    (1)根据等腰三角形的性质和角平分线得到∠B=∠ACB=∠BCF,由AD是角平分线,得到BD=CD,证△BDE≌△CDF即可;
    (2)根据全等三角形的性质得到DE=DF=DA,根据求得∠DAB,进而求出∠B的度数即可.
    【详解】
    (1)证明:∵,
    ∴∠B=∠ACB,
    ∵CB是的平分线,
    ∴∠ACB=∠BCF,
    ∴∠B=∠BCF,
    ∵AD是角平分线,AB=AC,
    ∴BD=CD,
    ∵∠BDE=∠CDF,
    ∴△BDE≌△CDF(AAS);
    ∴;
    (2)∵△BDE≌△CDF;
    ∴ED=FD,
    ∵,
    ∴ED=AD,
    ∵,
    ∴,
    ∴,
    ∴∠B=∠ACB=∠BCF=23°,
    ∴,
    故答案为:46.
    【点睛】
    本题考查了等腰三角形的性质和全等三角形的判定与性质,解题关键是熟练运用相关知识进行推理证明和计算.
    9、答案见解析
    【分析】
    AB为4个等边三角形组成的平行四边形的对角线,因此只要找到另一腰也4个等边三角形组成的平行四边形的对角线即可
    【详解】
    解:如图,
    ……
    [答案不唯一]
    【点睛】
    本题考查等腰三角形的绘图,掌握等边三角形和等腰三角形性质即可.
    10、(1)见解析;(2)见解析
    【分析】
    (1)根据∠1=∠2可推出∠DAE=∠BAC,然后结合全等三角形的判定定理进行证明;
    (2)由全等三角形的性质可得AE=AC,结合∠2=60°可推出△AEC为等边三角形,据此证明.
    【详解】
    (1)证明:∵∠1=∠2
    ∴∠1+=∠2+  
     即∠DAE=∠BAC
    在△ADE和△ABC中
     
     ∴△ADE≌△ABC(ASA)
    (2)证明:∵△ADE≌△ABC
    ∴AE=AC
    又∵∠2=60°
    ∴△AEC为等边三角形
    ∴AE=CE
    【点睛】
    此题考查了全等三角形的性质和判定,等边三角形的性质和判定,解题的关键是熟练掌握全等三角形的性质和判定方法,等边三角形的性质和判定方法.

    相关试卷

    沪教版 (五四制)七年级下册第十四章 三角形综合与测试同步测试题:

    这是一份沪教版 (五四制)七年级下册第十四章 三角形综合与测试同步测试题,共29页。试卷主要包含了定理,如图,点D等内容,欢迎下载使用。

    沪教版 (五四制)七年级下册第十四章 三角形综合与测试练习题:

    这是一份沪教版 (五四制)七年级下册第十四章 三角形综合与测试练习题,共34页。试卷主要包含了下列四个命题是真命题的有,如图,在中,AD等内容,欢迎下载使用。

    沪教版 (五四制)七年级下册第十四章 三角形综合与测试当堂达标检测题:

    这是一份沪教版 (五四制)七年级下册第十四章 三角形综合与测试当堂达标检测题,共32页。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map