2021学年第十四章 三角形综合与测试单元测试随堂练习题
展开
这是一份2021学年第十四章 三角形综合与测试单元测试随堂练习题,共30页。试卷主要包含了如图,在中,,下列三个说法等内容,欢迎下载使用。
沪教版七年级数学第二学期第十四章三角形单元测试
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、在△ABC中,∠A=50°,∠B、∠C的平分线交于O点,则∠BOC等于( )
A.65° B.80° C.115° D.50°
2、如果三角形一边上的中线等于这条边的一半,那么这个三角形一定是( ).
A.锐角三角形 B.直角三角形 C.钝角三角形 D.等腰三角形
3、已知三角形的两边长分别为2cm和3cm,则第三边长可能是( )
A.6cm B.5cm C.3cm D.1cm
4、在下列长度的四根木棒中,能与3cm,9cm的两根木棒首尾顺次相接钉成一个三角形的是( )
A.3cm B.6cm C.10cm D.12cm
5、如图,在中,、分别平分、,过点作直线平行于,分别交、于点、,当大小变化时,线段和的大小关系是
A. B. C. D.不能确定
6、我们称网格线的交点为格点.如图,在4×4的长方形网格中有两个格点A、B,连接AB,在网格中再找一个格点C,使得△ABC是等腰直角三角形,则满足条件的格点C的个数是( )
A.3 B.4 C.5 D.6
7、三根小木棒摆成一个三角形,其中两根木棒的长度分别是和,那么第三根小木棒的长度不可能是( )
A. B. C. D.
8、下列三个说法:
①有一个内角是30°,腰长是6的两个等腰三角形全等;
②有一个内角是120°,底边长是3的两个等腰三角形全等;
③有两条边长分别为5,12的两个直角三角形全等.
其中正确的个数有( ).
A.3 B.2 C.1 D.0
9、将三根木条钉成一个三角形木架,这个三角形木架具有稳定性.解释这个现象的数学原理是( )
A.SSS B.SAS C.ASA D.AAS
10、下列长度的三条线段能组成三角形的是( )
A.3,4,7 B.3,4,8 C.3,4,5 D.3,3,7
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,在三角形ABC中,,点D为射线CB上一点,过点D作交直线AB于点E,交直线AC于点F,CG平分交DF于点G.若,则______°.
2、如图,点,在直线上,且,且,过,,分别作,,,若,,,则的面积是______.
3、一个等腰三角形的一边长为2,另一边长为9,则它的周长是________________.
4、等腰三角形的一条边长为5,周长为20,则该三角形的腰长为__________.
5、如图,在边长为4,面积为的等边中,点、分别是、边的中点,点是边上的动点,求的最小值___.
三、解答题(10小题,每小题5分,共计50分)
1、如图,等边△ABC中,点D在BC上,CE=CD,∠BCE=60°,连接AD、BE.
(1)如图1,求证:AD=BE;
(2)如图2,延长AD交BE于点F,连接DE、CF,在不添加任何辅助线和其它字母的情况下,请直接写出等于120°的角.
2、如图,将△ABC绕点A逆时针旋转得到△ADE,点D在BC上,已知∠B=70°,求∠CDE的大小.
3、如图,点A,B,C,D在一条直线上,,,.求证:.
4、如图,在长方形ABCD中,AD=3,DC=5,动点M从A点出发沿线段AD—DC以每秒1个单位长度的速度向终点C运动;动点N同时从C点出发沿线段CD—DA以每秒3个单位长度的速度向终点A运动.ME⊥PQ于点E,NF⊥PQ于点F,设运动的时间为秒.
(1)在运动过程中当M、N两点相遇时,求t的值.
(2)在整个运动过程中,求DM的长.(用含t的代数式表示)
(3)当DEM与DFN全等时,请直接写出所有满足条件的DN的长.
5、针对于等腰三角形三线合一的这条性质,老师带领同学们做了进一步的猜想和证明,提问:如果一个三角形中,一个角的平分线和它所对的边的中线重合,那么这个三角形是等腰三角形.
已知:在△ABC中,AD 平分∠CAB,交BC 边于点 D,且CD=BD,
求证:AB=AC.
以下是甲、乙两位同学的作法.
甲:根据角平分线和中线的性质分别能得出一组角等和一组边等,再加一组公共边,可证△ACD≌△ABD,所以这个三角形为等腰三角形;
乙:延长AD到E,使DE=AD,连接BE,可证△ACD≌△EBD,依据已知条件可推出AB=AC,所以这个三角形为等腰三角形
(1)对于甲、乙两人的作法,下列判断正确的是( );
A.两人都正确 B.甲正确,乙错误 C.甲错误,乙正确
(2)选择一种你认为正确的作法,并证明.
6、探究与发现:如图①,在△ABC中,∠B=∠C=45°,点D在BC边上,点E在AC边上,且∠ADE=∠AED,连接DE.
(1)当∠BAD=60°时,求∠CDE的度数;
(2)当点D在BC(点B、C除外)边上运动时,试猜想∠BAD与∠CDE的数量关系,并说明理由.
(3)深入探究:如图②,若∠B=∠C,但∠C≠45°,其他条件不变,试探究∠BAD与∠CDE的数量关系.
7、如图,△ABC是等边三角形,点D、E、F分别同时从A、B、C以同样的速度沿AB、BC、CA方向运动,当点D运动到点B时,三个点都停止运动.
(1)在运动过程中△DEF是什么形状的三角形,并说明理由;
(2)若运动到某一时刻时,BE=4,∠DEC=150°,求等边△ABC的周长;
8、如图,,,E为BC中点,DE平分.
(1)求证:平分;
(2)求证:;
(3)求证:.
9、如图,在中,AD是BC边上的高,CE平分,若,,求的度数.
10、如图,已知点B,F,C,E在同一直线上,AB∥DE,BF=CE,AB=ED,求证:∠A=∠D.
-参考答案-
一、单选题
1、C
【分析】
根据题意画出图形,求出∠ABC+∠ACB =130°,根据角平分线的定义得到∠CBD=∠ABC,∠ECB=∠ACB,再根据三角形内角和定理和角的代换即可求解.
【详解】
解:如图,∵∠A=50°,
∴∠ABC+∠ACB=180°-∠A=130°,
∵BD、CE分别是∠ABC、∠ACB的平分线,
∴∠CBD=∠ABC,∠ECB=∠ACB,
∴∠BOC=180°-∠CBD-∠ECB=180°-(∠CBD+∠ECB)=180°- (∠ABC+∠ACB)=180°- ×130°=115°.
故选:C
【点睛】
本题考查了三角形内角和定理,角平分线的定义,熟知三角形内角和定理,并能根据角平分线的定义进行角的代换是解题关键.
2、B
【分析】
根据题意画出图形,利用等腰三角形的性质及三角形内角和定理即可得到答案.
【详解】
如图,在△ABC中,CD是边AB上的中线
∵AD=CD=BD
∴∠A=∠DCA,∠B=∠DCB
∵∠A+∠ACB+∠B=180°
∴ ∠A+∠DCA+∠DCB+∠B=180
即2∠A+2∠B=180°
∴∠A+∠B=90°
∴∠ACB=90°
∴△ABC是直角三角形
故选:B
【点睛】
本题考查了等腰三角形的性质及三角形内角和定理,熟练运用这两个知识是关键.
3、C
【分析】
根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边.即可求解.
【详解】
解:设第三边长为xcm,根据三角形的三边关系可得:
3-2<x<3+2,
解得:1<x<5,
只有C选项在范围内.
故选:C.
【点睛】
本题考查了三角形的三边关系,关键是掌握第三边的范围是:大于已知的两边的差,而小于两边的和.
4、C
【分析】
设第三根木棒的长度为cm,再确定三角形第三边的范围,再逐一分析各选项即可得到答案.
【详解】
解:设第三根木棒的长度为cm,则
所以A,B,D不符合题意,C符合题意,
故选C
【点睛】
本题考查的是三角形的三边的关系,掌握“利用三角形的三边关系确定第三边的范围”是解本题的关键.
5、C
【分析】
由平行线的性质和角平分线的定义可得,则,同理可得,则,可得答案.
【详解】
解:,
,
平分,
,
,
,
同理,
,
即.
故选:C
【点睛】
本题主要考查了等腰三角形的判定,平行线的性质,角平分线的定义,熟练掌握等腰三角形的判定定理,平行线的性质定理,角平分线的定义是解题的关键.
6、A
【分析】
根据题意,结合图形,分两种情况讨论:①AB为等腰直角△ABC底边;②AB为等腰直角△ABC其中的一条腰.
【详解】
解:如图:分情况讨论:
①AB为等腰直角△ABC底边时,符合条件的格点C点有0个;
②AB为等腰直角△ABC其中的一条腰时,符合条件的格点C点有3个.
故共有3个点,
故选:A.
【点睛】
本题考查了等腰三角形的性质和判定;解答本题关键是根据题意,画出符合实际条件的图形,数形结合的思想是数学解题中很重要的解题思想.
7、D
【分析】
设第三根木棒长为x厘米,根据三角形的三边关系可得8﹣5<x<8+5,确定x的范围即可得到答案.
【详解】
解:设第三根木棒长为x厘米,由题意得:
8﹣5<x<8+5,即3<x<13,
故选:D.
【点睛】
此题主要考查了三角形的三边关系,要注意三角形形成的条件:任意两边之和>第三边,任意两边之差<第三边.
8、C
【分析】
根据三角形全等的判定方法,等腰三角形的性质和直角三角形的性质判断即可.
【详解】
解:①当一个是底角是30°,一个是顶角是30°时,两三角形就不全等,故本选项错误;
②有一个内角是120°,底边长是3的两个等腰三角形全等,本选项正确;
③当一条直角边为12,一条斜边为12时,两个直角三角形不全等,故本选项错误;正确的只有1个,
故选:C.
【点睛】
本题考查了全等三角形的判定定理,等腰三角形的性质和直角三角形的性质,熟练掌握全等三角形的判定定理是解题的关键.
9、A
【分析】
根据三根木条即为三角形的三边长,利用全等三角形判定定理确定唯一三角形即可得.
【详解】
解:三根木条即为三角形的三边长,
即为利用确定三角形,
故选:A.
【点睛】
题目主要考查利用全等三角形判定确定唯一三角形,熟练掌握全等三角形的判定是解题关键.
10、C
【分析】
根据组成三角形的三边关系依次判断即可.
【详解】
A、 3,4,7中3+4=7,故不能组成三角形,与题意不符,选项错误.
B、 3,4,8中3+4<8,故不能组成三角形,与题意不符,选项错误.
C、 3,4,5中任意两边之和都大于第三边,任意两边之差都小于第三边,故能组成三角形,符合题意,选项正确.
D、 3,3,7中3+3<7,故不能组成三角形,与题意不符,选项错误.
故选:C.
【点睛】
本题考查了三角形的三边关系,在一个三角形中,任意两边之和大于第三边,任意两边之差小于第三边.
二、填空题
1、80
【分析】
先求解 再求解 再利用三角形的外角的性质可得答案.
【详解】
解: ,,
,
,
CG平分,
故答案为:
【点睛】
本题考查的是角平分线的定义,平行线的性质,三角形的内角和定理,三角形的外角的性质,熟练的运用平行线的性质探究角之间的关系是解本题的关键.
2、15
【分析】
根据AAS证明△EFA≌△AGB,△BGC≌△CHD,再根据全等三角形的性质以及三角形的面积公式求解即可.
【详解】
解:(1)∵EF⊥FG,BG⊥FG,
∴∠EFA=∠AGB=90°,
∴∠AEF+∠EAF=90°,
又∵AE⊥AB,即∠EAB=90°,
∴∠BAG+∠EAF=90°,
∴∠AEF=∠BAG,
在△AEC和△CDB中,
,
∴△EFA≌△AGB(AAS);
同理可证△BGC≌△CHD(AAS),
∴AG=EF=6,CG=DH=4,
∴S△ABC=ACBG=(AG+GC)BG=(6+4)3=15.
故答案为:15.
【点睛】
本题考查了三角形全等的性质和判定,解题的关键是灵活运用所学知识解决问题.
3、20
【分析】
题目给出等腰三角形有两条边长为2和9,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.
【详解】
解:分两种情况:当腰为2时,2+2<9,所以不能构成三角形;
当腰为9时,2+9>9,所以能构成三角形,周长是:2+9+9=20.
故答案为:20.
【点睛】
本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.
4、7.5
【分析】
根据腰长是否为5,分两类情况进行求解即可.
【详解】
解:当腰长为5时,由周长可知:底边长为10,且
故不满足三边关系,不成立,
当腰长不为5时,则底边长为5,由周长可得:腰长为
满足三边关系,故腰长为7.5,
故答案为:7.5.
【点睛】
本题主要是考查了等腰三角形的性质以及三角形的三边关系,熟练根据腰长来进行分类讨论,这是解决本题的关键.
5、
【分析】
连接,交于点,连接,则的最小值为,再由已知求出的长即可.
【详解】
解:连接,交于点,连接,
是等边三角形,是边中点,
点与点关于对称,
,
,
的最小值为,
是的中点,
,
,的面积为,
,
的最小值为,
故答案为:.
【点睛】
本题考查了等边三角形的性质,将军饮马河原理,熟练掌握等边三角形的性质,灵活运用将军饮马河原理是解题的关键.
三、解答题
1、(1)见解析;(2)等于120°的角有∠BFC、∠BDE、∠DFE=120°.
【分析】
(1)利用SAS证明△ADC≌△BEC,即可证明AD=BE;
(2)证明△CDE为等边三角形,可求得∠BDE=120°;利用全等三角形的性质可求得∠BFD=∠BCA=60°,推出∠DFE=120°;同理可推出∠BFC=∠AFC+∠BFD=120°.
【详解】
(1)证明:等边△ABC中,CA=CB,∠ACB=60°,
∵CE=CD,∠BCE=60°,
∴△ADC≌△BEC(SAS),
∴AD=BE;
(2)等于120°的角有∠BFC、∠BDE、∠DFE=120°.
∵CE=CD,∠BCE=60°,
∴△CDE为等边三角形,
∴∠CDE=60°,
∴∠BDE=120°;
∵△ADC≌△BEC,
∴∠DAC=∠EBC,
又∠BDF=∠ADC,
∴∠BFD=∠BCA=60°,
∴∠DFE=120°;
同理可求得∠AFC=∠ABC=60°,
∴∠BFC=∠AFC+∠BFD=120°;
综上,等于120°的角有∠BFC、∠BDE、∠DFE=120°.
【点睛】
本题考查了全等三角形的判定和性质,等边三角形的判定和性质,熟记各图形的性质并准确识图是解题的关键.
2、
【分析】
先由旋转的性质证明再利用等边对等角证明从而可得答案.
【详解】
解: 把△ABC绕点A逆时针旋转得到△ADE,∠B=70°,
【点睛】
本题考查的是旋转的性质,等腰三角形的性质,掌握“旋转前后的对应角相等与等边对等角”是解本题的关键.
3、见解析
【分析】
根据平行线的性质得出,运用“角角边”证明△AEB≌△CFD即可.
【详解】
证明:∵,
∴,
在△AEB和△CFD中,
∴△AEB≌△CFD,
∴.
【点睛】
本题考查了全等三角形的判定与性质,解题关键是熟练运用全等三角形的判定定理进行证明.
4、(1)2;(2)当0≤t≤3时,DM=3-t,当3<t≤8时,DM=t-3;(3)2或1
【分析】
(1)根据题意得: ,解得:,即可求解;
(2)根据题意得:当0≤t≤3时,AM=t,则DM=3-t,当3<t≤8时,DM=t-3,即可求解;
(3)根据ME⊥PQ,NF⊥PQ,可得∠DEM=∠DFN=90°,再由∠ADC=90°,可得∠DME =∠FDN,从而得到当DEM与DFN全等时,DM=DN,根据题意可得M到达点D时, ,M到达点C时, ,N到达点D时, ,N到达点A时,,然后分两种情况:当时和当时,即可求解.
【详解】
解:(1)根据题意得: ,解得:,
即在运动过程中当M、N两点相遇时,t的值为2;
(2)根据题意得:当0≤t≤3时,AM=t,则DM=3-t,
当3<t≤8时,DM=t-3;
(3)∵ME⊥PQ,NF⊥PQ,
∴∠DEM=∠DFN=90°,
∴∠EDM+ ∠DME =90°,
∵∠ADC=90°,
∴∠EDM+∠FDN =90°,
∴∠DME =∠FDN,
∴当DEM与DFN全等时,DM=DN,
∵M到达点D时, ,M到达点C时, ,
N到达点D时, ,N到达点A时,,
当时,DM=3-t,CN=3t,则DN=5-3t,
∴3-t=5-3t,解得:t=1,
∴此时DN=5-3t=2,
当时,DM=3-t,DN=3t-5,
∴3-t=3t-5,解得: ,
∴DN=3t-5=1,
综上所述,当DEM与DFN全等时,所有满足条件的DN的长为2或1.
【点睛】
本题主要考查了全等三角形的判定和性质,动点问题,利用分类讨论思想解答是解题的关键.
5、(1)C ;(2)见解析
【分析】
(1)甲同学证明的两个三角形全等,没有边边角的判定,故错误,而乙的证明则正确,因此可作出判断;
(2)按照乙的分析方法进行即可.
【详解】
(1)甲同学证明的两个三角形全等,边边角不能判定两个三角形全等,故错误,而乙的证明则正确,
故选C;
(2)依据题意,延长AD至E,使DE=AD,连接BE,如图.
∵D为BC中点.
∴.
在△CAD和△BED中
∴△CAD≌△BED(SAS).
∴,
∵AD平分∠BAC,
∴
∴
∴
∴AB=AC
∴△ABC为等腰三角形
【点睛】
本题考查了全等三角形的判定与性质,等腰三角形的判定,关键是构造辅助线得到全等三角形.
6、(1)30°;(2)∠BAD=2∠CDE,理由见解析;(3)∠BAD=2∠CDE.
【分析】
(1)根据三角形的外角的性质求出∠ADC,结合图形计算即可;
(2)设∠BAD=x,根据三角形的外角的性质求出∠ADC,结合图形计算即可;
(3)设∠BAD=x,仿照(2)的解法计算.
【详解】
解:(1)∵∠ADC是△ABD的外角,
∴∠ADC=∠BAD+∠B=105°,
∠DAE=∠BAC﹣∠BAD=30°,
∴∠ADE=∠AED=75°,
∴∠CDE=105°﹣75°=30°;
(2)∠BAD=2∠CDE,
理由如下:设∠BAD=x,
∴∠ADC=∠BAD+∠B=45°+x,
∠DAE=∠BAC﹣∠BAD=90°﹣x,
∴∠ADE=∠AED=,
∴∠CDE=45°+x﹣=x,
∴∠BAD=2∠CDE;
(3)设∠BAD=x,
∴∠ADC=∠BAD+∠B=∠B+x,
∠DAE=∠BAC﹣∠BAD=180°﹣2∠C﹣x,
∴∠ADE=∠AED=∠C+x,
∴∠CDE=∠B+x﹣(∠C+x)=x,
∴∠BAD=2∠CDE.
【点睛】
本题考查了三角形内角和和外角的性质,解题关键是熟练掌握三角形内角和和外角性质,通过设参数计算,发现角之间的关系
7、(1)△DEF是等边三角形,理由见解析(2)等边△ABC的周长为
【分析】
(1)利用△DEF是等边三角形的性质以及三点的运动情况,求证和,进而证明,最后即可说明△DEF是等边三角形.
(2)利用题(1)的条件即∠DEC=150°,得出是含角的直角三角形,求出,最后求解出等边△ABC的长,最后即可求出等边△ABC的周长.
【详解】
(1)解:△DEF是等边三角形,
证明:由点D、E、F的运动情况可知:,
△ABC是等边三角形,
,,
,
,
在与中,
,
,
同理可证,进而有,
,
故△DEF是等边三角形.
(2)解:由(1)可知△DEF是等边三角形,且,
,,,
,
,
在中,,
,
,
,
等边△ABC的周长为.
【点睛】
本题主要是考查了全等三角形的性质及判定、等边三角形的判定及性质和含角直角三角形的性质,熟练利用等边三角形的性质,找到相等条件,进而证明全等三角形,综合利用全等三角形以及含角直角三角形的性质,求出对应边长,是解决该题的关键.
8、(1)见解析;(2)见解析;(3)见解析
【分析】
(1)延长DE交AB延长线于F,由∠B=∠C=90°,推出AB∥CD,则∠CDE=∠F,再由DE平分∠ADC,即可推出∠ADF=∠F,得到AD=AF,即△ADF是等腰三角形,然后证明△CDE≌△BFE得到DE=FE,即E是DF的中点,即可证明AE平分∠BAD;
(2)由(1)即可用三线合一定理证明;
(3)由△CDE≌△BFE,得到CD=BF,则AD=AF=AB+BF=AB+CD.
【详解】
解:(1)如图所示,延长DE交AB延长线于F,
∵∠B=∠C=90°,
∴AB∥CD,
∴∠CDE=∠F,
∵DE平分∠ADC,
∴∠CDE=∠ADE,
∴∠ADF=∠F,
∴AD=AF,
∴△ADF是等腰三角形,
∵E是BC的中点,
∴CE=BE,
∴△CDE≌△BFE(AAS),
∴DE=FE,
∴E是DF的中点,
∴AE平分∠BAD;
(2)由(1)得△ADF是等腰三角形,AD=AF,E是DF的中点,
∴AE⊥DE;
(3)∵△CDE≌△BFE,
∴CD=BF,
∴AD=AF=AB+BF=AB+CD.
【点睛】
本题主要考查了平行线的性质与判定,全等三角形的性质与判定,等腰三角形的性质与判定,熟知相关知识是解题的关键.
9、85°
【分析】
由高的定义可得出∠ADB=∠ADC=90,在△ACD中利用三角形内角和定理可求出∠ACB的度数,结合CE平分∠ACB可求出∠ECB的度数.由三角形外角的性质可求出∠AEC的度数,
【详解】
解:∵AD是BC边上的高,
∴∠ADB=∠ADC=90.
在△ACD中,∠ACB=180°﹣∠ADC﹣∠CAD=180°﹣90°﹣20°=70°.
∵CE平分∠ACB,
∴∠ECB=∠ACB=35°.
∵∠AEC是△BEC的外角,,
∴∠AEC=∠B+∠ECB=50°+35°=85°.
答:∠AEC的度数是85°.
【点睛】
本题考查了三角形内角和定理、角平分线的定义以及三角形外角的性质,利用三角形内角和定理及角平分线的性质,求出∠ECB的度数是解题的关键.
10、见解析
【分析】
根据平行线的性质得出∠B=∠E,进而利用SAS证明,利用全等三角形的性质解答即可.
【详解】
证明:,
,
即.
,
.
在和中,
,
.
【点睛】
本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,本题中求证是解题的关键.
相关试卷
这是一份初中沪教版 (五四制)第十四章 三角形综合与测试练习题,共35页。试卷主要包含了如图,在中,AD,如图,点D等内容,欢迎下载使用。
这是一份沪教版 (五四制)七年级下册第十四章 三角形综合与测试当堂检测题,共32页。试卷主要包含了如图,直线l1l2,被直线l3,如图,ABC≌DEF,点B,如图,点A等内容,欢迎下载使用。
这是一份初中数学沪教版 (五四制)七年级下册第十四章 三角形综合与测试同步测试题,共30页。试卷主要包含了下列四个命题是真命题的有等内容,欢迎下载使用。