数学七年级下册第十四章 三角形综合与测试巩固练习
展开
这是一份数学七年级下册第十四章 三角形综合与测试巩固练习,共30页。试卷主要包含了下列三角形与下图全等的三角形是,如图,在中,等内容,欢迎下载使用。
沪教版七年级数学第二学期第十四章三角形综合训练
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、△BDE和△FGH是两个全等的等边三角形,将它们按如图的方式放置在等边三角形ABC内.若BC=5,则五边形DECHF的周长为( )
A.8 B.10 C.11 D.12
2、如图,∠A=α,∠DBC=3∠DBA,∠DCB=3∠DCA,则∠BDC的大小为( )
A. B. C. D.
3、下列叙述正确的是( )
A.三角形的外角大于它的内角 B.三角形的外角都比锐角大
C.三角形的内角没有小于60°的 D.三角形中可以有三个内角都是锐角
4、下列三角形与下图全等的三角形是( )
A. B. C. D.
5、一副三角板如图放置,点A在DF的延长线上,∠D=∠BAC=90°,∠E=30°,∠C=45°,若BC//DA,则∠ABF的度数为( )
A.15° B.20° C.25° D.30°
6、如图,E为线段BC上一点,∠ABE=∠AED=∠ECD=90°,AE=ED,BC=20,AB=8,则BE的长度为( )
A.12 B.10 C.8 D.6
7、如图,BD是的角平分线,,交AB于点E.若,,则的度数是( )
A.10° B.20° C.30° D.50°
8、如图,点F,C在BE上,AC=DF,BF=EC,AB=DE,AC与DF相交于点G,则与2∠DFE相等的是( )
A.∠A+∠D B.3∠B C.180°﹣∠FGC D.∠ACE+∠B
9、如图,在中,、分别平分、,过点作直线平行于,分别交、于点、,当大小变化时,线段和的大小关系是
A. B. C. D.不能确定
10、在平面直角坐标系xOy中,点A(0,2),B(a,0),C(m,n)().若ABC是等腰直角三角形,且,当时,点C的横坐标m的取值范围是( )
A. B. C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,△ABC中,AB=AC=DC,D在BC上,且AD=DB,则∠BAC=_____.
2、若一个立体图形从正面看和从左面看都是等腰三角形,从上面看是带有圆心的圆,则这个立体图形是_____.
3、一个三角形的其中两个内角为,,则这个第三个内角的度数为______.
4、如图,为△ABC的中线,为△的中线,为△的中线,……按此规律,为△的中线.若△ABC的面积为8,则△的面积为_______________.
5、如图,在中,BD和CD分别是和的平分线,EF过点D,且,若,,则EF的长为______.
三、解答题(10小题,每小题5分,共计50分)
1、如图,在等腰△ABC和等腰△ADE中,AB=AC,AD=AE,∠BAC=∠DAE且C、E、D三点共线,作AM⊥CD于M.若BD=5,DE=4,求CM.
2、如图,在等边△ABC中,点P是BC边上一点,∠BAP=(30°<<60°),作点B关于直线AP的对称点D,连接DC并延长交直线AP于点E,连接BE.
(1)依题意补全图形,并直接写出∠AEB的度数;
(2)用等式表示线段AE,BE,CE之间的数量关系,并证明.
分析:①涉及的知识要素:图形轴对称的性质;等边三角形的性质;全等三角形的判定与性质……
②通过截长补短,利用60°角构造等边三角形,进而构造出全等三角形,从而达到转移边的目的.
请根据上述分析过程,完成解答过程.
3、如图,点A,B,C,D在一条直线上,,,.求证:.
4、探究与发现:如图①,在△ABC中,∠B=∠C=45°,点D在BC边上,点E在AC边上,且∠ADE=∠AED,连接DE.
(1)当∠BAD=60°时,求∠CDE的度数;
(2)当点D在BC(点B、C除外)边上运动时,试猜想∠BAD与∠CDE的数量关系,并说明理由.
(3)深入探究:如图②,若∠B=∠C,但∠C≠45°,其他条件不变,试探究∠BAD与∠CDE的数量关系.
5、如图,在中,,,点D在边AC上,且线段BD绕着点B按逆时针方向旋转120°能与BE重合,点F是ED与AB的交点.
(1)求证:;
(2)若,求的度数.
6、如图,在长方形ABCD中,AD=3,DC=5,动点M从A点出发沿线段AD—DC以每秒1个单位长度的速度向终点C运动;动点N同时从C点出发沿线段CD—DA以每秒3个单位长度的速度向终点A运动.ME⊥PQ于点E,NF⊥PQ于点F,设运动的时间为秒.
(1)在运动过程中当M、N两点相遇时,求t的值.
(2)在整个运动过程中,求DM的长.(用含t的代数式表示)
(3)当DEM与DFN全等时,请直接写出所有满足条件的DN的长.
7、如图,AB=AD,AC=AE,BC=DE,点E在BC上.
(1)求证:∠EAC=∠BAD;
(2)若∠EAC=42°,求∠DEB的度数.
8、如图,在△ABC中, AB=AC,AD是△ABC的中线,BE平分∠ABC交AD于点E,连接EC.求证:CE平分∠ACB.
9、已知,∠A=∠D,BC平分∠ABD,求证:AC=DC.
10、已知:在△ABC中,AD平分∠BAC,AE=AC.求证:AD∥CE.
-参考答案-
一、单选题
1、B
【分析】
证明△AFH≌△CHG(AAS),得出AF=CH.由题意可知BE=FH,则得出五边形DECHF的周长=AB+BC,则可得出答案.
【详解】
解:∵△GFH为等边三角形,
∴FH=GH,∠FHG=60°,
∴∠AHF+∠GHC=120°,
∵△ABC为等边三角形,
∴AB=BC=AC=5,∠ACB=∠A=60°,
∵∠AHF=180°-∠FHG-∠GHC =120°-∠GHC,
∠HGC=180°-∠C-∠GHC =120°-∠GHC,
∴∠AHF=∠HGC,
在△AFH和△CHG中
,
∴△AFH≌△CHG(AAS),
∴AF=CH.
∵△BDE和△FGH是两个全等的等边三角形,
∴BE=FH,
∴五边形DECHF的周长=DE+CE+CH+FH+DF=BD+CE+AF+BE+DF,
=(BD+DF+AF)+(CE+BE),
=AB+BC=10.
故选:B.
【点睛】
本题考查了全等三角形的判定与性质,等边三角形的性质,熟练掌握全等三角形的判定方法是解题的关键.
2、A
【分析】
根据题意设,根据三角形内角和公式定理,进而表示出,进而根据三角形内角和定理根据即可求解
【详解】
解:∵∠A=α,∠DBC=3∠DBA,∠DCB=3∠DCA,设,
∴
即
故选A
【点睛】
本题考查了三角形内角和定理,掌握三角形内角和定理是解题的关键.
3、D
【分析】
结合直角三角形,钝角三角形,锐角三角形的内角与外角的含义与大小逐一分析即可.
【详解】
解:三角形的外角不一定大于它的内角,锐角三角形的任何一个外角都大于内角,故A不符合题意;
三角形的外角可以是锐角,不一定比锐角大,故B不符合题意;
三角形的内角可以小于60°,一个三角形的三个角可以为: 故C不符合题意;
三角形中可以有三个内角都是锐角,这是个锐角三角形,故D符合题意;
故选D
【点睛】
本题考查的是三角形的的内角与外角的含义与大小,掌握“直角三角形,钝角三角形,锐角三角形的内角与外角”是解本题的关键.
4、C
【分析】
根据已知的三角形求第三个内角的度数,由全等三角形的判定定理即可得出答案.
【详解】
由题可知,第三个内角的度数为,
A.只有两边,故不能判断三角形全等,故此选项错误;
B.两边夹的角度数不相等,故两三角形不全等,故此选项错误;
C.两边相等且夹角相等,故能判断两三角形全等,故此选项正确;
D. 两边夹的角度数不相等,故两三角形不全等,故此选项错误.
故选:C.
【点睛】
本题考查全等三角形的判定,掌握全等三角形的判定定理是解题的关键.
5、A
【分析】
先求出∠EFD=60°,∠ABC=45°,由BC∥AD,得到∠EFD=∠FBC=60°,则∠ABF=∠FBC-∠ABC=15°.
【详解】
解:∵∠D=∠BAC=90°,∠E=30°,∠C=45°,
∴∠EFD=60°,∠ABC=45°,
∵BC∥AD,
∴∠EFD=∠FBC=60°,
∴∠ABF=∠FBC-∠ABC=15°,
故选A.
【点睛】
本题主要考查了直角三角形两锐角互余,平行线的性质,熟知直角三角形两锐角互余是解题的关键.
6、A
【分析】
利用角相等和边相等证明,利用全等三角形的性质以及边的关系,即可求出BE的长度.
【详解】
解:由题意可知:∠ABE=∠AED=∠ECD=90°,
,,
,
在和中,
,
,
,
故选:A.
【点睛】
本题主要是考查了全等三角形的判定和性质,熟练通过已知条件证明三角形全等,利用全等性质及边的关系,来求解未知边的长度,这是解决本题的主要思路.
7、B
【分析】
由外角的性质可得∠ABD=20°,由角平分线的性质可得∠DBC=20°,由平行线的性质即可求解.
【详解】
解:(1)∵∠A=30°,∠BDC=50°,∠BDC=∠A+∠ABD,
∴∠ABD=∠BDC−∠A=50°−30°=20°,
∵BD是△ABC的角平分线,
∴∠DBC=∠ABD=20°,
∵DE∥BC,
∴∠EDB=∠DBC=20°,
故选:B.
【点睛】
本题考查了平行线的性质,三角形外角的性质,角平分线的定义,灵活应用这些性质解决问题是解决本题的关键.
8、C
【详解】
由题意根据等式的性质得出BC=EF,进而利用SSS证明△ABC与△DEF全等,利用全等三角形的性质得出∠ACB=∠DFE,最后利用三角形内角和进行分析解答.
【分析】
解:∵BF=EC,
∴BF+FC=EC+FC,
∴BC=EF,
在△ABC与△DEF中,
,
∴△ABC≌△DEF(SSS),
∴∠ACB=∠DFE,
∴2∠DFE=180°﹣∠FGC,
故选:C.
【点睛】
本题考查全等三角形的判定与性质,其中全等三角形的判定方法有:SSS;SAS;ASA;AAS;以及HL(直角三角形的判定方法).
9、C
【分析】
由平行线的性质和角平分线的定义可得,则,同理可得,则,可得答案.
【详解】
解:,
,
平分,
,
,
,
同理,
,
即.
故选:C
【点睛】
本题主要考查了等腰三角形的判定,平行线的性质,角平分线的定义,熟练掌握等腰三角形的判定定理,平行线的性质定理,角平分线的定义是解题的关键.
10、B
【分析】
过点作轴于,由“”可证,可得,,即可求解.
【详解】
解:如图,过点作轴于,
点,
,
是等腰直角三角形,且,
,
,
,
在和中,
,
,
,,
,
,
,
故选:B.
【点睛】
本题考查了全等三角形的判定和性质,等腰直角三角形的性质,解题的关键是画图及添加恰当辅助线构造全等三角形.
二、填空题
1、108°108度
【分析】
先设∠B=x,由AB=AC可知,∠C=x,由AD=DB可知∠B=∠DAB=x,由三角形外角的性质可知∠ADC=∠B+∠DAB=2x,根据DC=CA可知∠ADC=∠CAD=2x,再在△ABC中,由三角形内角和定理即可得出关于x的一元一次方程,求出x的值,从而求解.
【详解】
设∠B=x,
∵AB=AC,
∴∠C=∠B=x,
∵AD=DB,
∴∠B=∠DAB=x,
∴∠ADC=∠B+∠DAB=2x,
∵DC=CA,
∴∠ADC=∠CAD=2x,
在△ABC中,x+x+2x+x=180°,
解得:x=36°.
∴∠BAC=108°.
故答案为:108°.
【点睛】
此题主要考查等腰三角形的判定和性质、三角形的内角和定理,解题的关键是熟练进行逻辑推理
2、圆锥
【分析】
根据立体图形视图、等腰三角形的性质分析,即可得到答案.
【详解】
根据题意,这个立体图形是圆锥
故答案为:圆锥.
【点睛】
本题考查了等腰三角形、圆锥、立体图形视图的知识;解题的关键是熟练掌握立体图形视图的性质,从而完成求解.
3、60°
【分析】
依题意,利用三角形内角和为:,即可;
【详解】
由题得:一个三角形的内角和为:;又已知两个其中的内角为:,;
∴ 第三个角为:;
故填:
【点睛】
本题主要考查三角形的内角和,关键在于熟练并运用基本的计算;
4、
【分析】
根据三角形的中线性质,可得△的面积=,△的面积=,……,进而即可得到答案.
【详解】
由题意得:△的面积=,△的面积=,……,△的面积==.
故答案是:.
【点睛】
本题主要考查三角形的中线的性质,掌握三角形的中线把三角形的面积平分,是解题的关键.
5、7
【分析】
根据角平分线的定义和平行线的性质证明∠EBD=∠EDB,∠FDC=∠FCD,得到BE=DE,CF=DF,即可求解.
【详解】
解:∵EF∥BC,
∴∠EDB=∠DBC,∠FDC=∠DCB,
又∵BD和CD分别是∠ABC和∠ACB的平分线,
∴∠EBD=∠DBC,∠FCD=∠DCB,
∴∠EBD=∠EDB,∠FDC=∠FCD,
∴BE=DE,CF=DF,
又∵BE=3,CF=4,
∴EF=DE+DF=BE+CF=7.
故答案为:7.
【点睛】
本题主要考查了平行线的性质,角平分的定义,等腰三角形的性质与判定,熟知相关知识是解题的关键.
三、解答题
1、CM=7.
【分析】
根据题意由“SAS”可证△AEC≌△ADB,可得BD=CE,由等腰三角形的性质可得DM=ME=2进行分析计算即可得出答案.
【详解】
解:∵∠BAC=∠DAE,
∴∠BAC﹣∠BAE=∠DAE﹣∠BAE,
∴∠BAD=∠CAE,
在△AEC和△ADB中,
,
∴△AEC≌△ADB(SAS),
又∵BD=5,
∴CE=BD=5,
∵AD=AE,AM⊥CD,DE=4,
∴,
∴CM=CE+EM=5+2=7.
【点睛】
本题考查全等三角形的判定和性质以及等腰三角形的性质,熟练掌握全等三角形的判定定理是解答本题的关键.
2、(1)图见解析,∠AEB=60°;(2)AE=BE+CE,证明见解析
【分析】
(1)依题意补全图形,如图所示:然后连接AD,先求出,然后根据轴对称的性质得到,AD=AB=AC,∠AEC=∠AEB,求出,即可求出,再由进行求解即可;
(2)如图,在AE上截取EG=BE,连接BG.先证明△BGE是等边三角形,得到BG=BE=EG,∠GBE=60°. 再证明∠ABG=∠CBE,即可证明△ABG≌△CBE得到AG=CE,则AE=EG+AG=BE+CE.
【详解】
解:(1)依题意补全图形,如图所示:连接AD,
∵△ABC是等边三角形,
∴∠BAC=60°,AB=AC,
∵,
∴,
∵B、D关于AP对称,
∴,AD=AB=AC,∠AEC=∠AEB,
∴,
∴,
∴,
∴
∴∠AEB=60°.
(2)AE=BE+CE.
证明:如图,在AE上截取EG=BE,连接BG.
∵∠AEB=60°,
∴△BGE是等边三角形,
∴BG=BE=EG,∠GBE=60°.
∵△ABC是等边三角形,
∴AB=BC,∠ABC=60°,
∴∠ABG+∠GBC=∠GBC+∠CBE=60°,
∴∠ABG=∠CBE.
在△ABG和△CBE中,
∴△ABG≌△CBE(SAS),
∴AG=CE,
∴AE=EG+AG=BE+CE.
【点睛】
本题主要考查了全等三角形的性质,等边三角形的性质与判定,轴对称的性质,等腰三角形的性质与判定,三角形内角和定理,三角形外角的性质等等,熟知相关知识是解题的关键
3、见解析
【分析】
根据平行线的性质得出,运用“角角边”证明△AEB≌△CFD即可.
【详解】
证明:∵,
∴,
在△AEB和△CFD中,
∴△AEB≌△CFD,
∴.
【点睛】
本题考查了全等三角形的判定与性质,解题关键是熟练运用全等三角形的判定定理进行证明.
4、(1)30°;(2)∠BAD=2∠CDE,理由见解析;(3)∠BAD=2∠CDE.
【分析】
(1)根据三角形的外角的性质求出∠ADC,结合图形计算即可;
(2)设∠BAD=x,根据三角形的外角的性质求出∠ADC,结合图形计算即可;
(3)设∠BAD=x,仿照(2)的解法计算.
【详解】
解:(1)∵∠ADC是△ABD的外角,
∴∠ADC=∠BAD+∠B=105°,
∠DAE=∠BAC﹣∠BAD=30°,
∴∠ADE=∠AED=75°,
∴∠CDE=105°﹣75°=30°;
(2)∠BAD=2∠CDE,
理由如下:设∠BAD=x,
∴∠ADC=∠BAD+∠B=45°+x,
∠DAE=∠BAC﹣∠BAD=90°﹣x,
∴∠ADE=∠AED=,
∴∠CDE=45°+x﹣=x,
∴∠BAD=2∠CDE;
(3)设∠BAD=x,
∴∠ADC=∠BAD+∠B=∠B+x,
∠DAE=∠BAC﹣∠BAD=180°﹣2∠C﹣x,
∴∠ADE=∠AED=∠C+x,
∴∠CDE=∠B+x﹣(∠C+x)=x,
∴∠BAD=2∠CDE.
【点睛】
本题考查了三角形内角和和外角的性质,解题关键是熟练掌握三角形内角和和外角性质,通过设参数计算,发现角之间的关系
5、(1)见解析;(2)
【分析】
(1)由旋转的性质可得,,再证明,结合 从而可得结论;
(2)由可得,再利用等腰三角形的性质求解,再利用三角形的内角和定理可得答案.
【详解】
证明:(1)∵线段BD绕着点B按逆时针方向旋转120°能与BE重合,
∴,,
∵,,
∴,
∴,
∴(SAS),
∴.
(2)解:由(1)知
,,,
∴,
∴.
【点睛】
本题考查的是全等三角形的判定与性质,旋转的性质,等腰三角形的性质,掌握“旋转前后的对应边相等,对应角相等”是解本题的关键.
6、(1)2;(2)当0≤t≤3时,DM=3-t,当3<t≤8时,DM=t-3;(3)2或1
【分析】
(1)根据题意得: ,解得:,即可求解;
(2)根据题意得:当0≤t≤3时,AM=t,则DM=3-t,当3<t≤8时,DM=t-3,即可求解;
(3)根据ME⊥PQ,NF⊥PQ,可得∠DEM=∠DFN=90°,再由∠ADC=90°,可得∠DME =∠FDN,从而得到当DEM与DFN全等时,DM=DN,根据题意可得M到达点D时, ,M到达点C时, ,N到达点D时, ,N到达点A时,,然后分两种情况:当时和当时,即可求解.
【详解】
解:(1)根据题意得: ,解得:,
即在运动过程中当M、N两点相遇时,t的值为2;
(2)根据题意得:当0≤t≤3时,AM=t,则DM=3-t,
当3<t≤8时,DM=t-3;
(3)∵ME⊥PQ,NF⊥PQ,
∴∠DEM=∠DFN=90°,
∴∠EDM+ ∠DME =90°,
∵∠ADC=90°,
∴∠EDM+∠FDN =90°,
∴∠DME =∠FDN,
∴当DEM与DFN全等时,DM=DN,
∵M到达点D时, ,M到达点C时, ,
N到达点D时, ,N到达点A时,,
当时,DM=3-t,CN=3t,则DN=5-3t,
∴3-t=5-3t,解得:t=1,
∴此时DN=5-3t=2,
当时,DM=3-t,DN=3t-5,
∴3-t=3t-5,解得: ,
∴DN=3t-5=1,
综上所述,当DEM与DFN全等时,所有满足条件的DN的长为2或1.
【点睛】
本题主要考查了全等三角形的判定和性质,动点问题,利用分类讨论思想解答是解题的关键.
7、(1)见解析;(2)42°
【分析】
(1)利用边边边证得△ABC≌△ADE,可得∠BAC=∠DAE,即可求证;
(2)根据等腰三角形的性质,可得∠AEC=∠C=69°,再由△ABC≌△ADE,可得∠AED=∠C=69°, 即可求解.
【详解】
(1)证明:∵AB=AD,AC=AE,BC=DE,
∴△ABC≌△ADE.
∴∠BAC=∠DAE.
∴∠BAC-∠BAE=∠DAE-∠BAE.
即∠EAC=∠BAD;
(2)解:∵AC=AE,∠EAC=42°,
∴∠AEC=∠C= ×(180°-∠EAC)= ×(180°-42°)=69°.
∵△ABC≌△ADE,
∴∠AED=∠C=69°,
∴∠DEB=180°-∠AED-∠C=180°-69°-69°=42°.
【点睛】
本题主要考查了全等三角形的判定和性质,等腰三角形的性质,熟练掌握全等三角形的判定和性质定理,等腰三角形的性质定理是解题的关键.
8、见解析
【分析】
根据等腰三角形的性质,可得∠ADB=∠ADC=90°,∠ABC=∠ACB,BD=CD,从而得到△BDE≌△CDE,进而得到∠DCE=∠DBE,再由BE平分∠ABC,可得 ,进而得到,即可求证.
【详解】
解:∵AB=AC,AD是△ABC的中线,
∴∠ADB=∠ADC=90°,∠ABC=∠ACB,BD=CD,
∵DE=DE,
∴△BDE≌△CDE,
∴∠DCE=∠DBE,
∵BE平分∠ABC,
∴ ,
∴,
∴,
∴CE平分∠ACB.
【点睛】
本题主要考查了等腰三角形的性质,全等三角形的判定和性质,熟练掌握等腰三角形的两底角相等,等腰三角形“三线合一”是解题的关键.
9、见解析
【分析】
证明△BAC≌△BDC即可得出结论.
【详解】
解:∵BC平分∠ABD,
∴∠ABC=∠DBC,
在△BAC和△BDC中,
∴△BAC≌△BDC,
∴AC=DC.
【点睛】
本题考查角平分线的意义及全等三角形的判定与性质,解题关键是掌握角平分线的性质及全等三角形的判定与性质.
10、见解析.
【分析】
先根据角平分线的定义得到∠BAD=∠BAC,再根据等腰三角形的性质和三角形外角定理得到∠E=∠BAC,从而得到∠BAD=∠E,即可证明AD∥CE.
【详解】
解:∵AD平分∠BAC,
∴∠BAD=∠BAC,
∵AE=AC,
∴∠E=∠ACE,
∵∠E+∠ACE=∠BAC,
∴∠E=∠BAC,
∴∠BAD=∠E,
∴AD∥CE.
【点睛】
本题考查了角平分线的定义,等腰三角形的性质,平行线的判定,三角形外角定理,熟知相关定理并灵活应用是解题关键.
相关试卷
这是一份初中数学沪教版 (五四制)七年级下册第十四章 三角形综合与测试课后测评,共32页。试卷主要包含了下列说法不正确的是,下列三个说法等内容,欢迎下载使用。
这是一份沪教版 (五四制)七年级下册第十四章 三角形综合与测试同步训练题,共32页。试卷主要包含了有下列说法等内容,欢迎下载使用。
这是一份初中数学沪教版 (五四制)七年级下册第十四章 三角形综合与测试复习练习题,共35页。试卷主要包含了已知长方形纸片ABCD,点E等内容,欢迎下载使用。