终身会员
搜索
    上传资料 赚现金

    2021-2022学年沪教版七年级数学第二学期第十四章三角形综合练习试题(含详细解析)

    立即下载
    加入资料篮
    2021-2022学年沪教版七年级数学第二学期第十四章三角形综合练习试题(含详细解析)第1页
    2021-2022学年沪教版七年级数学第二学期第十四章三角形综合练习试题(含详细解析)第2页
    2021-2022学年沪教版七年级数学第二学期第十四章三角形综合练习试题(含详细解析)第3页
    还剩30页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学沪教版 (五四制)七年级下册第十四章 三角形综合与测试一课一练

    展开

    这是一份初中数学沪教版 (五四制)七年级下册第十四章 三角形综合与测试一课一练,共33页。试卷主要包含了下列三个说法,下列三角形与下图全等的三角形是等内容,欢迎下载使用。
    沪教版七年级数学第二学期第十四章三角形综合练习
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、已知三角形的两边长分别为和,则下列长度的四条线段中能作为第三边的是( )
    A. B. C. D.
    2、下列各条件中,不能作出唯一的的是( )
    A.,, B.,,
    C.,, D.,,
    3、已知,,,的相关数据如图所示,则下列选项正确的是( )

    A. B. C. D.
    4、下列三个说法:
    ①有一个内角是30°,腰长是6的两个等腰三角形全等;
    ②有一个内角是120°,底边长是3的两个等腰三角形全等;
    ③有两条边长分别为5,12的两个直角三角形全等.
    其中正确的个数有( ).
    A.3 B.2 C.1 D.0
    5、如图,ABC中,∠ABC=45°,CD⊥AB于D,BE平分∠ABC,且BE⊥AC于E,与CD相交于点F,DH⊥BC于H,交BE于G,下列结论中正确的是( )
    ①BCD为等腰三角形;②BF=AC;③CE=BF;④BH=CE.

    A.①② B.①③ C.①②③ D.①②③④
    6、下列所给的各组线段,能组成三角形的是:( )
    A.2,11,13 B.5,12,7 C.5,5,11 D.5,12,13
    7、下列三角形与下图全等的三角形是( )

    A. B. C. D.
    8、如图,AC=BC,∠C=α,DE⊥AC于E,FD⊥AB于D,则∠EDF等于(  ).

    A.α B.90°-α C.90°-α D.180°-2α
    9、如图,在ABC中,AB=AC,D是BC的中点,∠B=35°,则∠BAD=( )

    A.110° B.70° C.55° D.35°
    10、如图,△ABC中,∠ABC与∠ACB的平分线交于点F,过点F作DE∥BC交AB于点D,交AC于点E,那么下列结论:①△BDF是等腰三角形;②DE=BD+CE;③若∠A=50°,则∠BFC=115°;④DF=EF.其中正确的有( )

    A.1个 B.2个 C.3个 D.4个
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、如图,点D是的平分线OC上一点,过点D作交射线OA于点E,则线段DE与OE的数量关系为:DE______OE(填“>”或“=”或“<”).

    2、一个三角形的其中两个内角为,,则这个第三个内角的度数为______.
    3、△ABC的高AD所在直线与高BE所在直线相交于点F且DF=CD,则∠ABC=______.
    4、如图,与的顶点A、B、D在同一直线上,,,,延长分别交、于点F、G.若,,则______.

    5、如图,在中,BD和CD分别是和的平分线,EF过点D,且,若,,则EF的长为______.

    三、解答题(10小题,每小题5分,共计50分)
    1、如图所示,四边形ABCD中,ADC的角平分线DE与BCD的角平分线CA相交于E点,已知:ACB=32°,CDE=58°.

    (1)求DEC的度数;
    (2)试说明直线
    2、如图,△ABC中,AB=AC,D为BC边的中点,AF⊥AD,垂足为A.求证:∠1=∠2

    3、如图,△ABC是等边三角形,点D、E、F分别同时从A、B、C以同样的速度沿AB、BC、CA方向运动,当点D运动到点B时,三个点都停止运动.
    (1)在运动过程中△DEF是什么形状的三角形,并说明理由;
    (2)若运动到某一时刻时,BE=4,∠DEC=150°,求等边△ABC的周长;

    4、如图,是的角平分线,于点.

    (1)用尺规完成以下基本作图:过点作于点,连接交于点.(不写作法,保留作图痕迹)
    (2)在(1)中所作的图形中,求证:.
    5、如图,已知AB=AC,AD=AE,BD和CE相交于点O.求证:OB=OC.

    6、如图,点C是线段AB上一点,与都是等边三角形,连接AE,BF.

    (1)求证:;
    (2)若点M,N分别是AE,BF的中点,连接CM,MN,NC.
    ①依题意补全图形;
    ②判断的形状,并证明你的结论.
    7、如图是由边长为1的小等边三角形构成的网格,每个小等边三角形的顶点为格点,线段的端点都在格点上.要求以为边画一个等腰,且使得点为格点.请在下面的网格图中画出3种不同的等腰.

    8、已知:
    (1)O是∠BAC内部的一点.
    ①如图1,求证:∠BOC>∠A;
    ②如图2,若OA=OB=OC,试探究∠BOC与∠BAC的数量关系,给出证明.
    (2)如图3,当点O在∠BAC的外部,且OA=OB=OC,继续探究∠BOC与∠BAC的数量关系,给出证明.

    9、已知,在△ABC中,∠BAC=30°,点D在射线BC上,连接AD,∠CAD=,点D关于直线AC的对称点为E,点E关于直线AB的对称点为F,直线EF分别交直线AC,AB于点M,N,连接AF,AE,CE.
    (1)如图1,点D在线段BC上.
    ①根据题意补全图1;
    ②∠AEF = (用含有的代数式表示),∠AMF= °;
    ③用等式表示线段MA,ME,MF之间的数量关系,并证明.
    (2)点D在线段BC的延长线上,且∠CAD<60°,直接用等式表示线段MA,ME,MF之间的数量关系,不证明.

    10、如图,在中,AD是BC边上的高,CE平分,若,,求的度数.


    -参考答案-
    一、单选题
    1、C
    【分析】
    根据三角形的三边关系可得,再解不等式可得答案.
    【详解】
    解:设三角形的第三边为,由题意可得:

    即,
    故选:C.
    【点睛】
    本题主要考查了三角形的三边关系,解题的关键是掌握三角形两边之和大于第三边;三角形的两边差小于第三边.
    2、B
    【分析】
    根据三角形全等的判定及三角形三边关系即可得出结果.
    【详解】
    解:A、,不能组成三角形;
    B、根据不可以确定选项中条件能作出唯一三角形;
    C、根据可以确定选项中条件能作出唯一三角形;
    D、根据可以确定选项中条件能作出唯一三角形;
    故答案为:B.
    【点睛】
    本题考查确定唯一三角形所需要的条件及三角形三边关系,解题关键在于对全等判定条件的理解.
    3、D
    【分析】
    根据三角形内角和定理分别求出三个三角形中未知角的度数,然后依据全等三角形的判定定理,从三个三角形中寻找条件证明全等,即可得出选项.
    【详解】
    解:,

    在与ΔFED中,

    ∴≅ΔFED,
    ∴,
    A、B、C三个选项均不能证明,
    故选:D.
    【点睛】
    题目主要考查三角形内角和定理、全等三角形的判定和性质,理解题意,熟练运用全等三角形的判定定理是解题关键.
    4、C
    【分析】
    根据三角形全等的判定方法,等腰三角形的性质和直角三角形的性质判断即可.
    【详解】
    解:①当一个是底角是30°,一个是顶角是30°时,两三角形就不全等,故本选项错误;
    ②有一个内角是120°,底边长是3的两个等腰三角形全等,本选项正确;
    ③当一条直角边为12,一条斜边为12时,两个直角三角形不全等,故本选项错误;正确的只有1个,
    故选:C.
    【点睛】
    本题考查了全等三角形的判定定理,等腰三角形的性质和直角三角形的性质,熟练掌握全等三角形的判定定理是解题的关键.
    5、C
    【分析】
    根据∠ABC=45°,CD⊥AB可得出BD=CD;利用AAS判定Rt△DFB≌Rt△DAC,从而得出BF=AC;再利用AAS判定Rt△BEA≌Rt△BEC,即可得到CE=BF;由CE=BF,BH=BC,在三角形BCF中,比较BF、BC的长度即可得到CE<BH.
    【详解】
    解:∵CD⊥AB,∠ABC=45°,
    ∴△BCD是等腰直角三角形.
    ∴BD=CD,故①正确;
    在Rt△DFB和Rt△DAC中,
    ∵∠DBF=90°﹣∠BFD,∠DCA=90°﹣∠EFC,且∠BFD=∠EFC,
    ∴∠DBF=∠DCA.
    又∵∠BDF=∠CDA=90°,BD=CD,
    ∴△DFB≌△DAC.
    ∴BF=AC,故②正确;
    在Rt△BEA和Rt△BEC中
    ∵BE平分∠ABC,
    ∴∠ABE=∠CBE.
    又∵BE=BE,∠BEA=∠BEC=90°,
    ∴Rt△BEA≌Rt△BEC.
    ∴CE=AC=BF,故③正确;
    ∵CE=AC=BF,BH=BC,
    在△BCF中,∠CBE=∠ABC=22.5°,∠DCB=∠ABC=45°,
    ∴∠BFC=112.5°,
    ∴BF<BC,
    ∴CE<BH,故④错误;
    故选:C.
    【点睛】
    本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、SSA、HL.在复杂的图形中有45°的角,有垂直,往往要用到等腰直角三角形,要注意掌握并应用此点.
    6、D
    【分析】
    根据三角形三边关系定理,判断选择即可.
    【详解】
    ∵2+11=13,
    ∴A不符合题意;
    ∵5+7=12,
    ∴B不符合题意;
    ∵5+5=10<11,
    ∴C不符合题意;
    ∵5+12=17>13,
    ∴D符合题意;
    故选D.
    【点睛】
    本题考查了构成三角形的条件,熟练掌握三角形三边关系是解题的关键.
    7、C
    【分析】
    根据已知的三角形求第三个内角的度数,由全等三角形的判定定理即可得出答案.
    【详解】
    由题可知,第三个内角的度数为,
    A.只有两边,故不能判断三角形全等,故此选项错误;
    B.两边夹的角度数不相等,故两三角形不全等,故此选项错误;
    C.两边相等且夹角相等,故能判断两三角形全等,故此选项正确;
    D. 两边夹的角度数不相等,故两三角形不全等,故此选项错误.
    故选:C.
    【点睛】
    本题考查全等三角形的判定,掌握全等三角形的判定定理是解题的关键.
    8、B
    【分析】
    AC=BC,∠C=α,DE⊥AC于E,FD⊥AB于D,有,,,即可求得角度.
    【详解】
    解:由题意知:,


    故选B.
    【点睛】
    本题考查了等腰三角形的性质,几何图形中角度的计算.解题的关键在于确定各角度之间的数量关系.
    9、C
    【分析】
    根据等腰三角形三线合一的性质可得AD⊥BC,然后利用直角三角形两锐角互余的性质解答.
    【详解】
    解:∵AB=AC,D是BC的中点,
    ∴AD⊥BC,
    ∵∠B=35°,
    ∴∠BAD=90°−35°=55°.
    故选:C.
    【点睛】
    本题主要考查了等腰三角形三线合一的性质,直角三角形两锐角互余的性质,是基础题,熟记性质是解题的关键.
    10、C
    【分析】
    根据平行线的性质和角平分线的定义以及等腰三角形的判定和性质逐个判定即可解答.
    【详解】
    解:∵BF是∠AB的角平分线,
    ∴∠DBF=∠CBF,
    ∵DE∥BC,
    ∴∠DFB=∠CBF,
    ∴∠DBF=∠DFB,
    ∴BD=DF,
    ∴△BDF是等腰三角形;故①正确;
    同理,EF=CE,
    ∴DE=DF+EF=BD+CE,故②正确;
    ∵∠A=50°,
    ∴∠ABC+∠ACB=130°,
    ∵BF平分∠ABC,CF平分∠ACB,
    ∴,
    ∴∠FBC+∠FCB=(∠ABC+∠ACB)=65°,
    ∴∠BFC=180°﹣65°=115°,故③正确;
    当△ABC为等腰三角形时,DF=EF,
    但△ABC不一定是等腰三角形,
    ∴DF不一定等于EF,故④错误.
    故选:C.
    【点睛】
    本题主要考查等腰三角形的性质、角平分线的定义及平行线的性质等知识点,根据两直线平行、内错角相等以及等角对等边来判定等腰三角形是解答本题的关键.
    二、填空题
    1、=
    【分析】
    首先由平行线的性质求得∠EDO=∠DOB,然后根据角平分线的定义求得∠EOD=∠DOB,最后根据等腰三角形的判定和性质即可判断.
    【详解】
    解:∵ED∥OB,
    ∴∠EDO=∠DOB,
    ∵D是∠AOB平分线OC上一点,
    ∴∠EOD=∠DOB,
    ∴∠EOD=∠EDO,
    ∴DE=OE,
    故答案为:=.
    【点睛】
    本题主要考查的是平行线的性质、角平分线的定义以及等角对等边,根据平行线的性质和角平分线的定义求得∠EOD=∠EDO是解题的关键.
    2、60°
    【分析】
    依题意,利用三角形内角和为:,即可;
    【详解】
    由题得:一个三角形的内角和为:;又已知两个其中的内角为:,;
    ∴ 第三个角为:;
    故填:
    【点睛】
    本题主要考查三角形的内角和,关键在于熟练并运用基本的计算;
    3、45°或135°
    【分析】
    根据题意,分两种情况讨论:①当为锐角三角形时;②当为钝角三角形时;作出相应图形,然后利用全等三角形的判定证明三角形全等,根据其性质及各角直角的等量关系即可得.
    【详解】
    解:①如图所示:当为锐角三角形时,

    ∵,,
    ∴,
    ∴,,
    ∴,
    在ΔBDF与中,

    ∴ΔBDF≅ΔADC,
    ∴,
    ∵,
    ∴;
    ②如图所示:当为钝角三角形时,

    ∵,,
    ∴,
    ∴,,
    ∴,
    ∵,
    ∴,
    在ΔBDF与中,

    ∴ΔBDF≅ΔADC,
    ∴,
    ∵,
    ∴,

    综合①②可得:为或,
    故答案为:或.
    【点睛】
    题目主要考查全等三角形的判定和性质,等腰三角形的性质,根据题意进行分类讨论,作出相应图形是解题关键.
    4、
    【分析】
    先证明△ABC≌△EDB,可得∠E=,然后利用三角形外角的性质求解.
    【详解】
    解:∵,
    ∴∠ABC=∠D,
    在△ABC和△EDB中

    ∴△ABC≌△EDB,
    ∴∠E=,
    ∴,,
    ∴∠EGF=30°+50°=80°,
    ∴80°+30°=110°,
    故答案为:110°.
    【点睛】
    本题考查了平行线的性质,全等三角形的判定与性质,以及三角形外角的性质,熟练掌握三角形的外角等于不相邻的两个内角和是解答本题的关键.
    5、7
    【分析】
    根据角平分线的定义和平行线的性质证明∠EBD=∠EDB,∠FDC=∠FCD,得到BE=DE,CF=DF,即可求解.
    【详解】
    解:∵EF∥BC,
    ∴∠EDB=∠DBC,∠FDC=∠DCB,
    又∵BD和CD分别是∠ABC和∠ACB的平分线,
    ∴∠EBD=∠DBC,∠FCD=∠DCB,
    ∴∠EBD=∠EDB,∠FDC=∠FCD,
    ∴BE=DE,CF=DF,
    又∵BE=3,CF=4,
    ∴EF=DE+DF=BE+CF=7.
    故答案为:7.
    【点睛】
    本题主要考查了平行线的性质,角平分的定义,等腰三角形的性质与判定,熟知相关知识是解题的关键.
    三、解答题
    1、(1)90°;(2)见解析
    【分析】
    (1)根据三角形内角和定理即可求解;
    (2)首先求得∠ADC的度数和∠DCB的度数,根据同旁内角互补,两直线平行即可证得.
    【详解】
    解:(1)∵AC是BCD的平分线


    ∴∠DEC=180°-∠ACD-∠CDE=180°-32°-58°=90°;
    (2)∵DE平分∠ADC,CA平分∠BCD
    ∴∠ADC=2∠CDE=116°,∠BCD=2∠ACD=64°
    ∵∠ADC+∠BCD=116°+64°=180°

    【点睛】
    本题主要考查了角平分线,平行线的判定以及三角形内角和定理,熟练掌握相关性质和定理是解答本题的关键.
    2、见详解.
    【分析】
    根据等腰三角形三合一性质以及等边对等角性质得出AD⊥BC,∠B=∠C,根据AF⊥AD,利用在同一平面内垂直同一直线的两直线平行得出AF∥BC,利用平行线性质得出∠1=∠B,∠2=∠C即可.
    【详解】
    证明:∵△ABC中,AB=AC,D为BC边的中点,
    ∴AD⊥BC,∠B=∠C,
    ∵AF⊥AD,
    ∴AF∥BC,
    ∴∠1=∠B,∠2=∠C,
    ∴∠1=∠2.
    【点睛】
    本题考查等腰三角形性质,平行线的判定与性质,掌握等腰三角形性质,平行线的判定与性质是解题关键.
    3、(1)△DEF是等边三角形,理由见解析(2)等边△ABC的周长为
    【分析】
    (1)利用△DEF是等边三角形的性质以及三点的运动情况,求证和,进而证明,最后即可说明△DEF是等边三角形.
    (2)利用题(1)的条件即∠DEC=150°,得出是含角的直角三角形,求出,最后求解出等边△ABC的长,最后即可求出等边△ABC的周长.
    【详解】
    (1)解:△DEF是等边三角形,
    证明:由点D、E、F的运动情况可知:,
    △ABC是等边三角形,
    ,,
    ,

    在与中,



    同理可证,进而有,

    故△DEF是等边三角形.
    (2)解:由(1)可知△DEF是等边三角形,且,
    ,,,


    在中,,



    等边△ABC的周长为.
    【点睛】
    本题主要是考查了全等三角形的性质及判定、等边三角形的判定及性质和含角直角三角形的性质,熟练利用等边三角形的性质,找到相等条件,进而证明全等三角形,综合利用全等三角形以及含角直角三角形的性质,求出对应边长,是解决该题的关键.
    4、(1)见解析;(2)见解析.
    【分析】
    (1)以点D为圆心,适当长为半径,作弧,交AC于两点,再分别以这两点为圆心,适当长为半径作弧,连接两条弧的交点所在的直线,该直线与AC的交点即为点F,连接交于点;
    (2)利用角平分线性质可得,由此证明,得到,继而证明,证得即可解题.
    【详解】
    解:(1)如图,点F、G即为所求作的点;

    (2)是的角平分线,,,










    【点睛】
    本题考查角平分线的性质、全等三角形的判定与性质等知识,是重要考点,难度一般,掌握相关知识是解题关键.
    5、见解析
    【分析】
    根据SAS证明△AEC与△ADB全等,进而利用全等三角形的性质解答即可.
    【详解】
    证明:在△AEC与△ADB中,

    ∴△AEC≌△ADB(SAS),
    ∴∠ACE=∠ABD,
    ∵AB=AC,
    ∴∠ABC=∠ACB,
    ∴∠OBC=∠OCB,
    ∴OB=OC.
    【点睛】
    本题考查了全等三角形的判定和性质,等腰三角形的性质,证明△AEC≌△ADB是本题的关键.
    6、
    (1)证明见解析;
    (2)①补全图形见解析;②是等边三角形,证明见解析.
    【分析】
    (1)由等边三角形的性质可知,,.结合题意易得出.即可利用“SAS”证明,即得出;
    (2)①根据题意补全图形即可;
    ②由全等三角形的性质可知,.再由题意点M,N分别是AE,BF的中点,即得出.即可利用“SAS”证明,得出结论,.最后根据,即得出,即可判定是等边三角形.
    (1)
    ∵与都是等边三角形,
    ∴,,,
    ∴,即,
    在和中,
    ∴,
    ∴,
    ∴.
    (2)
    ①画图如下:

    ②是等边三角形.
    理由如下:∵,
    ∴,.
    ∵点M,N分别是AE,BF的中点,
    ∴,
    在和中,
    ∵,
    ∴,
    ∴,,
    ∴,即,
    ∴是等边三角形.
    【点睛】
    本题考查等边三角形的判定和性质,全等三角形的判定和性质,线段的中点.利用数形结合的思想是解答本题的关键.
    7、答案见解析
    【分析】
    AB为4个等边三角形组成的平行四边形的对角线,因此只要找到另一腰也4个等边三角形组成的平行四边形的对角线即可
    【详解】
    解:如图,
    ……
    [答案不唯一]
    【点睛】
    本题考查等腰三角形的绘图,掌握等边三角形和等腰三角形性质即可.
    8、(1)①见解析;②∠BOC=2∠A,见解析;(2)∠BOC=2∠BAC,见解析
    【分析】
    (1)①连接AO并延长AO至点E,根据三角形外角性质解答即可;
    ②延长AO至点E,根据三角形外角性质解答即可;
    (2)根据三角形外角性质和三角形内角和定理解答即可.
    【详解】
    证明:(1)①如图所示:连接AO并延长AO至点E,则∠BOE>∠BAO,∠COE>∠CAO,
    ∴∠BOC>∠A;

    ②∠BOC与∠BAC的数量关系:∠BOC=2∠A;
    证明:如图所示,延长AO至点E,则∠BOE=∠BAO+∠B,∠COE=∠CAO+∠C,
    ∵OA=OB=OC,
    ∴∠BAO=∠B,∠CAO=∠C,
    ∴∠BOC=∠COE+∠COE=∠BAO+∠B+∠CAO+∠C=2(∠BAO+∠CAO)=2∠BAC;

    (2)∠BOC与∠BAC的数量关系:∠BOC=2∠BAC;
    证明:如图所示,设∠B=x,

    ∵OA=OB=OC,
    ∴∠B=∠BAO=x,∠C=∠OAC=∠BAC+x;
    在△BEO和△AEC中,有:∠B+∠BOC=∠C+∠CAE;
    即x+∠BOC=∠CAE+x+∠CAE=2∠BAC+x;
    即∠BOC=2∠BAC.
    【点睛】
    此题考查三角形综合题,关键是根据三角形外角性质和三角形内角和定理解答.
    9、(1)①见解析; ②,;③MF=MA+ME,证明见解析;(2)
    【分析】
    (1)①按照要求旋转作图即可;②由旋转和等腰三角形性质解出∠AEF;再由三角形外角定理求出∠AMF; ③在FE上截取GF=ME,连接AG,证明△AFG ≌△AEM且△AGM为等边三角形后即可证得MF=MA+ME;
    (2)根据题意画出图形,根据含30°的直角三角形的性质,即可得到结论.
    【详解】
    解:(1)①补全图形如下图:

    ②∵∠CAE=∠DAC=,
    ∴∠BAE=30°+
    ∴∠FAE=2×(30°+)
    ∴∠AEF==60°-;
    ∵∠AMF=∠CAE+∠AEF=+60°-=60°,
    故答案是:60°-,60°;
    ③MF=MA+ME.
    证明:在FE上截取GF=ME,连接AG .

    ∵点D关于直线AC的对称点为E,
    ∴△ADC ≌△AEC.
    ∴∠CAE =∠CAD =.
    ∵∠BAC=30°,
    ∴∠EAN=30°+.
    又∵点E关于直线AB的对称点为F,
    ∴AB垂直平分EF.
    ∴AF=AE,∠FAN=∠EAN =30°+,
    ∴∠F=∠AEF=.
    ∴∠AMG =.
    ∵AF=AE,∠F=∠AEF, GF=ME,
    ∴△AFG ≌△AEM.
    ∴AG =AM.
    又∵∠AMG=,
    ∴△AGM为等边三角形.
    ∴MA=MG.
    ∴MF=MG+GF=MA+ME.
    (2),理由如下:
    如图1所示,
    ∵点E与点F关于直线AB对称,
    ∴∠ANM=90°,NE=NF,
    又∵∠NAM=30°,
    ∴AM=2MN,
    ∴AM=2NE+2EM =MF+ME,
    ∴MF=AM-ME;

    如图2所示,
    ∵点E与点F关于直线AB对称,
    ∴∠ANM=90°,NE=NF,
    ∵∠NAM=30°,
    ∴AM=2NM,
    ∴AM=2MF+2NF=2MF+NE+NF=ME+MF,
    ∴MF=MA-ME;

    综上所述:MF=MA-ME.
    【点睛】
    本题考查轴对称、三角形全等判定与性质、等边三角形判定与性质,掌握这些是本题关键.
    10、85°
    【分析】
    由高的定义可得出∠ADB=∠ADC=90,在△ACD中利用三角形内角和定理可求出∠ACB的度数,结合CE平分∠ACB可求出∠ECB的度数.由三角形外角的性质可求出∠AEC的度数,
    【详解】
    解:∵AD是BC边上的高,
    ∴∠ADB=∠ADC=90.
    在△ACD中,∠ACB=180°﹣∠ADC﹣∠CAD=180°﹣90°﹣20°=70°.
    ∵CE平分∠ACB,
    ∴∠ECB=∠ACB=35°.
    ∵∠AEC是△BEC的外角,,
    ∴∠AEC=∠B+∠ECB=50°+35°=85°.
    答:∠AEC的度数是85°.
    【点睛】
    本题考查了三角形内角和定理、角平分线的定义以及三角形外角的性质,利用三角形内角和定理及角平分线的性质,求出∠ECB的度数是解题的关键.

    相关试卷

    初中沪教版 (五四制)第十四章 三角形综合与测试习题:

    这是一份初中沪教版 (五四制)第十四章 三角形综合与测试习题,共35页。试卷主要包含了三角形的外角和是,下列命题是真命题的是,有下列说法等内容,欢迎下载使用。

    初中数学沪教版 (五四制)七年级下册第十四章 三角形综合与测试随堂练习题:

    这是一份初中数学沪教版 (五四制)七年级下册第十四章 三角形综合与测试随堂练习题,共26页。

    沪教版 (五四制)七年级下册第十四章 三角形综合与测试当堂检测题:

    这是一份沪教版 (五四制)七年级下册第十四章 三角形综合与测试当堂检测题,共32页。试卷主要包含了如图,直线l1l2,被直线l3,如图,ABC≌DEF,点B,如图,点A等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map