开学活动
搜索
    上传资料 赚现金

    2021-2022学年沪教版七年级数学第二学期第十四章三角形专题测评试卷(精选)

    2021-2022学年沪教版七年级数学第二学期第十四章三角形专题测评试卷(精选)第1页
    2021-2022学年沪教版七年级数学第二学期第十四章三角形专题测评试卷(精选)第2页
    2021-2022学年沪教版七年级数学第二学期第十四章三角形专题测评试卷(精选)第3页
    还剩29页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    沪教版 (五四制)七年级下册第十四章 三角形综合与测试当堂达标检测题

    展开

    这是一份沪教版 (五四制)七年级下册第十四章 三角形综合与测试当堂达标检测题,共32页。试卷主要包含了如图,ABC≌DEF,点B,如图,直线l1l2,被直线l3等内容,欢迎下载使用。
    沪教版七年级数学第二学期第十四章三角形专题测评
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、如图,是等边三角形,点在边上,,则的度数为( ).

    A.25° B.60° C.90° D.100°
    2、如图,钝角中,为钝角,为边上的高,为的平分线,则与、之间有一种等量关系始终不变,下面有一个规律可以表示这种关系,你发现的是( )

    A. B.
    C. D.
    3、在下列长度的四根木棒中,能与3cm,9cm的两根木棒首尾顺次相接钉成一个三角形的是( )
    A.3cm B.6cm C.10cm D.12cm
    4、在平面直角坐标系xOy中,点A(0,2),B(a,0),C(m,n)().若ABC是等腰直角三角形,且,当时,点C的横坐标m的取值范围是( )
    A. B. C. D.
    5、若三条线段中a=3,b=5,c为奇数,那么以a、b、c为边组成的三角形共有( )
    A.1个 B.2个 C.3个 D.4个
    6、下列长度的三条线段能组成三角形的是(  )
    A.3 4 8 B.4 4 10 C.5 6 10 D.5 6 11
    7、如图,ABC中,∠ABC=45°,CD⊥AB于D,BE平分∠ABC,且BE⊥AC于E,与CD相交于点F,DH⊥BC于H,交BE于G,下列结论中正确的是( )
    ①BCD为等腰三角形;②BF=AC;③CE=BF;④BH=CE.

    A.①② B.①③ C.①②③ D.①②③④
    8、如图,ABC≌DEF,点B、E、C、F在同一直线上,若BC=7,EC=4,则CF的长是( )

    A.2 B.3 C.4 D.7
    9、如图,直线l1l2,被直线l3、l4所截,并且l3⊥l4,∠1=46°,则∠2等于(  )

    A.56° B.34° C.44° D.46°
    10、以下列各组线段为边,能组成三角形的是( )
    A.3cm,4cm,5cm B.3cm,3cm,6cm C.5cm,10cm,4cm D.1cm,2cm,3cm
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、如图,在△ABC中,点D为BC边延长线上一点,若∠ACD=75°,∠A=45°,则∠B的度数为__________.

    2、如图,已知∠A=60°,∠B=20°,∠C=30°,则∠BDC的度数为_____.

    3、如图,在△AOB和△COD中,OA=OB,OC=OD,OA<OC,∠AOB=∠COD=50°,连接AC、BD交于点M,连接OM.下列结论:①AC=BD,②∠AMB=50°;③OM平分∠AOD;④MO平分∠AMD.其中正确的结论是 _____.(填序号)

    4、等腰三角形的两边长分别是和,则它的周长为________.
    5、如图,在中,,,E为BC延长线上一点,与的平分线相交于点D,则∠D的度数为______.

    三、解答题(10小题,每小题5分,共计50分)
    1、如图,已知△ABC≌△DEB,点E在AB上,AC与BD交于点F,AB=6,BC=3,∠C=55°,∠D=25°.
    (1)求AE的长度;
    (2)求∠AED的度数.

    2、已知:如图,在△ABC中,AB=3,AC=5.
    (1)直接写出BC的取值范围是   .
    (2)若点D是BC边上的一点,∠BAC=85°,∠ADC=140°,∠BAD=∠B,求∠C.

    3、已知:如图,点B、C在线段AD的异侧,点E、F分别是线段AB、CD上的点,∠AEG=∠AGE,∠C=∠DGC.
    (1)求证:AB//CD;
    (2)若∠AGE+∠AHF=180°,求证:∠B=∠C;
    (3)在(2)的条件下,若∠BFC=4∠C,求∠D的度数.

    4、在中,,,点D是直线AC上一动点,连接BD并延长至点E,使.过点E作于点F.

    (1)如图1,当点D在线段AC上(点D不与点A和点C重合)时,此时DF与DC的数量关系是______.
    (2)如图2,当点D在线段AC的延长线上时,依题意补全图形,并证明:.
    (3)当点D在线段CA的延长线上时,直接用等式表示线段AD,AF,EF之间的数量关系是______.

    5、如图,在△ABC中,AD⊥BE,∠DAC=10°,AE是∠BAC的外角∠MAC的平分线,BF平分∠ABC交AE于点F,求∠AFB的度数.

    6、如图,点D,E在△ABC的边BC上,AB=AC,AD=AE,求证:BD=CE.

    7、已知:
    (1)O是∠BAC内部的一点.
    ①如图1,求证:∠BOC>∠A;
    ②如图2,若OA=OB=OC,试探究∠BOC与∠BAC的数量关系,给出证明.
    (2)如图3,当点O在∠BAC的外部,且OA=OB=OC,继续探究∠BOC与∠BAC的数量关系,给出证明.

    8、如图,和是顶角相等的等腰三角形,BC,DE分别是这两个等腰三角形的底边.求证.

    9、如图,点C是线段AB上一点,与都是等边三角形,连接AE,BF.

    (1)求证:;
    (2)若点M,N分别是AE,BF的中点,连接CM,MN,NC.
    ①依题意补全图形;
    ②判断的形状,并证明你的结论.
    10、如图,在中,AD是BC边上的高,CE平分,若,,求的度数.


    -参考答案-
    一、单选题
    1、D
    【分析】
    由等边三角形的性质及三角形外角定理即可求得结果.
    【详解】
    ∵是等边三角形
    ∴∠C=60°
    ∴∠ADB=∠DBC+∠C=40°+60°=100°
    故选:D
    【点睛】
    本题考查了等边三角形的性质、三角形外角的性质,掌握这两个性质是关键.
    2、B
    【分析】
    根据三角形内角和定理、角平分线的性质、三角形外角的性质依次推理即可得出结论.
    【详解】
    解:由三角形内角和知∠BAC=180°-∠2-∠1,
    ∵AE为∠BAC的平分线,
    ∴∠BAE=∠BAC=(180°-∠2-∠1).
    ∵AD为BC边上的高,
    ∴∠ADC=90°=∠DAB+∠ABD.
    又∵∠ABD=180°-∠2,
    ∴∠DAB=90°-(180°-∠2)=∠2-90°,
    ∴∠EAD=∠DAB+∠BAE=∠2-90°+(180°-∠2-∠1)=(∠2-∠1).
    故选:B
    【点睛】
    本题主要考查了三角形的内角和定理,角平分线的定义、三角形外角性质及三角形的高的定义,解答的关键是找到已知角和所求角之间的联系.
    3、C
    【分析】
    设第三根木棒的长度为cm,再确定三角形第三边的范围,再逐一分析各选项即可得到答案.
    【详解】
    解:设第三根木棒的长度为cm,则


    所以A,B,D不符合题意,C符合题意,
    故选C
    【点睛】
    本题考查的是三角形的三边的关系,掌握“利用三角形的三边关系确定第三边的范围”是解本题的关键.
    4、B
    【分析】
    过点作轴于,由“”可证,可得,,即可求解.
    【详解】
    解:如图,过点作轴于,

    点,

    是等腰直角三角形,且,



    在和中,


    ,,



    故选:B.
    【点睛】
    本题考查了全等三角形的判定和性质,等腰直角三角形的性质,解题的关键是画图及添加恰当辅助线构造全等三角形.
    5、C
    【分析】
    根据三角形的三边关系,得到合题意的边,进而求得三角形的个数.
    【详解】
    解:c的范围是:5﹣3<c<5+3,即2<c<8.
    ∵c是奇数,
    ∴c=3或5或7,有3个值.
    则对应的三角形有3个.
    故选:C.
    【点睛】
    本题主要考查了三角形三边关系,准确分析判断是解题的关键.
    6、C
    【分析】
    根据三角形的任意两边之和大于第三边对各选项分析判断求解即可.
    【详解】
    解:A.∵3+4<8,
    ∴不能组成三角形,故本选项不符合题意;
    B.∵4+4<10,
    ∴不能组成三角形,故本选项不符合题意;
    C.∵5+6>10,
    ∴能组成三角形,故本选项符合题意;
    D.∵5+6=11,
    ∴不能组成三角形,故本选项不符合题意;
    故选:C.
    【点睛】
    本题考查了三角形的三边关系,熟记三角形的任意两边之和大于第三边是解决问题的关键.
    7、C
    【分析】
    根据∠ABC=45°,CD⊥AB可得出BD=CD;利用AAS判定Rt△DFB≌Rt△DAC,从而得出BF=AC;再利用AAS判定Rt△BEA≌Rt△BEC,即可得到CE=BF;由CE=BF,BH=BC,在三角形BCF中,比较BF、BC的长度即可得到CE<BH.
    【详解】
    解:∵CD⊥AB,∠ABC=45°,
    ∴△BCD是等腰直角三角形.
    ∴BD=CD,故①正确;
    在Rt△DFB和Rt△DAC中,
    ∵∠DBF=90°﹣∠BFD,∠DCA=90°﹣∠EFC,且∠BFD=∠EFC,
    ∴∠DBF=∠DCA.
    又∵∠BDF=∠CDA=90°,BD=CD,
    ∴△DFB≌△DAC.
    ∴BF=AC,故②正确;
    在Rt△BEA和Rt△BEC中
    ∵BE平分∠ABC,
    ∴∠ABE=∠CBE.
    又∵BE=BE,∠BEA=∠BEC=90°,
    ∴Rt△BEA≌Rt△BEC.
    ∴CE=AC=BF,故③正确;
    ∵CE=AC=BF,BH=BC,
    在△BCF中,∠CBE=∠ABC=22.5°,∠DCB=∠ABC=45°,
    ∴∠BFC=112.5°,
    ∴BF<BC,
    ∴CE<BH,故④错误;
    故选:C.
    【点睛】
    本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、SSA、HL.在复杂的图形中有45°的角,有垂直,往往要用到等腰直角三角形,要注意掌握并应用此点.
    8、B
    【分析】
    根据全等三角形的性质可得,根据即可求得答案.
    【详解】
    解:ABC≌DEF,

    点B、E、C、F在同一直线上,BC=7,EC=4,

    故选B
    【点睛】
    本题考查了全等三角形的性质,掌握全等三角形的性质是解题的关键.
    9、C
    【分析】
    依据l1∥l2,即可得到∠3=∠1=46°,再根据l3⊥l4,可得∠2=90°﹣46°=44°.
    【详解】
    解:如图:

    ∵l1∥l2,∠1=46°,
    ∴∠3=∠1=46°,
    又∵l3⊥l4,
    ∴∠2=90°﹣46°=44°,
    故选:C.
    【点睛】
    本题考查了平行线性质以及三角形内角和,平行线的性质:两直线平行,同位角相等以及三角形内角和是180°.
    10、A
    【分析】
    三角形的任意两条之和大于第三边,任意两边之差小于第三边,根据原理再分别计算每组线段当中较短的两条线段之和,再与最长的线段进行比较,若和大于最长的线段的长度,则三条线段能构成三角形,否则,不能构成三角形,从而可得答案.
    【详解】
    解: 所以以3cm,4cm,5cm为边能构成三角形,故A符合题意;
    所以以3cm,3cm,6cm为边不能构成三角形,故B不符合题意;
    所以以5cm,10cm,4cm为边不能构成三角形,故C不符合题意;
    所以以1cm,2cm,3cm为边不能构成三角形,故D不符合题意;
    故选A
    【点睛】
    本题考查的是三角形的三边之间的关系,掌握“利用三角形三边之间的关系判定三条线段能否组成三角形”是解本题的关键.
    二、填空题
    1、30°
    【分析】
    根据三角形的外角的性质,即可求解.
    【详解】
    解:∵ ,
    ∴ ,
    ∵∠ACD=75°,∠A=45°,
    ∴ .
    故答案为:30°
    【点睛】
    本题主要考查了三角形的外角性质,熟练掌握三角形的一个外角等于与它不相邻的两个内角的和是解题的关键.
    2、110°
    【分析】
    延长BD交AC于点E,根据三角形的外角性质计算,得到答案.
    【详解】
    延长BD交AC于点E,
    ∵∠DEC是△ABE的外角,∠A=60°,∠B=20°,
    ∴∠DEC=∠A+∠B=80°,
    则∠BDC=∠DEC+∠C=110°,

    故答案为:110°.
    【点睛】
    本题考查了三角形外角的性质,三角形的一个外角等于与它不相邻的两个内角的和,作辅助线DE是解题的关键.
    3、①②④
    【分析】
    由证明得出,,①正确;
    由全等三角形的性质得出,由三角形的外角性质得:,得出,②正确;
    作于,于,如图所示:则,利用全等三角形对应边上的高相等,得出,由角平分线的判定方法得出平分,④正确;
    假设平分,则,由全等三角形的判定定理可得,得,而,所以,而,故③错误;即可得出结论.
    【详解】
    解:,

    即,
    在和中,


    ,,故①正确;

    由三角形的外角性质得:

    ,故②正确;
    作于,于,如图所示,

    则,


    平分,故④正确;
    假设平分,则,
    在与中,





    而,故③错误;
    所以其中正确的结论是①②④.
    故答案为:①②④.
    【点睛】
    本题考查了全等三角形的判定与性质、三角形的外角性质、角平分线的判定等知识;证明三角形全等是解题的关键.
    4、22
    【分析】
    分两种情况讨论:当腰长为时, 当腰长为时,再结合三角形的三边关系,从而可得答案.
    【详解】
    解: 等腰三角形的两边长分别是和,
    当腰长为时,此时 不符合题意,舍去,
    当腰长为时,此时 符合题意,
    所以三角形的周长为:
    故答案为:
    【点睛】
    本题考查的是等腰三角形的定义,三角形的三边关系,掌握“等腰三角形的两腰相等,再分情况讨论”是解本题的关键.
    5、20°度
    【分析】
    根据角平分线的性质得到,再利用三角形外角的性质计算.
    【详解】
    解:∵与的平分线相交于点D,
    ∴,
    ∵∠ACE=∠A+∠ABC,∠DCE=∠D+∠DBC,
    ∴∠D=∠DCE-∠DBC=,
    故答案为:20°.
    【点睛】
    此题考查了三角形的外角性质及角平分线的性质,熟记三角形外角的性质定理是解题的关键.
    三、解答题
    1、(1);(2).
    【分析】
    (1)先根据全等三角形的性质可得,再根据线段的和差即可得;
    (2)先根据全等三角形的性质可得,再根据三角形的外角性质即可得.
    【详解】
    解:(1)∵,
    ∴,
    ∵,
    ∴;
    (2)∵,
    ∴,
    ∵,
    ∴.
    【点睛】
    本题考查全等三角形的性质等知识点,熟练掌握全等三角形的对应角和对应边相等是解题关键.
    2、(1)2<BC<8;(2)25°
    【分析】
    (1)根据三角形三边关系解答即可;
    (2)根据三角形外角性质和三角形内角和解答即可.
    【详解】
    解:(1)∵AC-AB<BC<AC+AB,AB=3,AC=5.
    ∴2<BC<8,
    故答案为:2<BC<8
    (2)∵∠ADC是△ABD的外角
    ∴∠ADC=∠B+∠BAD=140
    ∵∠B=∠BAD
    ∴∠B=
    ∵∠B+∠BAC+∠C=180
    ∴∠C=180﹣∠B﹣∠BAC
    即∠C=180﹣70﹣85=25
    【点睛】
    本题考查了三角形第三边的取值范围,三角形内角和定理和三角形外角的性质,能根据三角形的外角的性质求出∠B的度数是解此题的关键.
    3、(1)见解析;(2)见解析;(3)108°
    【分析】
    (1)根据对顶角相等结合已知条件得出∠AEG=∠C,根据内错角相等两直线平行即可证得结论;
    (2)由∠AGE+∠AHF=180°等量代换得∠DGC+∠AHF=180°可判断EC//BF,两直线平行同位角相等得出∠B=∠AEG,结合(1)得出结论;
    (3)由(2)证得EC//BF,得∠BFC+∠C=180°,求得∠C的度数,由三角形内角和定理求得∠D的度数.
    【详解】
    证明:(1)∵∠AEG=∠AGE,∠C=∠DGC,∠AGE=∠DGC
    ∴∠AEG=∠C
    ∴AB//CD
    (2)∵∠AGE=∠DGC,∠AGE+∠AHF=180°
    ∴∠DGC+∠AHF=180°
    ∴EC//BF
    ∴∠B=∠AEG
    由(1)得∠AEG=∠C
    ∴∠B=∠C
    (3)由(2)得EC//BF
    ∴∠BFC+∠C=180°
    ∵∠BFC=4∠C
    ∴∠C=36°
    ∴∠DGC=36°
    ∵∠C+∠DGC+∠D=180°
    ∴∠D=108°
    【点睛】
    此题考查了平行线的判定与性质,三角形内角和定理,熟记“内错角相等,两直线平行”、“同旁内角互补,两直线平行”及“两直线平行,同旁内角互补”是解题的关键.
    4、(1)(2)见解析(3)
    【分析】
    (1)利用边相等和角相等,直接证明,即可得到结论.
    (2)利用边相等和角相等,直接证明,得到和,最后通过边与边之间的关系,即可证明结论成立.
    (3)要证明,先利用边相等和角相等,直接证明,得到和,最后通过边与边之间的关系,即可证明结论成立.
    【详解】
    (1)解:
    ,,

    在和中,



    (2)解:当点D在线段AC的延长线上时,如下图所示:

    ,,

    在和中,


    ,,

    (3)解:,如下图所示:

    ,,

    在和中,


    ,,

    【点睛】
    本题主要是考查了三角形全等的判定和性质,熟练利用条件证明三角形全等,然后利用边相等以及边与边之间关系,即可证明结论成立,这是解决该题的关键.
    5、∠AFB=40°.
    【分析】
    由题意易得∠ADC=90°,∠ACB=80°,然后可得,进而根据三角形外角的性质可求解.
    【详解】
    解:∵AD⊥BE,
    ∴∠ADC=90°,
    ∵∠DAC=10°,
    ∴∠ACB=90°﹣∠DAC=90°﹣10°=80°,
    ∵AE是∠MAC的平分线,BF平分∠ABC,
    ∴,
    又∵∠MAE=∠ABF+∠AFB,∠MAC=∠ABC+∠ACB,
    ∴∠AFB=∠MAE﹣∠ABF=.
    【点睛】
    本题主要考查三角形外角的性质及角平分线的定义,熟练掌握三角形外角的性质及角平分线的定义是解题的关键.
    6、见解析
    【分析】
    过A作AF⊥BC于F,根据等腰三角形的性质得出BF=CF,DF=EF,即可求出答案.
    【详解】
    证明:如图,过A作AF⊥BC于F,

    ∵AB=AC,AD=AE,
    ∴BF=CF,DF=EF,
    ∴BF-DF=CF-EF,
    ∴BD=CE.
    【点睛】
    本题考查了等腰三角形的性质的应用,注意:等腰三角形的底边上的高,底边上的中线,顶角的平分线互相重合.
    7、(1)①见解析;②∠BOC=2∠A,见解析;(2)∠BOC=2∠BAC,见解析
    【分析】
    (1)①连接AO并延长AO至点E,根据三角形外角性质解答即可;
    ②延长AO至点E,根据三角形外角性质解答即可;
    (2)根据三角形外角性质和三角形内角和定理解答即可.
    【详解】
    证明:(1)①如图所示:连接AO并延长AO至点E,则∠BOE>∠BAO,∠COE>∠CAO,
    ∴∠BOC>∠A;

    ②∠BOC与∠BAC的数量关系:∠BOC=2∠A;
    证明:如图所示,延长AO至点E,则∠BOE=∠BAO+∠B,∠COE=∠CAO+∠C,
    ∵OA=OB=OC,
    ∴∠BAO=∠B,∠CAO=∠C,
    ∴∠BOC=∠COE+∠COE=∠BAO+∠B+∠CAO+∠C=2(∠BAO+∠CAO)=2∠BAC;

    (2)∠BOC与∠BAC的数量关系:∠BOC=2∠BAC;
    证明:如图所示,设∠B=x,

    ∵OA=OB=OC,
    ∴∠B=∠BAO=x,∠C=∠OAC=∠BAC+x;
    在△BEO和△AEC中,有:∠B+∠BOC=∠C+∠CAE;
    即x+∠BOC=∠CAE+x+∠CAE=2∠BAC+x;
    即∠BOC=2∠BAC.
    【点睛】
    此题考查三角形综合题,关键是根据三角形外角性质和三角形内角和定理解答.
    8、见解析
    【分析】
    由和是顶角相等的等腰三角形,得出知、、,证即可得证.
    【详解】
    解:和是顶角相等的等腰三角形,得出,
    ,,,
    在和中,



    【点睛】
    本题主要考查全等三角形的判定与性质,解题的关键是熟练掌握等腰三角形的性质与全等三角形的判定和性质.
    9、
    (1)证明见解析;
    (2)①补全图形见解析;②是等边三角形,证明见解析.
    【分析】
    (1)由等边三角形的性质可知,,.结合题意易得出.即可利用“SAS”证明,即得出;
    (2)①根据题意补全图形即可;
    ②由全等三角形的性质可知,.再由题意点M,N分别是AE,BF的中点,即得出.即可利用“SAS”证明,得出结论,.最后根据,即得出,即可判定是等边三角形.
    (1)
    ∵与都是等边三角形,
    ∴,,,
    ∴,即,
    在和中,
    ∴,
    ∴,
    ∴.
    (2)
    ①画图如下:

    ②是等边三角形.
    理由如下:∵,
    ∴,.
    ∵点M,N分别是AE,BF的中点,
    ∴,
    在和中,
    ∵,
    ∴,
    ∴,,
    ∴,即,
    ∴是等边三角形.
    【点睛】
    本题考查等边三角形的判定和性质,全等三角形的判定和性质,线段的中点.利用数形结合的思想是解答本题的关键.
    10、85°
    【分析】
    由高的定义可得出∠ADB=∠ADC=90,在△ACD中利用三角形内角和定理可求出∠ACB的度数,结合CE平分∠ACB可求出∠ECB的度数.由三角形外角的性质可求出∠AEC的度数,
    【详解】
    解:∵AD是BC边上的高,
    ∴∠ADB=∠ADC=90.
    在△ACD中,∠ACB=180°﹣∠ADC﹣∠CAD=180°﹣90°﹣20°=70°.
    ∵CE平分∠ACB,
    ∴∠ECB=∠ACB=35°.
    ∵∠AEC是△BEC的外角,,
    ∴∠AEC=∠B+∠ECB=50°+35°=85°.
    答:∠AEC的度数是85°.
    【点睛】
    本题考查了三角形内角和定理、角平分线的定义以及三角形外角的性质,利用三角形内角和定理及角平分线的性质,求出∠ECB的度数是解题的关键.

    相关试卷

    初中数学沪教版 (五四制)七年级下册第十四章 三角形综合与测试练习:

    这是一份初中数学沪教版 (五四制)七年级下册第十四章 三角形综合与测试练习,共34页。试卷主要包含了如图等内容,欢迎下载使用。

    初中数学第十四章 三角形综合与测试当堂检测题:

    这是一份初中数学第十四章 三角形综合与测试当堂检测题,共32页。试卷主要包含了如图,ABC≌DEF,点B等内容,欢迎下载使用。

    数学七年级下册第十四章 三角形综合与测试课堂检测:

    这是一份数学七年级下册第十四章 三角形综合与测试课堂检测,共33页。试卷主要包含了如图,在中,,定理等内容,欢迎下载使用。

    英语朗读宝
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map