搜索
    上传资料 赚现金
    英语朗读宝

    2021-2022学年基础强化沪教版七年级数学第二学期第十四章三角形专题训练练习题(无超纲)

    2021-2022学年基础强化沪教版七年级数学第二学期第十四章三角形专题训练练习题(无超纲)第1页
    2021-2022学年基础强化沪教版七年级数学第二学期第十四章三角形专题训练练习题(无超纲)第2页
    2021-2022学年基础强化沪教版七年级数学第二学期第十四章三角形专题训练练习题(无超纲)第3页
    还剩27页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    沪教版 (五四制)七年级下册第十四章 三角形综合与测试一课一练

    展开

    这是一份沪教版 (五四制)七年级下册第十四章 三角形综合与测试一课一练,共30页。试卷主要包含了如图等内容,欢迎下载使用。
    沪教版七年级数学第二学期第十四章三角形专题训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、如图,已知的外角,,那么的度数是(    A.30° B.40° C.50° D.60°2、等腰三角形的一个顶角是80°,则它的底角是(    ).A.40° B.50° C.60° D.70°3、如图,已知RtABC中,∠C=90°,∠A=30°,在直线BC上取一点P,使得△PAB是等腰三角形,则符合条件的点P有(    A.1个 B.2个 C.3个 D.4个4、如图,ADBC,∠C=30°,∠ADB:∠BDC=1:2,∠EAB=72°,以下四个说法:①∠CDF=30°;②∠ADB=50°;③∠ABD=22°;④∠CBN=108°其中正确说法的个数是(  )A.1个 B.2个 C.3个 D.4个5、如图:将一张长为40cm的长方形纸条按如图所示折叠,若AB=3BC,则纸条的宽为(     ) A.12 B.14 C.16 D.186、以下长度的三条线段,能组成三角形的是(    A.2,3,5 B.4,4,8 C.3,4.8,7 D.3,5,97、已知三角形的两边长分别为,则下列长度的四条线段中能作为第三边的是(    A. B. C. D.8、若三条线段中a=3,b=5,c为奇数,那么以abc为边组成的三角形共有(    A.1个 B.2个 C.3个 D.4个9、有两边相等的三角形的两边长为,则它的周长为(    A. B. C. D.10、已知等腰三角形两边的长分别为3和7,则此等腰三角形的周长为(    A.10 B.15 C.17 D.19第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、在△ABC中,已知∠B是∠A的2倍,∠C比∠A大20°,则∠A=_____________.2、如图,在中,BC的延长线于点E,若,点CBE中点,则______°.3、△ABC的高AD所在直线与高BE所在直线相交于点FDFCD,则∠ABC=______.4、已知直角三角形△ABC的三条边长分别为3,4,5,在△ABC所在平面内画一条直线,将△ABC分割成两个三角形,使其中的一个是等腰三角形,则这样的直线最多可画___条.5、如图,在中,EBC延长线上一点,的平分线相交于点D,则∠D的度数为______.三、解答题(10小题,每小题5分,共计50分)1、如图,在△ABC中,AB=ACCDAB于点D,∠A=50°,求∠BCD的度数.2、如图,在中,的平分线,点在边上,且(Ⅰ)求证:(Ⅱ)若,求的大小.3、如图所示,四边形的对角线相交于点,已知.求证:(1)(2)4、如图,在四边形ABCD中,点EBC上,连接DEAC相交于点F,∠BAE=∠CADABAEADAC(1)求证:∠DEC=∠BAE(2)如图2,当∠BAE=∠CAD=30°,ADAB时,延长DEAB交于点G,请直接写出图中除△ABE、△ADC以外的等腰三角形.5、如图,灯塔B在灯塔A的正东方向,且.灯塔C在灯塔A的北偏东20°方向,灯塔C在灯塔B的北偏西50°方向.(1)求的度数;(2)一轮船从B地出发向北偏西50°方向匀速行驶,5h后到达C地,求轮船的速度.6、如图,为等边三角形,DBC中点,CE的外角的平分线.求证:7、如图,在中,是角平分线,(1)求的度数;(2)若,求的度数.8、如图,的角平分线,于点(1)用尺规完成以下基本作图:过点于点,连接于点.(不写作法,保留作图痕迹)(2)在(1)中所作的图形中,求证:9、已知:在△ABC中,AD平分∠BAC,AE=AC.求证:ADCE10、如图,EBC中点,DE平分(1)求证:平分(2)求证:(3)求证: -参考答案-一、单选题1、B【分析】根据三角形的外角性质解答即可.【详解】解:∵∠ACD=60°,∠B=20°,∴∠A=∠ACD−∠B=60°−20°=40°,故选:B.【点睛】此题考查三角形的外角性质,关键是根据三角形外角性质解答.2、B【分析】依据三角形的内角和是180°以及等腰三角形的性质即可解答.【详解】解:(180°-80°)÷2=100°÷2=50°;答:底角为50°.故选:B.【点睛】本题主要考查三角形的内角和定理及等腰三角形的两个底角相等的特点.3、B【分析】根据等腰三角形的判定定理,结合图形即可得到结论.【详解】解:以点AB为圆心,AB长为半径画弧,交直线BC于两个点,然后作AB的垂直平分线交直线BC于点,如图所示:∵∠C=90°,∠A=30°,是等边三角形,∴点重合,∴符合条件的点P有2个;故选B.【点睛】本题主要考查等腰三角形的性质及等边三角形的性质与判定,熟练掌握等腰三角形的性质是解题的关键.4、D【分析】根据ADBC,∠C=30°,利用内错角相等得出∠FDC=∠C=30°,可判断①正确;根据邻补角性质可求∠ADC=180°-∠FDC=180°-30°=150°,根据∠ADB:∠BDC=1:2,得出方程3∠ADB=150°,解方程可判断②正确;根据∠EAB=72°,可求邻补角∠DAN=180°-∠EAB=180°-72°=108°,利用三角形内角和可求∠ABD=180°-∠NAD-∠ADB=180°-108°-50°=22°可判断③正确,利用ADBC,同位角相等的∠CBN=∠DAN=108°可判断④正确即可.【详解】解:∵ADBC,∠C=30°,∴∠FDC=∠C=30°,故①正确;∴∠ADC=180°-∠FDC=180°-30°=150°,∵∠ADB:∠BDC=1:2,∴∠BDC=2∠ADB∵∠ADC=∠ADB+∠BDC=∠ADB+2∠ADB=3∠ADB=150°,解得∠ADB=50°,故②正确∵∠EAB=72°,∴∠DAN=180°-∠EAB=180°-72°=108°,∴∠ABD=180°-∠NAD-∠ADB=180°-108°-50°=22°,故③正确ADBC∴∠CBN=∠DAN=108°,故④正确其中正确说法的个数是4个.故选择D.【点睛】本题考查平行线性质,角的倍分,邻补角性质,三角形内角和,一元一次方程,掌握平行线性质,邻补角性质,三角形内角和,一元一次方程地解题关键.5、B【分析】如图,延长NOAD的延长线于点P,设BC=x,则AB=3x,利用折叠的性质和等腰直角三角形的性质可表示出纸条的宽MONO的长,从而可表示出纸条的长2PN的长,然后根据长方形纸条的长为40,可得到关于x的方程,解方程求出x的值,即可求出纸条的宽.【详解】解:如图,延长NOAD的延长线于点P BC=x,则AB=3x ∵折叠, AB=BM=CO=CD=PO=3x ∴纸条的宽为:MO=NO=3x+3x+x=7x ∴纸条的长为:2PN=2(7x+3x)=20x=40 解得:x=2, ∴纸条的宽NO=7×2=14. 故答案为:B.【点睛】此题考查了折叠的性质,等腰直角三角形的性质,一元一次方程应用题,解题的关键是正确分析题目中的等量关系列出方程求解.6、C【分析】由题意根据三角形的三条边必须满足:任意两边之和大于第三边,任意两边之差小于第三边进行分析即可.【详解】解:A、2+3=5,不能组成三角形,不符合题意;B、4+4=8,不能组成三角形,不符合题意;C、3+4.8>7,能组成三角形,符合题意;D、3+5<9,不能组成三角形,不符合题意.故选:C.【点睛】本题主要考查对三角形三边关系的理解应用.注意掌握判断是否可以构成三角形,只要判断两个较小的数的和大于最大的数即可.7、C【分析】根据三角形的三边关系可得,再解不等式可得答案.【详解】解:设三角形的第三边为,由题意可得:故选:C.【点睛】本题主要考查了三角形的三边关系,解题的关键是掌握三角形两边之和大于第三边;三角形的两边差小于第三边.8、C【分析】根据三角形的三边关系,得到合题意的边,进而求得三角形的个数.【详解】解:c的范围是:5﹣3<c<5+3,即2<c<8.c是奇数,c=3或5或7,有3个值.则对应的三角形有3个.故选:C【点睛】本题主要考查了三角形三边关系,准确分析判断是解题的关键.9、D【分析】有两边相等的三角形,是等腰三角形,两边分别为,但没有明确哪是底边,哪是腰,所以有两种情况,需要分类讨论.【详解】解:当4为底时,其它两边都为5,4、5、5可以构成三角形,周长为当4为腰时,其它两边为4和5,4、4、5可以构成三角形,周长为综上所述,该等腰三角形的周长是故选:D.【点睛】本题考查了等腰三角形的性质和三角形的三边关系,解题的关键是对于底和腰不等的等腰三角形,若条件中没有明确哪边是底哪边是腰时,应在符合三角形三边关系的前提下分类讨论.10、C【分析】等腰三角形两边的长为3和7,具体哪条是底边,哪条是腰没有明确说明,因此要分两种情况讨论.【详解】解:①当腰是3,底边是7时,3+3<7,不满足三角形的三边关系,因此舍去.②当底边是3,腰长是7时,3+7>7,能构成三角形,则其周长=3+7+7=17.故选:C【点睛】本题考查了等腰三角形的性质和三角形的三边关系,解题时注意:若没有明确腰和底边,则一定要分类进行讨论,还应验证各种情况是否能构成三角形,这是解题的关键.二、填空题1、40°【分析】根据已知得出∠B=2∠A,∠C=∠A+20°,代入∠A+∠B+∠C=180°得出方程A+2∠A+∠A+20°=180°,求出即可.【详解】解:∵∠B是∠A的2倍,∠C比∠A大20°,∴∠B=2∠A,∠C=∠A+20°,∵∠A+∠B+∠C=180°,∴∠A+2∠A+∠A+20°=180°,∴∠A=40°,故答案为:40°.【点睛】本题考查了三角形内角和定理的应用,注意:三角形的内角和等于180°,用了方程思想.2、67.5°【分析】连接AE,先得出∠BAC=BAE,再根据,得出∠BAC=22.5°,最后得出结果.【详解】解:连接AE∵点CBE中点,BC=CE∵∠ACB=90°,ACBEAB=AE  ∴∠BAC=BAEDEAB∴∠ADE=90°,∴∠AED=∠DAE=45°,∴∠BAC=BAE=22.5°,∴∠B=90°-∠BAC=67.5°.故答案为:67.5°.【点睛】本题考查了线段垂直平分线的性质,等腰三角形的性质及直角三角形的性质,正确作出辅助线是解题的关键.3、45°或135°【分析】根据题意,分两种情况讨论:①当为锐角三角形时;②当为钝角三角形时;作出相应图形,然后利用全等三角形的判定证明三角形全等,根据其性质及各角直角的等量关系即可得.【详解】解:①如图所示:当为锐角三角形时,中,②如图所示:当为钝角三角形时,中,综合①②可得:故答案为:【点睛】题目主要考查全等三角形的判定和性质,等腰三角形的性质,根据题意进行分类讨论,作出相应图形是解题关键.4、6【分析】根据等腰三角形的性质分别利用ABAC为底以及为腰得出符合题意的图形即可.【详解】解:如图所示:BC2=CC2AC1=ACBC=BC3BC=CC4BC=CC5C6A=C6B都能得到符合题意的等腰三角形.故答案为:6.【点睛】此题主要考查了等腰三角形的判定以及应用设计与作图等知识,正确利用图形分类讨论得出是解题关键.5、20°度【分析】根据角平分线的性质得到,再利用三角形外角的性质计算.【详解】解:∵的平分线相交于点D∵∠ACE=A+ABC,∠DCE=D+∠DBC∴∠D=DCE-DBC=故答案为:20°.【点睛】此题考查了三角形的外角性质及角平分线的性质,熟记三角形外角的性质定理是解题的关键.三、解答题1、25°【分析】直接利用等腰三角形的性质得出∠ABC=∠ACB=65°,进而利用三角形内角和定理得出答案.【详解】AB=AC,∠A=50°,∴∠ABC=∠ACB=65°,CDBC于点D∴∠BCD的度数为:180°−90°−65°=25°.【点睛】此题主要考查了等腰三角形的性质,正确得出∠B的度数是解题关键.2、(Ⅰ)见解析;(Ⅱ)【分析】(Ⅰ)由CD的平分线得出,由得出从而得出,由平行线的判断即可得证;(Ⅱ)由三角形内角和求出,由角平分线得出,由三角形内角和求出即可得出答案.【详解】(Ⅰ)∵CD的平分线,(Ⅱ)∵【点睛】本题考查平行线的判定以及三角形内角和定理,掌握相关知识是解题的关键3、(1)证明见解析;(2)证明见解析.【分析】(1)根据全等三角形的判定定理可直接证明;(2)根据(1)中结论可得,再由等角对等边得出,运用等式的性质进行计算即可证明.(1)解:在中,(2)由(1)可得:【点睛】题目主要考查全等三角形的判定和性质,等角对等边的性质,理解题意,综合运用这些知识点是解题关键.4、(1)见解析;(2)△AEF、△ADG、△DCF、△ECD【分析】(1)根据已知条件得到∠BAE=∠CAD,根据全等三角形的性质得到∠AED=∠ABC,根据等腰三角形的性质得到∠ABC=∠AEB,于是得到结论;(2)根据等腰三角形的判定定理即可得到结论.【详解】证明:(1)如图1,∵∠BAE=∠CAD∴∠BAE+∠CAE=∠CAD+∠CAE即∠BAC=∠EAD在△AED与△ABC中,∴△AED≌△ABC∴∠AED=∠ABC∵∠BAE+∠ABC+∠AEB=180°,CED+∠AED+∠AEB=180°,ABAE∴∠ABC=∠AEB∴∠BAE+2∠AEB=180°,CED+2∠AEB=180°,∴∠DEC=∠BAE(2)解:如图2, ①∵∠BAE=∠CAD=30°,∴∠ABC=∠AEB=∠ACD=∠ADC=75°,由(1)得:∠AED=∠ABC=75°,DEC=∠BAE=30°,ADAB∴∠BAD=90°,∴∠CAE=30°,∴∠AFE=180°−30°−75°=75°,∴∠AEF=∠AFE∴△AEF是等腰三角形, ②∵∠BEG=∠DEC=30°,∠ABC=75°,∴∠G=45°,RtAGD中,∠ADG=45°,∴△ADG是等腰直角三角形, ③∠CDF=75°−45°=30°,∴∠DCF=∠DFC=75°,∴△DCF是等腰直角三角形;④∵∠CED=∠EDC=30°,∴△ECD是等腰三角形.【点睛】本题考查了全等三角形的判定与性质,等腰直角三角形的判定,等腰三角形的判定和性质,熟练掌握全等三角形的判定与性质是解题的关键.5、(1)70°;(2)15km/h【分析】(1)根据题意得∠BAC=70°,∠ABC=40°,根据三角形的内角和定理即可求得∠ACB(2)根据等腰三角形的判定可得BC=AB=75km,进而由速度=路程÷时间求解即可.【详解】解:(1)根据题意得∠BAC=70°,∠ABC=40°,∴∠ACB=180°-∠BAC-∠ABC=180°-70°-40°=70°;(2)∵∠BAC=∠ACB=70°,BC=AB=75km,∴轮船的速度为75÷5=15(km/h).【点睛】本题考查方位角、等腰三角形的判定、三角形的内角和定理,理解方位角,熟练掌握等腰三角形的等角对等边是解答的关键.6、证明见解析.【分析】DDGACABG,由等边三角形的性质和平行线的性质得到∠BDG=∠BGD=60°,于是得到△BDG是等边三角形,再证明△AGD≌△DCE即可得到结论.【详解】证明:过DDGACABG∵△ABC是等边三角形,ABAC,∠B=∠ACB=∠BAC=60°,又∵DGAC∴∠BDG=∠BGD=60°,∴△BDG是等边三角形,∠AGD=180°−∠BGD=120°,DGBD∵点DBC的中点,BDCDDGCDEC是△ABC外角的平分线,∴∠ACE(180°−∠ACB)=60°,∴∠BCE=∠ACB+∠ACE=120°=∠AGDABAC,点DBC的中点,∴∠ADB=∠ADC=90°,又∵∠BDG=60°,∠ADE=60°,∴∠ADG=∠EDC=30°,在△AGD和△ECD中,∴△AGD≌△ECDASA).ADDE【点睛】本题是三角形综合题,主要考查了平行线的性质,全等三角形的性质与判定,等边三角形的判定与性质,熟练掌握全等三角形的判定与性质是解题的关键.7、(1)(2)【分析】(1)根据三角形内角和定理可求出,然后利用角平分线进行计算即可得;(2)根据垂直得出,然后根据三角形内角和定理即可得.(1)解:∵AD是角平分线,(2)【点睛】题目主要考查三角形内角和定理,角平分线的计算等,熟练运用三角形内角和定理是解题关键.8、(1)见解析;(2)见解析.【分析】(1)以点D为圆心,适当长为半径,作弧,交AC于两点,再分别以这两点为圆心,适当长为半径作弧,连接两条弧的交点所在的直线,该直线与AC的交点即为点F,连接于点(2)利用角平分线性质可得,由此证明,得到,继而证明,证得即可解题.【详解】解:(1)如图,点F、G即为所求作的点;(2)的角平分线,【点睛】本题考查角平分线的性质、全等三角形的判定与性质等知识,是重要考点,难度一般,掌握相关知识是解题关键.9、见解析.【分析】先根据角平分线的定义得到∠BAD=BAC,再根据等腰三角形的性质和三角形外角定理得到∠E=BAC,从而得到∠BAD=∠E,即可证明ADCE【详解】解:∵AD平分∠BAC,∴∠BAD=BACAE=AC∴∠E=∠ACE∵∠E+∠ACE=∠BAC∴∠E=BAC∴∠BAD=∠EADCE【点睛】本题考查了角平分线的定义,等腰三角形的性质,平行线的判定,三角形外角定理,熟知相关定理并灵活应用是解题关键.10、(1)见解析;(2)见解析;(3)见解析【分析】(1)延长DEAB延长线于F,由∠B=∠C=90°,推出ABCD,则∠CDE=∠F,再由DE平分∠ADC,即可推出∠ADF=∠F,得到AD=AF,即△ADF是等腰三角形,然后证明△CDE≌△BFE得到DE=FE,即EDF的中点,即可证明AE平分∠BAD(2)由(1)即可用三线合一定理证明;(3)由△CDE≌△BFE,得到CD=BF,则AD=AF=AB+BF=AB+CD【详解】解:(1)如图所示,延长DEAB延长线于F∵∠B=∠C=90°,ABCD∴∠CDE=∠FDE平分∠ADC∴∠CDE=∠ADE∴∠ADF=∠FAD=AF∴△ADF是等腰三角形,EBC的中点,CE=BE∴△CDE≌△BFEAAS),DE=FEEDF的中点,AE平分∠BAD(2)由(1)得△ADF是等腰三角形,AD=AFEDF的中点,AEDE(3)∵△CDE≌△BFECD=BFAD=AF=AB+BF=AB+CD【点睛】本题主要考查了平行线的性质与判定,全等三角形的性质与判定,等腰三角形的性质与判定,熟知相关知识是解题的关键. 

    相关试卷

    沪教版 (五四制)七年级下册第十四章 三角形综合与测试同步训练题:

    这是一份沪教版 (五四制)七年级下册第十四章 三角形综合与测试同步训练题,共28页。试卷主要包含了下列说法错误的是等内容,欢迎下载使用。

    数学七年级下册第十四章 三角形综合与测试同步训练题:

    这是一份数学七年级下册第十四章 三角形综合与测试同步训练题,共37页。

    数学第十四章 三角形综合与测试复习练习题:

    这是一份数学第十四章 三角形综合与测试复习练习题,共31页。试卷主要包含了如图,点A,有下列说法等内容,欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map