搜索
    上传资料 赚现金
    英语朗读宝

    2021-2022学年最新沪教版七年级数学第二学期第十四章三角形定向训练试卷(无超纲带解析)

    2021-2022学年最新沪教版七年级数学第二学期第十四章三角形定向训练试卷(无超纲带解析)第1页
    2021-2022学年最新沪教版七年级数学第二学期第十四章三角形定向训练试卷(无超纲带解析)第2页
    2021-2022学年最新沪教版七年级数学第二学期第十四章三角形定向训练试卷(无超纲带解析)第3页
    还剩28页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学沪教版 (五四制)七年级下册第十四章 三角形综合与测试课堂检测

    展开

    这是一份初中数学沪教版 (五四制)七年级下册第十四章 三角形综合与测试课堂检测,共31页。
    沪教版七年级数学第二学期第十四章三角形定向训练
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、如图,将的BC边对折,使点B与点C重合,DE为折痕,若,,则( ).

    A.45° B.60° C.35° D.40°
    2、有下列说法:①轴对称图形的对称轴是任何一对对应点所连线段的垂直平分线;②等腰三角形一腰上的高与底边的夹角与顶角互余;③等腰三角形顶角的平分线是它的对称轴;④等腰三角形两腰上的中线相等.其中正确的说法有( )个.
    A.1 B.2 C.3 D.4
    3、将三根木条钉成一个三角形木架,这个三角形木架具有稳定性.解释这个现象的数学原理是( )
    A.SSS B.SAS C.ASA D.AAS
    4、如图,是等边三角形,点在边上,,则的度数为( ).

    A.25° B.60° C.90° D.100°
    5、等腰三角形的一个角是80°,则它的一个底角的度数是( )
    A.50° B.80° C.50°或80° D.100°或80°
    6、我们称网格线的交点为格点.如图,在4×4的长方形网格中有两个格点A、B,连接AB,在网格中再找一个格点C,使得△ABC是等腰直角三角形,则满足条件的格点C的个数是(  )

    A.3 B.4 C.5 D.6
    7、如图,在Rt△ABC中,∠ACB=90°,∠BAC=40°,直线a∥b,若BC在直线b上,则∠1的度数为(  )

    A.40° B.45° C.50° D.60°
    8、如图,钝角中,为钝角,为边上的高,为的平分线,则与、之间有一种等量关系始终不变,下面有一个规律可以表示这种关系,你发现的是( )

    A. B.
    C. D.
    9、以下长度的三条线段,能组成三角形的是( )
    A.2,3,5 B.4,4,8 C.3,4.8,7 D.3,5,9
    10、如图,△ABC中,∠ABC与∠ACB的平分线交于点F,过点F作DE∥BC交AB于点D,交AC于点E,那么下列结论:①△BDF是等腰三角形;②DE=BD+CE;③若∠A=50°,则∠BFC=115°;④DF=EF.其中正确的有( )

    A.1个 B.2个 C.3个 D.4个
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、如图,把△ABC绕点C顺时针旋转某个角度α得到,∠A=30°,∠1=70°,则旋转角α的度数为_____.

    2、等腰三角形中,一条边长是2cm,另一条边长是3cm,这个等腰三角形的周长是________.
    3、如图,点C是线段AB的中点,.请你只添加一个条件,使得≌.

    (1)你添加的条件是______;(要求:不再添加辅助线,只需填一个答案即可)
    (2)依据所添条件,判定与全等的理由是______.
    4、如图,在△ABC中,∠C=62°,△ABC两个外角的角平分线相交于G,则∠G的度数为_____.

    5、若等腰三角形两底角平分线相交所形成的钝角是128°,则这个等腰三角形的顶角的度数是_____.
    三、解答题(10小题,每小题5分,共计50分)
    1、如图,在等边三角形ABC中,点D,E分别在边BC,AC上,且DE∥AB,过点E作EF⊥DE,交BC的延长线于点F.
    (1)求证:CE=CF;
    (2)若CD=2,求DF的长.

    2、如图,点在上,点在上,,∠=∠.求证:.

    3、如图,在等腰△ABC和等腰△ADE中,AB=AC,AD=AE,∠BAC=∠DAE且C、E、D三点共线,作AM⊥CD于M.若BD=5,DE=4,求CM.

    4、如图,AD,BC相交于点O,AO=DO.
    (1)如果只添加一个条件,使得△AOB≌△DOC,那么你添加的条件是 (要求:不再添加辅助线,只需填一个答案即可);
    (2)根据已知及(1)中添加的一个条件,证明AB=DC.

    5、如图,在中,AD是BC边上的高,CE平分,若,,求的度数.

    6、已知,∠A=∠D,BC平分∠ABD,求证:AC=DC.

    7、如图,在中,,AD是角平分线,E是AB边上一点,连接ED,CB是的平分线,ED的延长线与CF交于点F.

    (1)求证:;
    (2)若,,则______度.
    8、如图,已知点E、C在线段BF上,,,.求证:ΔABC≅ΔDEF.

    9、如图,在等边中,D为BC边上一点,连接AD,将沿AD翻折得到,连接BE并延长交AD的延长线于点F,连接CF.

    (1)若,求的度数;
    (2)若,求的大小;
    (3)猜想CF,BF,AF之间的数量关系,并证明.
    10、已知AMCN,点B在直线AM、CN之间,AB⊥BC于点B.
    (1)如图1,请直接写出∠A和∠C之间的数量关系: .
    (2)如图2,∠A和∠C满足怎样的数量关系?请说明理由.
    (3)如图3,AE平分∠MAB,CH平分∠NCB,AE与CH交于点G,则∠AGH的度数为 .


    -参考答案-
    一、单选题
    1、A
    【分析】
    由折叠得到∠B=∠BCD,根据三角形的内角和得∠A+∠B+∠ACB=180°,代入度数计算即可.
    【详解】
    解:由折叠得∠B=∠BCD,
    ∵∠A+∠B+∠ACB=180°,,,
    ∴65°+2∠B+25°=180°,
    ∴∠B=45°,
    故选:A.
    【点睛】
    此题考查了折叠的性质,三角形内角和定理,熟记折叠的性质是解题的关键.
    2、B
    【分析】
    根据轴对称的性质,轴对称图形的概念,等腰三角形的性质判断即可.
    【详解】
    解:①轴对称图形的对称轴是任何一对对应点所连线段的垂直平分线,说法正确;
    ②等腰三角形一腰上的高与底边的夹角与底角互余,原说法错误;
    ③等腰三角形的顶角平分线在它的对称轴上,原说法错误;
    ④等腰三角形两腰上的中线相等,说法正确.
    综上,正确的有①④,共2个,
    故选:B.
    【点睛】
    本题考查了轴对称的性质及等腰三角形的性质,掌握轴对称的性质,轴对称图形的概念,等腰三角形的性质是解题的关键.
    3、A
    【分析】
    根据三根木条即为三角形的三边长,利用全等三角形判定定理确定唯一三角形即可得.
    【详解】
    解:三根木条即为三角形的三边长,
    即为利用确定三角形,
    故选:A.
    【点睛】
    题目主要考查利用全等三角形判定确定唯一三角形,熟练掌握全等三角形的判定是解题关键.
    4、D
    【分析】
    由等边三角形的性质及三角形外角定理即可求得结果.
    【详解】
    ∵是等边三角形
    ∴∠C=60°
    ∴∠ADB=∠DBC+∠C=40°+60°=100°
    故选:D
    【点睛】
    本题考查了等边三角形的性质、三角形外角的性质,掌握这两个性质是关键.
    5、C
    【分析】
    已知给出一个角的的度数为80º,没有明确是顶角还是底角,要分类讨论,联合内角和求出底角即可.
    【详解】
    解:等腰三角形的一个角是80°,
    当80º为底角时,它的一个底角是80º,
    当80º为顶角时,它的一个底角是,
    则它的一个底角是50º或80º.
    故选:C.
    【点睛】
    本题考查等腰三角形的性质,内角和定理,掌握分类讨论的思想是解决问题的关键.
    6、A
    【分析】
    根据题意,结合图形,分两种情况讨论:①AB为等腰直角△ABC底边;②AB为等腰直角△ABC其中的一条腰.
    【详解】
    解:如图:分情况讨论:

    ①AB为等腰直角△ABC底边时,符合条件的格点C点有0个;
    ②AB为等腰直角△ABC其中的一条腰时,符合条件的格点C点有3个.
    故共有3个点,
    故选:A.
    【点睛】
    本题考查了等腰三角形的性质和判定;解答本题关键是根据题意,画出符合实际条件的图形,数形结合的思想是数学解题中很重要的解题思想.
    7、C
    【分析】
    根据三角形内角和定理确定,然后利用平行线的性质求解即可.
    【详解】
    解:∵,,
    ∴,
    ∵,
    ∴,
    故选:C.
    【点睛】
    题目主要考查平行线的性质,三角形内角和定理等,熟练掌握运用平行线的性质是解题关键.
    8、B
    【分析】
    根据三角形内角和定理、角平分线的性质、三角形外角的性质依次推理即可得出结论.
    【详解】
    解:由三角形内角和知∠BAC=180°-∠2-∠1,
    ∵AE为∠BAC的平分线,
    ∴∠BAE=∠BAC=(180°-∠2-∠1).
    ∵AD为BC边上的高,
    ∴∠ADC=90°=∠DAB+∠ABD.
    又∵∠ABD=180°-∠2,
    ∴∠DAB=90°-(180°-∠2)=∠2-90°,
    ∴∠EAD=∠DAB+∠BAE=∠2-90°+(180°-∠2-∠1)=(∠2-∠1).
    故选:B
    【点睛】
    本题主要考查了三角形的内角和定理,角平分线的定义、三角形外角性质及三角形的高的定义,解答的关键是找到已知角和所求角之间的联系.
    9、C
    【分析】
    由题意根据三角形的三条边必须满足:任意两边之和大于第三边,任意两边之差小于第三边进行分析即可.
    【详解】
    解:A、2+3=5,不能组成三角形,不符合题意;
    B、4+4=8,不能组成三角形,不符合题意;
    C、3+4.8>7,能组成三角形,符合题意;
    D、3+5<9,不能组成三角形,不符合题意.
    故选:C.
    【点睛】
    本题主要考查对三角形三边关系的理解应用.注意掌握判断是否可以构成三角形,只要判断两个较小的数的和大于最大的数即可.
    10、C
    【分析】
    根据平行线的性质和角平分线的定义以及等腰三角形的判定和性质逐个判定即可解答.
    【详解】
    解:∵BF是∠AB的角平分线,
    ∴∠DBF=∠CBF,
    ∵DE∥BC,
    ∴∠DFB=∠CBF,
    ∴∠DBF=∠DFB,
    ∴BD=DF,
    ∴△BDF是等腰三角形;故①正确;
    同理,EF=CE,
    ∴DE=DF+EF=BD+CE,故②正确;
    ∵∠A=50°,
    ∴∠ABC+∠ACB=130°,
    ∵BF平分∠ABC,CF平分∠ACB,
    ∴,
    ∴∠FBC+∠FCB=(∠ABC+∠ACB)=65°,
    ∴∠BFC=180°﹣65°=115°,故③正确;
    当△ABC为等腰三角形时,DF=EF,
    但△ABC不一定是等腰三角形,
    ∴DF不一定等于EF,故④错误.
    故选:C.
    【点睛】
    本题主要考查等腰三角形的性质、角平分线的定义及平行线的性质等知识点,根据两直线平行、内错角相等以及等角对等边来判定等腰三角形是解答本题的关键.
    二、填空题
    1、##
    【分析】
    由旋转的性质可得再利用三角形的外角的性质求解从而可得答案.
    【详解】
    解: 把△ABC绕点C顺时针旋转某个角度α得到,∠A=30°,

    ∠1=70°,


    故答案为:
    【点睛】
    本题考查的是旋转的性质,三角形的外角的性质,利用性质的性质求解是解本题的关键.
    2、或
    【分析】
    因为已知长度为和两边,没有明确是底边还是腰,所以有两种情况,需要分类讨论.
    【详解】
    解:①当为底时,其它两边都为,
    、、可以构成三角形,
    周长为;
    ②当为底时,其它两边都为,
    、、可以构成三角形,
    周长为;
    故答案为:或.
    【点睛】
    本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,解题的关键是利用分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要.
    3、AD=CE(或∠D=∠E或∠ACD=∠B)(答案不唯一) SAS
    【分析】
    (1)由已知条件可得两个三角形有一组对应边相等,一组对应角相等,根据三角形全等的判定方法添加条件即可;
    (2)根据添加的条件,写出判断的理由即可.
    【详解】
    解:(1)添加的条件是:AD=CE(或∠D=∠E或∠ACD=∠B)
    故答案为:AD=CE(或∠D=∠E或∠ACD=∠B)
    (2)若添加:AD=CE
    ∵点C是线段AB的中点,
    ∴AC=BC


    ∴≌(SAS)
    故答案为:SAS
    【点睛】
    本题主要考查了添加条件判断三角形全等,熟练掌握全等三角形的判断方法是解答本题的关键.
    4、59°
    【分析】
    先利用三角形内角和定理求出∠CAB+∠CBA=180°-∠C=118°,从而利用三角形外角的性质求出∠DAB+∠EBA=2∠C+∠CAB+∠CBA=242°,再由角平分线的定义求出,由此求解即可.
    【详解】
    解:∵∠C=62°,
    ∴∠CAB+∠CBA=180°-∠C=118°,
    ∵∠DAB=∠C+∠CBA,∠EBA=∠C+∠CAB,
    ∴∠DAB+∠EBA=2∠C+∠CAB+∠CBA=242°,
    ∵△ABC两个外角的角平分线相交于G,
    ∴,,
    ∴,
    ∴∠G=180°-∠GAB-∠GBA=59°,
    故答案为:59°.

    【点睛】
    本题主要考查了三角形内角和定理,三角形外角的性质,角平分线的定义,熟知相关知识是解题的关键.
    5、
    【分析】
    先根据角平分线的定义、三角形的内角和定理求出等腰三角形两底角的度数和,再根据三角形内角和求出顶角的度数即可.
    【详解】
    解:

    ∵∠BOC=128°,
    ∴∠OBC+∠OCB=180°﹣∠BOC=180°﹣128°=52°,
    ∵BO平分∠ABC,CO平分∠ACB,
    ∴∠ABC+∠ACB=2(∠OBC+∠OCB)=104°,
    ∴∠A=180°﹣(∠ABC+∠ACB)=180°﹣104°=76°.
    故答案为:76°.
    【点睛】
    本题主要考查角平分线的定义和三角形内角和定理,牢记角平分线分得的两个角相等,三角形内角和是是解决本题的关键.
    三、解答题
    1、
    (1)证明见解析;
    (2)4
    【分析】
    (1)根据等边三角形的性质和平行线的性质可证得∠EDC=∠ECD=∠DEC=60°,再根据直角定义和三角形的外角性质证得∠F=∠FEC=30°,利用等角对等边即可证得结论;
    (2)由等角对等边可知CE=DC=2,结合(1)中结论即可求解.
    (1)
    证明:∵△ABC是等边三角形,
    ∴∠A=∠B=∠ACB=60°.
    ∵DE∥AB,
    ∴∠B=∠EDC=60°,∠A=∠CED=60°,
    ∴∠EDC=∠ECD=∠DEC=60°,
    ∵EF⊥ED,
    ∴∠DEF=90°,
    ∴∠F=30°
    ∵∠F+∠FEC=∠ECD=60°,
    ∴∠F=∠FEC=30°,
    ∴CE=CF.
    (2)
    解:由(1)可知∠EDC=∠ECD=∠DEC=60°,
    ∴CE=DC=2.
    又∵CE=CF,
    ∴CF=2.
    ∴DF=DC+CF=2+2=4.
    【点睛】
    本题考查等边三角形的性质、等腰三角形的判定、平行线的性质、三角形的外角性质、线段的和与差,熟练掌握相关知识的联系与运用是解答的关键.
    2、见解析
    【分析】
    根据已知条件和公共角,直接根据角边角证明,进而即可证明
    【详解】
    在与中,

    ∴.
    ∴.
    【点睛】
    本题考查了全等三角形的性质与判定,掌握全等三角形的性质与判定是解题的关键.
    3、CM=7.
    【分析】
    根据题意由“SAS”可证△AEC≌△ADB,可得BD=CE,由等腰三角形的性质可得DM=ME=2进行分析计算即可得出答案.
    【详解】
    解:∵∠BAC=∠DAE,
    ∴∠BAC﹣∠BAE=∠DAE﹣∠BAE,
    ∴∠BAD=∠CAE,
    在△AEC和△ADB中,

    ∴△AEC≌△ADB(SAS),
    又∵BD=5,
    ∴CE=BD=5,
    ∵AD=AE,AM⊥CD,DE=4,
    ∴,
    ∴CM=CE+EM=5+2=7.
    【点睛】
    本题考查全等三角形的判定和性质以及等腰三角形的性质,熟练掌握全等三角形的判定定理是解答本题的关键.
    4、(1)OB=OC(或,或);(2)见解析
    【分析】
    (1)根据SAS添加OB=OC即可;
    (2)由(1)得△AOB≌△DOC,由全等三角形的性质可得结论.
    【详解】
    解:(1)添加的条件是:OB=OC(或,或)
    证明:在和中

    所以,△AOB≌△DOC
    (2)由(1)知,△AOB≌△DOC
    所以,AB=DC.
    【点睛】
    本题主要考查了全等三角形的判定与性质,熟练掌握全等三角形的判定方法是解答本题的关键
    5、85°
    【分析】
    由高的定义可得出∠ADB=∠ADC=90,在△ACD中利用三角形内角和定理可求出∠ACB的度数,结合CE平分∠ACB可求出∠ECB的度数.由三角形外角的性质可求出∠AEC的度数,
    【详解】
    解:∵AD是BC边上的高,
    ∴∠ADB=∠ADC=90.
    在△ACD中,∠ACB=180°﹣∠ADC﹣∠CAD=180°﹣90°﹣20°=70°.
    ∵CE平分∠ACB,
    ∴∠ECB=∠ACB=35°.
    ∵∠AEC是△BEC的外角,,
    ∴∠AEC=∠B+∠ECB=50°+35°=85°.
    答:∠AEC的度数是85°.
    【点睛】
    本题考查了三角形内角和定理、角平分线的定义以及三角形外角的性质,利用三角形内角和定理及角平分线的性质,求出∠ECB的度数是解题的关键.
    6、见解析
    【分析】
    证明△BAC≌△BDC即可得出结论.
    【详解】
    解:∵BC平分∠ABD,
    ∴∠ABC=∠DBC,
    在△BAC和△BDC中,
    ∴△BAC≌△BDC,
    ∴AC=DC.
    【点睛】
    本题考查角平分线的意义及全等三角形的判定与性质,解题关键是掌握角平分线的性质及全等三角形的判定与性质.
    7、(1)见解析,(2)46
    【分析】
    (1)根据等腰三角形的性质和角平分线得到∠B=∠ACB=∠BCF,由AD是角平分线,得到BD=CD,证△BDE≌△CDF即可;
    (2)根据全等三角形的性质得到DE=DF=DA,根据求得∠DAB,进而求出∠B的度数即可.
    【详解】
    (1)证明:∵,
    ∴∠B=∠ACB,
    ∵CB是的平分线,
    ∴∠ACB=∠BCF,
    ∴∠B=∠BCF,
    ∵AD是角平分线,AB=AC,
    ∴BD=CD,
    ∵∠BDE=∠CDF,
    ∴△BDE≌△CDF(AAS);
    ∴;
    (2)∵△BDE≌△CDF;
    ∴ED=FD,
    ∵,
    ∴ED=AD,
    ∵,
    ∴,
    ∴,
    ∴∠B=∠ACB=∠BCF=23°,
    ∴,
    故答案为:46.
    【点睛】
    本题考查了等腰三角形的性质和全等三角形的判定与性质,解题关键是熟练运用相关知识进行推理证明和计算.
    8、见解析
    【分析】
    由平行线的性质可证明.再由,可推出.最后即可利用“ASA”直接证明.
    【详解】
    证明:


    ,即.
    ∴在和中,

    【点睛】
    本题考查三角形全等的判定,平行线的性质,线段的和与差.掌握三角形全等的判定条件是解答本题的关键.
    9、(1)20°;(2);(3)AF= CF+BF,理由见解析
    【分析】
    (1)由△ABC是等边三角形,得到AB=AC,∠BAC=∠ABC=60°,由折叠的性质可知,∠EAD=∠CAD=20°,AC=AE,则∠BAE=∠BAC-∠EAD-∠CAD=20°,AB=AE,,∠CBF=∠ABE-∠ABC=20°;
    (2)同(1)求解即可;
    (3)如图所示,将△ABF绕点A逆时针旋转60°得到△ACG,先证明△AEF≌△ACF得到∠AFE=∠AFC,然后证明∠AFE=∠AFC=60°,得到∠BFC=120°,即可证明F、C、G三点共线,得到△AFG是等边三角形,则AF=GF=CF+CG=CF+BF.
    【详解】
    解:(1)∵△ABC是等边三角形,
    ∴AB=AC,∠BAC=∠ABC=60°,
    由折叠的性质可知,∠EAD=∠CAD=20°,AC=AE,
    ∴∠BAE=∠BAC-∠EAD-∠CAD=20°,AB=AE,
    ∴,
    ∴∠CBF=∠ABE-∠ABC=20°;
    (2)∵△ABC是等边三角形,
    ∴AB=AC,∠BAC=∠ABC=60°,
    由折叠的性质可知,,AC=AE,
    ∴ ,AB=AE,
    ∴,
    ∴;
    (3)AF= CF+BF,理由如下:
    如图所示,将△ABF绕点A逆时针旋转60°得到△ACG,
    ∴AF=AG,∠FAG=60°,∠ACG=∠ABF,BF=CG
    在△AEF和△ACF中,

    ∴△AEF≌△ACF(SAS),
    ∴∠AFE=∠AFC,
    ∵∠CBF+∠BCF+∠BFD+∠CFD=180°,∠CAF+∠CFA+∠ACD+∠CFD=180°,
    ∴∠BFD=∠ACD=60°,
    ∴∠AFE=∠AFC=60°,
    ∴∠BFC=120°,
    ∴∠BAC+∠BFC=180°,
    ∴∠ABF+∠ACF=180°,
    ∴∠ACG+∠ACF=180°,
    ∴F、C、G三点共线,
    ∴△AFG是等边三角形,
    ∴AF=GF=CF+CG=CF+BF.

    【点睛】
    本题主要考查了等边三角形的性质与判定,旋转的性质,折叠的性质,全等三角形的性质与判定,三角形内角和定理,熟知相关知识是解题的关键.
    10、(1)∠A+∠C=90°;(2)∠C﹣∠A=90°,见解析;(3)45°
    【分析】
    (1)过点B作BE∥AM,利用平行线的性质即可求得结论;
    (2)过点B作BE∥AM,利用平行线的性质即可求得结论;
    (3)利用(2)的结论和三角形的外角等于和它不相邻的两个内角的和即可求得结论.
    【详解】
    (1)过点B作BE∥AM,如图,

    ∵BE∥AM,
    ∴∠A=∠ABE,
    ∵BE∥AM,AM∥CN,
    ∴BE∥CN,
    ∴∠C=∠CBE,
    ∵AB⊥BC,
    ∴∠ABC=90°,
    ∴∠A+∠C=∠ABE+∠CBE=∠ABC=90°.
    故答案为:∠A+∠C=90°;
    (2)∠A和∠C满足:∠C﹣∠A=90°.理由:
    过点B作BE∥AM,如图,

    ∵BE∥AM,
    ∴∠A=∠ABE,
    ∵BE∥AM,AM∥CN,
    ∴BE∥CN,
    ∴∠C+∠CBE=180°,
    ∴∠CBE=180°﹣∠C,
    ∵AB⊥BC,
    ∴∠ABC=90°,
    ∴∠ABE+∠CBE=90°,
    ∴∠A+180°﹣∠C=90°,
    ∴∠C﹣∠A=90°;
    (3)设CH与AB交于点F,如图,

    ∵AE平分∠MAB,
    ∴∠GAF=∠MAB,
    ∵CH平分∠NCB,
    ∴∠BCF=∠BCN,
    ∵∠B=90°,
    ∴∠BFC=90°﹣∠BCF,
    ∵∠AFG=∠BFC,
    ∴∠AFG=90°﹣∠BCF.
    ∵∠AGH=∠GAF+∠AFG,
    ∴∠AGH=∠MAB+90°﹣∠BCN=90°﹣(∠BCN﹣∠MAB).
    由(2)知:∠BCN﹣∠MAB=90°,
    ∴∠AGH=90°﹣45°=45°.
    故答案为:45°.
    【点睛】
    本题考查平行线的性质以及三角形外角的性质,由题作出辅助线是解题的关键.

    相关试卷

    数学七年级下册第十四章 三角形综合与测试课时练习:

    这是一份数学七年级下册第十四章 三角形综合与测试课时练习,共36页。试卷主要包含了已知长方形纸片ABCD,点E等内容,欢迎下载使用。

    初中数学沪教版 (五四制)七年级下册第十四章 三角形综合与测试测试题:

    这是一份初中数学沪教版 (五四制)七年级下册第十四章 三角形综合与测试测试题,共29页。试卷主要包含了如图,ABC≌DEF,点B,下列三角形与下图全等的三角形是,如图,为估计池塘岸边A等内容,欢迎下载使用。

    2020-2021学年第十四章 三角形综合与测试课时作业:

    这是一份2020-2021学年第十四章 三角形综合与测试课时作业,共38页。试卷主要包含了有下列说法等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map