![2021-2022学年基础强化沪教版七年级数学第二学期第十四章三角形月考练习题(无超纲)第1页](http://img-preview.51jiaoxi.com/2/3/12708617/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年基础强化沪教版七年级数学第二学期第十四章三角形月考练习题(无超纲)第2页](http://img-preview.51jiaoxi.com/2/3/12708617/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年基础强化沪教版七年级数学第二学期第十四章三角形月考练习题(无超纲)第3页](http://img-preview.51jiaoxi.com/2/3/12708617/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
沪教版 (五四制)七年级下册第十四章 三角形综合与测试复习练习题
展开
这是一份沪教版 (五四制)七年级下册第十四章 三角形综合与测试复习练习题,共31页。试卷主要包含了已知等内容,欢迎下载使用。
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列各组线段中,能构成三角形的是( )
A.2、4、7B.4、5、9C.5、8、10D.1、3、6
2、如图,ABC的面积为18,AD平分∠BAC,且AD⊥BD于点D,则ADC的面积是( )
A.8B.10C.9D.16
3、如图,已知Rt△ABC中,∠C=90°,∠A=30°,在直线BC上取一点P,使得△PAB是等腰三角形,则符合条件的点P有( )
A.1个B.2个C.3个D.4个
4、等腰三角形的一个角是80°,则它的一个底角的度数是( )
A.50°B.80°C.50°或80°D.100°或80°
5、如图,若绕点A按逆时针方向旋转40°后与重合,则( ) .
A.40°B.50°C.70°D.100
6、已知:如图,D、E分别在AB、AC上,若AB=AC,AD=AE,∠A=60°,∠B=25°,则∠BDC的度数是( )
A.95°B.90°C.85°D.80°
7、下列各条件中,不能作出唯一的的是( )
A.,,B.,,
C.,,D.,,
8、如图,BD是的角平分线,,交AB于点E.若,,则的度数是( )
A.10°B.20°C.30°D.50°
9、下列长度的三条线段能组成三角形的是( )
A.2,3,6B.2,4,7C.3,3,5D.3,3,7
10、下列三个说法:
①有一个内角是30°,腰长是6的两个等腰三角形全等;
②有一个内角是120°,底边长是3的两个等腰三角形全等;
③有两条边长分别为5,12的两个直角三角形全等.
其中正确的个数有( ).
A.3B.2C.1D.0
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,已知△ABC中,AB=AC,将△ABC沿DF折叠,点A落在BC边上的点E处,且DE⊥BC于E,若∠A=56°,则∠AFD的度数为________.
2、如图,已知AB=3,AC=CD=1,∠D=∠BAC=90°,则△ACE的面积是 _____.
3、如图,△ABC中,AB平分∠DAC,AB⊥BC,垂足为B,若∠ADC与∠ACB互补,BC=5,则CD的长为_________.
4、如图,AB,CD相交于点O,,请你补充一个条件,使得,你补充的条件是______.
5、在新年联欢会上,老师设计了“你说我画”的游戏.游戏规则如下:甲同学需要根据乙同学提供的三个条件画出形状和大小都确定的三角形.已知乙同学说出的前两个条件是“,”.现仅存下列三个条件:①;②;③.为了甲同学画出形状和大小都确定的,乙同学可以选择的条件有: ______.(填写序号,写出所有正确答案)
三、解答题(10小题,每小题5分,共计50分)
1、如图,在△ABC中, AB=AC,AD是△ABC的中线,BE平分∠ABC交AD于点E,连接EC.求证:CE平分∠ACB.
2、如图,点C是线段AB上一点,与都是等边三角形,连接AE,BF.
(1)求证:;
(2)若点M,N分别是AE,BF的中点,连接CM,MN,NC.
①依题意补全图形;
②判断的形状,并证明你的结论.
3、周老师带领同学们在数学课上探究下面命题的正确性:顶角为36°的等腰三角形具有一种特性,即经过它某一顶点的一条直线可把它分成两个小等腰三角形.为此,请你完成下列问题:
(1)已知:如图①,在中,,,直线BD平分交AC于点D.求证:与都是等腰三角形;
(2)在证明了该命题后,小尹同学发现:图②、③两个等腰三角形也具有这种特性,请你在图②、图③中分别画出一条直线,把它们分成两个小等腰三角形,并在图中标出所有等腰三角形两个底角的度数;
(3)接着,小尹又发现:还有一些非等腰三角形也具有这样的特性:即过它其中一个顶点画一条直线可以将原三角形分成两个小等腰三角形,请你画出一个具有这种特性的三角形的示意图,并在图中标出可能的各内角的度数.
(4)请你写出两个符合(3)中一般规律的非等腰三角形的特征.
4、下面是“作一个角的平分线”的尺规作图过程.
已知:如图,钝角.
求作:射线OC,使.
作法:如图,
①在射线OA上任取一点D;
②以点О为圆心,OD长为半径作弧,交OB于点E;
③分别以点D,E为圆心,大于长为半径作弧,在内,两弧相交于点C;
④作射线OC.
则OC为所求作的射线.
完成下面的证明.
证明:连接CD,CE
由作图步骤②可知______.
由作图步骤③可知______.
∵,
∴.
∴(________)(填推理的依据).
5、已知,如图,AB=AD,∠B=∠D,∠1=∠2=60°.
(1)求证:△ADE≌△ABC;
(2)求证:AE=CE.
6、已知∠POQ=120°,点A,B分别在OP,OQ上,OA<OB,连接AB,在AB上方作等边△ABC,点D是BO延长线上一点,且AB=AD,连接AD
(1)补全图形;
(2)连接OC,求证:∠COP=∠COQ;
(3)连接CD,CD交OP于点F,请你写出一个∠DAB的值,使CD=OB+OC一定成立,并证明
7、如图,在中,点D、E分别在边AB、AC上,BE与CD交于点F,,,.求和的度数.
8、如图,在△ABC中,AD⊥BE,∠DAC=10°,AE是∠BAC的外角∠MAC的平分线,BF平分∠ABC交AE于点F,求∠AFB的度数.
9、命题:如图,已知,共线,(1),那么.
(1)从①和②两个条件中,选择一个填入横线,使得上述命题为真命题,你选择的条件为_______(填序号);
(2)根据你选择的条件,判定的方法是________;
(3)根据你选择的条件,完成的证明.
10、如图,CE⊥AB于点E,BF⊥AC于点F,BD=CD.
(1)求证:△BDE≌△CDF;
(2)求证:AE=AF.
-参考答案-
一、单选题
1、C
【分析】
根据三角形的三边关系定理逐项判断即可得.
【详解】
解:三角形的三边关系定理:任意两边之和大于第三边.
A、,不能构成三角形,此项不符题意;
B、,不能构成三角形,此项不符题意;
C、,能构成三角形,此项符合题意;
D、,不能构成三角形,此项不符题意;
故选:C.
【点睛】
本题考查了三角形的三边关系定理,熟练掌握三角形的三边关系定理是解题关键.
2、C
【分析】
延长BD交AC于点E,根据角平分线及垂直的性质可得:,,依据全等三角形的判定定理及性质可得:,,再根据三角形的面积公式可得:SΔABD=SΔADE,SΔBDC=SΔCDE,得出SΔADC=12SΔABC,求解即可.
【详解】
解:如图,延长BD交AC于点E,
∵AD平分,,
∴,,
在和中,
,
∴,
∴,
∴SΔABD=SΔADE,SΔBDC=SΔCDE,
∴SΔADC=12SΔABC=12×18=9,
故选:C.
【点睛】
题目主要考查全等三角形的判定和性质,角平分线的定义等,熟练掌握基础知识,进行逻辑推理是解题关键.
3、B
【分析】
根据等腰三角形的判定定理,结合图形即可得到结论.
【详解】
解:以点A、B为圆心,AB长为半径画弧,交直线BC于两个点,然后作AB的垂直平分线交直线BC于点,如图所示:
∵∠C=90°,∠A=30°,
∴,
∵,
∴是等边三角形,
∴点重合,
∴符合条件的点P有2个;
故选B.
【点睛】
本题主要考查等腰三角形的性质及等边三角形的性质与判定,熟练掌握等腰三角形的性质是解题的关键.
4、C
【分析】
已知给出一个角的的度数为80º,没有明确是顶角还是底角,要分类讨论,联合内角和求出底角即可.
【详解】
解:等腰三角形的一个角是80°,
当80º为底角时,它的一个底角是80º,
当80º为顶角时,它的一个底角是,
则它的一个底角是50º或80º.
故选:C.
【点睛】
本题考查等腰三角形的性质,内角和定理,掌握分类讨论的思想是解决问题的关键.
5、C
【分析】
根据旋转的性质,可得 , ,从而得到,即可求解.
【详解】
解:∵绕点A按逆时针方向旋转40°后与重合,
∴ , ,
∴.
故选:C
【点睛】
本题主要考查了图形的旋转,等腰三角形的性质,熟练掌握图形旋转前后对应线段相等,对应角相等是解题的关键.
6、C
【分析】
根据SAS证△ABE≌△ACD,推出∠C=∠B,求出∠C的度数,根据三角形的外角性质得出∠BDC=∠A+∠C,代入求出即可.
【详解】
解:在△ABE和△ACD中,
,
∴△ABE≌△ACD(SAS),
∴∠C=∠B,
∵∠B=25°,
∴∠C=25°,
∵∠A=60°,
∴∠BDC=∠A+∠C=85°,
故选C.
【点睛】
本题主要考查了全等三角形的性质与判定,三角形外角的性质,解题的关键在于能够熟练掌握全等三角形的性质与判定条件.
7、B
【分析】
根据三角形全等的判定及三角形三边关系即可得出结果.
【详解】
解:A、,不能组成三角形;
B、根据不可以确定选项中条件能作出唯一三角形;
C、根据可以确定选项中条件能作出唯一三角形;
D、根据可以确定选项中条件能作出唯一三角形;
故答案为:B.
【点睛】
本题考查确定唯一三角形所需要的条件及三角形三边关系,解题关键在于对全等判定条件的理解.
8、B
【分析】
由外角的性质可得∠ABD=20°,由角平分线的性质可得∠DBC=20°,由平行线的性质即可求解.
【详解】
解:(1)∵∠A=30°,∠BDC=50°,∠BDC=∠A+∠ABD,
∴∠ABD=∠BDC−∠A=50°−30°=20°,
∵BD是△ABC的角平分线,
∴∠DBC=∠ABD=20°,
∵DE∥BC,
∴∠EDB=∠DBC=20°,
故选:B.
【点睛】
本题考查了平行线的性质,三角形外角的性质,角平分线的定义,灵活应用这些性质解决问题是解决本题的关键.
9、C
【分析】
根据三角形的三边关系,逐项判断即可求解.
【详解】
解:A、因为 ,所以不能组成三角形,故本选项不符合题意;
B、因为 ,所以不能组成三角形,故本选项不符合题意;
C、因为 ,所以能组成三角形,故本选项符合题意;
D、因为 ,所以不能组成三角形,故本选项不符合题意;
故选:C
【点睛】
本题主要考查了三角形的三边关系,熟练掌握三角形的两边之和大于第三边,两边之差小于第三边是解题的关键.
10、C
【分析】
根据三角形全等的判定方法,等腰三角形的性质和直角三角形的性质判断即可.
【详解】
解:①当一个是底角是30°,一个是顶角是30°时,两三角形就不全等,故本选项错误;
②有一个内角是120°,底边长是3的两个等腰三角形全等,本选项正确;
③当一条直角边为12,一条斜边为12时,两个直角三角形不全等,故本选项错误;正确的只有1个,
故选:C.
【点睛】
本题考查了全等三角形的判定定理,等腰三角形的性质和直角三角形的性质,熟练掌握全等三角形的判定定理是解题的关键.
二、填空题
1、48°48度
【分析】
先求出∠ABC和∠ACB的度数,再利用直角三角形的性质得出∠BDE的度数,根据由翻折的性质可得:,最后利用三角形的内角和定理得出结论.
【详解】
解:∵AB=AC,∠A=56°
∴,
∵DE⊥BC,
∴,
由折叠的性质可得:,
∵,
∴,
∴∠AFD=180°-∠A-∠ADF=180°-56°-76°=48°,
故答案为:48°.
【点睛】
本题考查了等腰三角形的性质,轴对称的性质,直角三角形的性质及三角形的内角和定理,解题的关键是熟练掌握这些性质.
2、##
【分析】
先根据三角形全等的判定定理证出,再根据全等三角形的性质可得,然后利用三角形的面积公式即可得.
【详解】
解:在和中,,
,
,
则的面积是,
故答案为:.
【点睛】
本题考查了三角形全等的判定定理与性质,熟练掌握三角形全等的判定方法是解题关键.
3、10
【分析】
构造,再证得,求得EB=BC,再通过等量代换、等角的补角相等求得∠E=∠CDE,则CE=2BC=10.
【详解】
解:延长AD.和CB交于点E.
∵AB平分∠DAC
∴∠EAB=∠CAB
又∵
∴∠ABE=∠ABC
又∵AB=AB
∴
∴BC=EB=5,∠E=∠ACB,
又∵
∴∠ACB=∠CDE
∴∠E=∠CDE
∴.CD=CE
又∵CE=2BC=10
∴CD=10
故答案为:10.
【点睛】
本题考查了全等三角形的性质和判定,等角的补角相等,能根据全等三角形的性质找到角与角之间的关系是解答此题的关键.
4、(答案不唯一)
【分析】
在与中,已经有条件: 所以补充可以利用证明两个三角形全等.
【详解】
解:在与中,
所以补充:
故答案为:
【点睛】
本题考查的是全等三角形的判定,掌握“利用边边边公理证明两个三角形全等”是解本题的关键.
5、②
【分析】
根据两边及其夹角对应相等的两个三角形全等,即可求解.
【详解】
解:①若选,是边边角,不能得到形状和大小都确定的;
②若选,是边角边,能得到形状和大小都确定的;
③若选,是边边角,不能得到形状和大小都确定的;
所以乙同学可以选择的条件有②.
故答案为:②
【点睛】
本题主要考查了全等三角形的判定,熟练掌握两边及其夹角对应相等的两个三角形全等是解题的关键.
三、解答题
1、见解析
【分析】
根据等腰三角形的性质,可得∠ADB=∠ADC=90°,∠ABC=∠ACB,BD=CD,从而得到△BDE≌△CDE,进而得到∠DCE=∠DBE,再由BE平分∠ABC,可得 ,进而得到,即可求证.
【详解】
解:∵AB=AC,AD是△ABC的中线,
∴∠ADB=∠ADC=90°,∠ABC=∠ACB,BD=CD,
∵DE=DE,
∴△BDE≌△CDE,
∴∠DCE=∠DBE,
∵BE平分∠ABC,
∴ ,
∴,
∴,
∴CE平分∠ACB.
【点睛】
本题主要考查了等腰三角形的性质,全等三角形的判定和性质,熟练掌握等腰三角形的两底角相等,等腰三角形“三线合一”是解题的关键.
2、
(1)证明见解析;
(2)①补全图形见解析;②是等边三角形,证明见解析.
【分析】
(1)由等边三角形的性质可知,,.结合题意易得出.即可利用“SAS”证明,即得出;
(2)①根据题意补全图形即可;
②由全等三角形的性质可知,.再由题意点M,N分别是AE,BF的中点,即得出.即可利用“SAS”证明,得出结论,.最后根据,即得出,即可判定是等边三角形.
(1)
∵与都是等边三角形,
∴,,,
∴,即,
在和中,
∴,
∴,
∴.
(2)
①画图如下:
②是等边三角形.
理由如下:∵,
∴,.
∵点M,N分别是AE,BF的中点,
∴,
在和中,
∵,
∴,
∴,,
∴,即,
∴是等边三角形.
【点睛】
本题考查等边三角形的判定和性质,全等三角形的判定和性质,线段的中点.利用数形结合的思想是解答本题的关键.
3、
(1)见详解;
(2)见详解;
(3)见详解;
(4)见详解;
【分析】
(1)根据等边对等角,及角平分线定义易得∠1=∠2=36°,∠C=72°,那么∠BDC=72°,则可得AD=BD=CB,所以△ABD与△DBC都是等腰三角形;
(2)把等腰直角三角形分为两个小的等腰直角三角形即可,把108°的角分为36°和72°即可;
(3)利用直角三角形的中线等于直角三角形斜边的一半可得任意直角三角形的中线把直角三角形分为两个等腰三角形;由(1),(2)易得所知的两个角要么是2倍关系,要么是3倍关系,可猜测只要所给的三个角中有2个角是2倍或3倍关系都可得到上述图形;
(4)按照发现的(3)的特点来写,注意去掉特殊三角形的形式.
(1)
证明:在△ABC中,∵AB=AC,
∴∠ABC=∠C,
∵∠A=36°,
∴∠ABC=∠C=(180°-∠A)=72°,
∵BD平分∠ABC,
∴∠1=∠2=36°
∴∠3=∠1+∠A=72°,
∴∠1=∠A,∠3=∠C,
∴AD=BD,BD=BC,
∴△ABD与△BDC都是等腰三角形
(2)
解:如下图所示:
(3)
解:如图所示:
(4)
解:特征一:直角三角形(直角边不等);
特征二:2倍内角关系,在△ABC中,∠A=2∠B,0°<∠B<45°,其中,∠B≠30°;
【点睛】
本题考查了等腰三角形的判定;注意应根据题中所给的范例用类比的方法推测出把一般三角形分为两个等腰三角形的一般结论.
4、OE; CE;全等三角形的对应角相等
【分析】
根据圆的半径相等可得OD=OE,CD=CE,再利用SSS可证明,从而根据全等三角形的性质可得结论.
【详解】
证明:连接CD,CE
由作图步骤②可知___OE___.
由作图步骤③可知__CE___.
∵,
∴.
∴(__全等三角形对应角相等__)
故答案为:OE; CE;全等三角形的对应角相等
【点睛】
本题考查了作图-基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了全等三角形的判定和性质.
5、(1)见解析;(2)见解析
【分析】
(1)根据∠1=∠2可推出∠DAE=∠BAC,然后结合全等三角形的判定定理进行证明;
(2)由全等三角形的性质可得AE=AC,结合∠2=60°可推出△AEC为等边三角形,据此证明.
【详解】
(1)证明:∵∠1=∠2
∴∠1+=∠2+
即∠DAE=∠BAC
在△ADE和△ABC中
∴△ADE≌△ABC(ASA)
(2)证明:∵△ADE≌△ABC
∴AE=AC
又∵∠2=60°
∴△AEC为等边三角形
∴AE=CE
【点睛】
此题考查了全等三角形的性质和判定,等边三角形的性质和判定,解题的关键是熟练掌握全等三角形的性质和判定方法,等边三角形的性质和判定方法.
6、(1)见解析;(2)见解析;(3)∠DAB=150°,见解析
【分析】
(1)依据题意作出相应图形即可;
(2)在BQ上截取BE=AO,连接CE,由等边三角形的性质得,CA=CB,∠ACB=60°
由同角的补角相等得∠CAO=∠CBE,由SAS证得△CAO和△CBE全等,即可得证;
(3)由∠DAB=150°, DA=AB,得∠ADB=∠ABD=15°,由等边三角形性质,可得∠CAB=∠CBA=∠ACB =60°,故∠CAD=150°,由等边对等角得∠ADC=∠ACD=15°,由此∠DBC=∠DCB=75°,由等角对等边得DB=DC 再由∠POQ=120°,∠BDC=30°,得∠DFO=90°,等量代换即可得证.
【详解】
解:(1)如图所示:
(2)证明如下:
在BQ上截取BE=AO,连接CE,
∵△ABC为等边三角形,
∴CA=CB,∠ACB=60°
∵∠POQ=120°,
∴∠CAO+∠CBO=180°
∵∠CBO+∠CBE=180°,
∴∠CAO=∠CBE,
在△CAO和△CBE中,,
∴△CAO≌△CBE(SAS),
∴CO=CE,∠COA=∠CEB,
∴∠COE=∠CEB,
∴∠COP=∠COQ;
(3)∠DAB=150°,
如图:
∵∠DAB=150°, DA=AB,
∴∠ADB=∠ABD=15°
∵△ABC为等边三角形,
∴∠CAB=∠CBA=∠ACB =60°,
∴∠CAD=150°,
∵AD=AC,
∴∠ADC=∠ACD=15°,
∴∠DBC=∠DCB=75°,
∴DB=DC,
∵∠POQ=120°,∠BDC=30°,
∴∠DFO=90°
∵AD=AC,
∴DF=FC
∴DO=OC
∵DB=DO+OB,
∴DB=CO+OB,
∴CD= OB + OC.
【点睛】
此题考查全等三角形的判定和性质、等腰三角形的判定和性质,等边三角形的判定和性质,以及添加辅助线构造全等三角形,掌握相应的判定和性质是解答此题的关键.
7、87°,40°
【分析】
根据三角形外角的性质可得,,代入计算即可求出,再根据三角形内角和定理求解即可.
【详解】
解:∵,,
∴,
∵,
∴.
【点睛】
本题考查了三角形内角和和外角的性质,解题关键是准确识图,理清角之间的关系,准确进行计算.
8、∠AFB=40°.
【分析】
由题意易得∠ADC=90°,∠ACB=80°,然后可得,进而根据三角形外角的性质可求解.
【详解】
解:∵AD⊥BE,
∴∠ADC=90°,
∵∠DAC=10°,
∴∠ACB=90°﹣∠DAC=90°﹣10°=80°,
∵AE是∠MAC的平分线,BF平分∠ABC,
∴,
又∵∠MAE=∠ABF+∠AFB,∠MAC=∠ABC+∠ACB,
∴∠AFB=∠MAE﹣∠ABF=.
【点睛】
本题主要考查三角形外角的性质及角平分线的定义,熟练掌握三角形外角的性质及角平分线的定义是解题的关键.
9、
(1)①
(2)SAS
(3)见解析
【分析】
(1)根据全等三角形的判定方法分析得出答案;
(2)根据(1)直接填写即可;
(3)利用SAS进行证明.
(1)
解:∵,
∴∠A=∠F,
∵AC=EF,
∴当时,可根据SAS证明;
当时,不能证明,
故答案为:①;
(2)
解:当时,可根据SAS证明,
故答案为:SAS;
(3)
证明:在△ABC和△FDE中,
,
∴.
【点睛】
此题考查了添加条件证明两个三角形全等,正确掌握全等三角形的判定定理是解题的关键.
10、(1)见解析;(2)见解析
【分析】
(1)根据CE⊥AB,BF⊥AC就可以得出∠BED=∠CFD=90°,就可以由AAS得出结论;
(2)由(1)得DE=DF,就可以得出BF=CE,由AAS就可以得出△AFB≌△AEC就可以得出结论.
【详解】
证明:(1)∵CE⊥AB,BF⊥AC,
∴∠BED=∠CFD=90°,
在△BED和△CFD中,
,
∴△BED≌△CFD(AAS);
(2)∵△BED≌△CFD,
∴DE=DF,
∴BD+DF=CD+DE,
∴BF=CE,
在△ABF和△ACE中,
,
∴△ABF≌△ACE(AAS),
∴AE=AF.
【点睛】
本题考查了垂直的性质的运用,全等三角形的判定与性质的运用,等式的性质的运用,解答时证明三角形全等是关键.
相关试卷
这是一份数学七年级下册第十四章 三角形综合与测试同步训练题,共37页。
这是一份数学第十四章 三角形综合与测试复习练习题,共31页。试卷主要包含了如图,点A,有下列说法等内容,欢迎下载使用。
这是一份沪教版 (五四制)七年级下册第十四章 三角形综合与测试随堂练习题,共40页。试卷主要包含了如图,三角形的外角和是等内容,欢迎下载使用。
![文档详情页底部广告位](http://img.51jiaoxi.com/images/257d7bc79dd514896def3dc0b2e3f598.jpg)