终身会员
搜索
    上传资料 赚现金

    2021-2022学年基础强化沪教版七年级数学第二学期第十四章三角形专题攻克试题(含解析)

    立即下载
    加入资料篮
    2021-2022学年基础强化沪教版七年级数学第二学期第十四章三角形专题攻克试题(含解析)第1页
    2021-2022学年基础强化沪教版七年级数学第二学期第十四章三角形专题攻克试题(含解析)第2页
    2021-2022学年基础强化沪教版七年级数学第二学期第十四章三角形专题攻克试题(含解析)第3页
    还剩32页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中沪教版 (五四制)第十四章 三角形综合与测试练习题

    展开

    这是一份初中沪教版 (五四制)第十四章 三角形综合与测试练习题,共35页。试卷主要包含了如图,在中,AD,如图,点D等内容,欢迎下载使用。
    沪教版七年级数学第二学期第十四章三角形专题攻克
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、在下列长度的四根木棒中,能与3cm,9cm的两根木棒首尾顺次相接钉成一个三角形的是( )
    A.3cm B.6cm C.10cm D.12cm
    2、如图,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形.他的依据是( )

    A. B. C. D.
    3、已知三条线段的长分别是4,4,m,若它们能构成三角形,则整数m的最大值是( )
    A.10 B.8 C.7 D.4
    4、如图,在中,AD、AE分别是边BC上的中线与高,,CD的长为5,则的面积为( )

    A.8 B.10 C.20 D.40
    5、如图,点D、E分别在∠ABC的边BA、BC上,DE⊥AB,过BA上的点F(位于点D上方)作FG∥BC,若∠AFG=42°,则∠DEB的度数为( )

    A.42° B.48° C.52° D.58°
    6、如图,,点E在线段AB上,,则的度数为(  )

    A.20° B.25° C.30° D.40°
    7、如图,BD是的角平分线,,交AB于点E.若,,则的度数是( )

    A.10° B.20° C.30° D.50°
    8、如图,和全等,且,对应.若,,,则的长为( )

    A.4 B.5 C.6 D.无法确定
    9、小明把一副含有45°,30°角的直角三角板如图摆放其中∠C=∠F=90°,∠A=45°,∠D=30°,则∠a+∠β等于( )

    A.180° B.210° C.360° D.270°
    10、已知等腰三角形两边的长分别为3和7,则此等腰三角形的周长为( )
    A.10 B.15 C.17 D.19
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、等腰三角形的一条边长为5,周长为20,则该三角形的腰长为__________.
    2、如图,与的顶点A、B、D在同一直线上,,,,延长分别交、于点F、G.若,,则______.

    3、如图,BD,CE是等边三角形ABC的中线,BD,CE交于点F,则______°.

    4、如图,已知△ABC中,AB=AC,将△ABC沿DF折叠,点A落在BC边上的点E处,且DE⊥BC于E,若∠A=56°,则∠AFD的度数为________.

    5、一个三角形的其中两个内角为,,则这个第三个内角的度数为______.
    三、解答题(10小题,每小题5分,共计50分)
    1、如图,四边形中,,,于点.

    (1)如图1,求证:;
    (2)如图2,延长交的延长线于点,点在上,连接,且,求证:;
    (3)如图3,在(2)的条件下,点在的延长线上,连接,交于点,连接,且,当,时,求的长.
    2、如图,在△ABC中,AB=AC,CD⊥AB于点D,∠A=50°,求∠BCD的度数.

    3、如图,在中,,,,BD是的角平分线,点E在AB边上,.求的周长.

    4、如图1,点O是线段AD的中点,分别以AO和DO为边在线段AD的同侧作等边三角形OAB和等边三角形OCD,连接AC和BD,相交于点E,连接BC.
    (1)求证DOB≌AOC;
    (2)求∠CEB的大小;
    (3)如图2,OAB固定不动,保持△OCD的形状和大小不变,将OCD绕点O旋转(OAB和OCD不能重叠),求∠CEB的大小.

    5、如图,在中,,,点D是内一点,连接CD,过点C作且,连接AD,BE.求证:.

    6、下面是“作一个角的平分线”的尺规作图过程.
    已知:如图,钝角.

    求作:射线OC,使.
    作法:如图,

    ①在射线OA上任取一点D;
    ②以点О为圆心,OD长为半径作弧,交OB于点E;
    ③分别以点D,E为圆心,大于长为半径作弧,在内,两弧相交于点C;
    ④作射线OC.
    则OC为所求作的射线.
    完成下面的证明.
    证明:连接CD,CE
    由作图步骤②可知______.
    由作图步骤③可知______.
    ∵,
    ∴.
    ∴(________)(填推理的依据).
    7、在等边中,D、E是BC边上两动点(不与B,C重合)

    (1)如图1,,求的度数;
    (2)点D在点E的左侧,且AD=AE,点E关于直线AC的对称点为F,连接AF,DF.
    ①依题意将图2补全;
    ②求证:.
    8、如图,在等边三角形ABC中,点P为△ABC内一点,连接AP,BP,CP,将线段AP绕点A 顺时针旋转60°得到 ,连接 .
    (1)用等式表示 与CP的数量关系,并证明;
    (2)当∠BPC=120°时,
    ①直接写出 的度数为 ;
    ②若M为BC的中点,连接PM,请用等式表示PM与AP的数量关系,并证明.

    9、已知:如图,,,求证:

    10、已知,在△ABC中,∠BAC=30°,点D在射线BC上,连接AD,∠CAD=,点D关于直线AC的对称点为E,点E关于直线AB的对称点为F,直线EF分别交直线AC,AB于点M,N,连接AF,AE,CE.
    (1)如图1,点D在线段BC上.
    ①根据题意补全图1;
    ②∠AEF = (用含有的代数式表示),∠AMF= °;
    ③用等式表示线段MA,ME,MF之间的数量关系,并证明.
    (2)点D在线段BC的延长线上,且∠CAD<60°,直接用等式表示线段MA,ME,MF之间的数量关系,不证明.


    -参考答案-
    一、单选题
    1、C
    【分析】
    设第三根木棒的长度为cm,再确定三角形第三边的范围,再逐一分析各选项即可得到答案.
    【详解】
    解:设第三根木棒的长度为cm,则


    所以A,B,D不符合题意,C符合题意,
    故选C
    【点睛】
    本题考查的是三角形的三边的关系,掌握“利用三角形的三边关系确定第三边的范围”是解本题的关键.
    2、C
    【分析】
    根据题意,可知仍可辨认的有1条边和2个角,且边为两角的夹边,即可根据来画一个完全一样的三角形
    【详解】
    根据题意可得,已知一边和两个角仍保留,且边为两角的夹边,
    根据两个三角形对应的两角及其夹边相等,两个三角形全等,即
    故选C
    【点睛】
    本题考查了三角形全等的性质与判定,掌握三角形的判定方法是解题的关键.
    3、C
    【分析】
    根据三角形三边关系列出不等式,根据不等式的解集求整数m的最大值.
    【详解】
    解:条线段的长分别是4,4,m,若它们能构成三角形,则
    ,即
    又为整数,则整数m的最大值是7
    故选C
    【点睛】
    本题考查了求不等式的整数解,三角形三边关系,根据三角形的三边关系列出不等式是解题的关键.
    4、C
    【分析】
    根据三角形中线的性质得出CB的长为10,再用三角形面积公式计算即可.
    【详解】
    解:∵AD是边BC上的中线,CD的长为5,
    ∴CB=2CD=10,
    的面积为,
    故选:C.
    【点睛】
    本题考查了三角形中线的性质和面积公式,解题关键是明确中线的性质求出底边长.
    5、B
    【分析】
    根据两直线平行,同位角相等可得,再由垂直的性质及三角形内角和定理即可得.
    【详解】
    解:∵,
    ∴,
    ∵,
    ∴,
    ∴,
    故选:B.
    【点睛】
    题目主要考查平行线及垂线的性质,三角形内角和定理等,理解题意,熟练运用平行线的性质是解题关键.
    6、C
    【分析】
    根据全等三角形的性质可证得BC=CE,∠ACB=∠DCE即∠ACD=∠BCE,根据等腰三角形的性质和三角形的内角和定理求解∠B=∠BEC和∠BCE即可.
    【详解】
    解:∵,
    ∴BC=CE,∠ACB=∠DCE,
    ∴∠B=∠BEC,∠ACD=∠BCE,
    ∵,
    ∴∠ACD=∠BCE=180°-2×75°=30°,
    故选:C.
    【点睛】
    本题考查全等三角形的性质、等腰三角形的性质、三角形的内角和定理,熟练掌握全等三角形的性质和等腰三角形的性质是解答的关键.
    7、B
    【分析】
    由外角的性质可得∠ABD=20°,由角平分线的性质可得∠DBC=20°,由平行线的性质即可求解.
    【详解】
    解:(1)∵∠A=30°,∠BDC=50°,∠BDC=∠A+∠ABD,
    ∴∠ABD=∠BDC−∠A=50°−30°=20°,
    ∵BD是△ABC的角平分线,
    ∴∠DBC=∠ABD=20°,
    ∵DE∥BC,
    ∴∠EDB=∠DBC=20°,
    故选:B.
    【点睛】
    本题考查了平行线的性质,三角形外角的性质,角平分线的定义,灵活应用这些性质解决问题是解决本题的关键.
    8、A
    【分析】
    全等三角形对应边相等,对应角相等,根据题中信息得出对应关系即可.
    【详解】
    ∵和全等,,对应

    ∴AB=DF=4
    故选:A.
    【点睛】
    本题考查了全等三角形的概念及性质,应注意①对应边、对应角是对两个三角形而言的,指两条边、两个角的关系,而对边、对角是指同一个三角形的边和角的位置关系②可以进一步推广到全等三角形对应边上的高相等,对应角的平分线相等,对应边上的中线相等,周长及面积相等③全等三角形有传递性.
    9、B
    【分析】
    已知,得到,根据外角性质,得到,,再将两式相加,等量代换,即可得解;
    【详解】
    解:如图所示,

    ∵,
    ∴,
    ∵,,
    ∴,
    ∵,,
    ∴,
    ∵,,
    ∴;
    故选D.
    【点睛】
    本题主要考查了三角形外角定理的应用,准确分析计算是解题的关键.
    10、C
    【分析】
    等腰三角形两边的长为3和7,具体哪条是底边,哪条是腰没有明确说明,因此要分两种情况讨论.
    【详解】
    解:①当腰是3,底边是7时,3+3<7,不满足三角形的三边关系,因此舍去.
    ②当底边是3,腰长是7时,3+7>7,能构成三角形,则其周长=3+7+7=17.
    故选:C.
    【点睛】
    本题考查了等腰三角形的性质和三角形的三边关系,解题时注意:若没有明确腰和底边,则一定要分类进行讨论,还应验证各种情况是否能构成三角形,这是解题的关键.
    二、填空题
    1、7.5
    【分析】
    根据腰长是否为5,分两类情况进行求解即可.
    【详解】
    解:当腰长为5时,由周长可知:底边长为10,且
    故不满足三边关系,不成立,
    当腰长不为5时,则底边长为5,由周长可得:腰长为
    满足三边关系,故腰长为7.5,
    故答案为:7.5.
    【点睛】
    本题主要是考查了等腰三角形的性质以及三角形的三边关系,熟练根据腰长来进行分类讨论,这是解决本题的关键.
    2、
    【分析】
    先证明△ABC≌△EDB,可得∠E=,然后利用三角形外角的性质求解.
    【详解】
    解:∵,
    ∴∠ABC=∠D,
    在△ABC和△EDB中

    ∴△ABC≌△EDB,
    ∴∠E=,
    ∴,,
    ∴∠EGF=30°+50°=80°,
    ∴80°+30°=110°,
    故答案为:110°.
    【点睛】
    本题考查了平行线的性质,全等三角形的判定与性质,以及三角形外角的性质,熟练掌握三角形的外角等于不相邻的两个内角和是解答本题的关键.
    3、120
    【分析】
    等边三角形中线与角平分线合一,有,,由可求得结果.
    【详解】
    解:∵是等边三角形

    ∵BD,CE是等边三角形ABC的中线

    又∵

    故答案为:.
    【点睛】
    本题考查了等边三角形的性质,角度的计算.解题的关键在于熟练利用等边三角形三线合一的性质.
    4、48°48度
    【分析】
    先求出∠ABC和∠ACB的度数,再利用直角三角形的性质得出∠BDE的度数,根据由翻折的性质可得:,最后利用三角形的内角和定理得出结论.
    【详解】
    解:∵AB=AC,∠A=56°
    ∴,
    ∵DE⊥BC,
    ∴,
    由折叠的性质可得:,
    ∵,
    ∴,
    ∴∠AFD=180°-∠A-∠ADF=180°-56°-76°=48°,
    故答案为:48°.
    【点睛】
    本题考查了等腰三角形的性质,轴对称的性质,直角三角形的性质及三角形的内角和定理,解题的关键是熟练掌握这些性质.
    5、60°
    【分析】
    依题意,利用三角形内角和为:,即可;
    【详解】
    由题得:一个三角形的内角和为:;又已知两个其中的内角为:,;
    ∴ 第三个角为:;
    故填:
    【点睛】
    本题主要考查三角形的内角和,关键在于熟练并运用基本的计算;
    三、解答题
    1、(1)见解析;(2)见解析;(3)2
    【分析】
    (1)过点B作于点Q,根据AAS证明△得,再证明四边形是矩形得BQ=CG,从而得出结论;
    (2) 在GF上截取GH=GE,连接AH,证明AH=FH,GE=GH即可;
    (3) 过点A作于点P,在FC上截取,连接,证明得,可证明AC是EH的垂直平分线,再证明和△得可求出,从而可得结论.
    【详解】
    解:(1)证明:过点B作于点Q,如图1





    又,
    ∴△


    ∴四边形是矩形


    (2)在GF上截取GH=GE,连接AH,如图2,











    (3)过点A作于点P,在FC上截取,连接,如图3,

    由(1)、(2)知,,





    ∴∠

    ∴∠


    ∴∠

    ∴AC是EH的垂直平分线,


    又∵

    ∴∠
    ∴∠
    ∵∠,
    ∴∠




    ∵∠
    ∴,即

    ∵,即

    在和中,
    AH=AM∠HAB=∠MADAB=AD
    ∴△




    【点睛】
    本题考查的是全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理是解题的关键.
    2、25°
    【分析】
    直接利用等腰三角形的性质得出∠ABC=∠ACB=65°,进而利用三角形内角和定理得出答案.
    【详解】
    ∵AB=AC,∠A=50°,
    ∴∠ABC=∠ACB=65°,
    ∵CD⊥BC于点D,
    ∴∠BCD的度数为:180°−90°−65°=25°.
    【点睛】
    此题主要考查了等腰三角形的性质,正确得出∠B的度数是解题关键.
    3、
    【分析】
    由题意结合角平分线性质和全等三角形判定得出,进而依据的周长进行求解即可.
    【详解】
    解:∵,,,
    ∴,
    ∵BD是的角平分线,
    ∴,
    在和中,
    ,
    ∴,
    ∴,
    ∵,
    ∴的周长.
    【点睛】
    本题考查全等三角形的判定与性质以及角平分线性质,熟练掌握利用全等三角形的判定与性质以及角平分线性质进行边的等量替换是解题的关键.
    4、(1)见详解;(2)120°;(2)120°.
    【分析】
    (1)如图1,根据等边三角形的性质得到OD=OC=OA=OB,∠COD=∠AOB=60°,则利用根据“SAS”判断△AOC≌△BOD;
    (2)利用△AOC≌△BOD得到∠CAO=∠DBO,然后根据三角形内角和可得到∠AEB=∠AOB=60°,即可求出答案;
    (3)如图2,与(1)的方法一样可证明△AOC≌△BOD;则∠CAO=∠DBO,然后根据三角形内角和可求出∠AEB=∠AOB=60°,即可得到答案.
    【详解】
    (1)证明:如图1,

    ∵△ODC和△OAB都是等边三角形,
    ∴OD=OC=OA=OB,∠COD=∠AOB=60°,
    ∴∠BOD=∠AOC=120°,
    在△AOC和△BOD中

    ∴△AOC≌△BOD;
    (2)解:∵△AOC≌△BOD,
    ∴∠CAO=∠DBO,
    ∵∠1=∠2,
    ∴∠AEB=∠AOB=60°,
    ∴;
    (3)解:如图2,

    ∵△ODC和△OAB都是等边三角形,
    ∴OD=OC=OA=OB,∠COD=∠AOB=60°,
    ∴∠AOB+∠BOC=∠COD+∠BOC,即∠AOC=∠BOD,
    在△AOC和△BOD中

    ∴△AOC≌△BOD;
    ∴∠CAO=∠DBO,
    ∵∠1=∠2,
    ∴∠AEB=∠AOB=60°,
    ∴;
    即∠CEB的大小不变.
    【点睛】
    本题考查了几何变换综合题:熟练掌握旋转的性质、等边三角形的性质和全等三角形的判定与性质;利用类比的方法解决(3)小题.
    5、证明见解析.
    【分析】
    先根据角的和差可得,再根据三角形全等的判定定理证出,然后根据全等三角形的性质即可得证.
    【详解】
    证明:,




    在和中,,


    【点睛】
    本题考查了三角形全等的判定定理与性质等知识点,熟练掌握三角形全等的判定方法是解题关键.
    6、OE; CE;全等三角形的对应角相等
    【分析】
    根据圆的半径相等可得OD=OE,CD=CE,再利用SSS可证明,从而根据全等三角形的性质可得结论.
    【详解】
    证明:连接CD,CE
    由作图步骤②可知___OE___.
    由作图步骤③可知__CE___.
    ∵,
    ∴.
    ∴(__全等三角形对应角相等__)
    故答案为:OE; CE;全等三角形的对应角相等
    【点睛】
    本题考查了作图-基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了全等三角形的判定和性质.
    7、(1);(2)①作图见解析;②证明见解析
    【分析】
    (1)等边三角形中,由知,,进而求出的值;
    (2)①作图见详解;② ,,,点E,F关于直线对称,,,,为等边三角形,进而可得到.
    【详解】
    解:(1)为等边三角形



    (2)①补全图形如图所示,

    ②证明:为等边三角形





    点E,F关于直线对称




    为等边三角形

    【点睛】
    本题考察了等边三角形的判定与性质,等腰三角形的性质,轴对称的性质.解题的关键在于角度的转化.
    8、(1),理由见解析;(2)①60°;②PM=,见解析
    【分析】
    (1)根据等边三角形的性质,可得AB=AC,∠BAC=60°,再由由旋转可知:从而得到,可证得,即可求解 ;
    (2)①由∠BPC=120°,可得∠PBC+∠PCB=60°.根据等边三角形的性质,可得∠BAC=60°,从而得到∠ABC+∠ACB=120°,进而得到∠ABP+∠ACP=60°.再由,可得 ,即可求解;
    ②延长PM到N,使得NM=PM,连接BN.可先证得△PCM≌△NBM.从而得到CP=BN,∠PCM=∠NBM.进而得到 .根据①可得,可证得,从而得到 .再由 为等边三角形,可得 .从而得到 ,即可求解.
    【详解】
    解:(1) .理由如下:
    在等边三角形ABC中,AB=AC,∠BAC=60°,
    由旋转可知:


    在和△ACP中

    ∴ .
    ∴ .
    (2)①∵∠BPC=120°,
    ∴∠PBC+∠PCB=60°.
    ∵在等边三角形ABC中,∠BAC=60°,
    ∴∠ABC+∠ACB=120°,
    ∴∠ABP+∠ACP=60°.
    ∵ .
    ∴ ,
    ∴∠ABP+∠ABP'=60°.
    即 ;
    ②PM= .理由如下:
    如图,延长PM到N,使得NM=PM,连接BN.

    ∵M为BC的中点,
    ∴BM=CM.
    在△PCM和△NBM中

    ∴△PCM≌△NBM(SAS).
    ∴CP=BN,∠PCM=∠NBM.
    ∴ .
    ∵∠BPC=120°,
    ∴∠PBC+∠PCB=60°.
    ∴∠PBC+∠NBM=60°.
    即∠NBP=60°.
    ∵∠ABC+∠ACB=120°,
    ∴∠ABP+∠ACP=60°.
    ∴∠ABP+∠ABP'=60°.
    即 .
    ∴ .
    在△PNB和 中

    ∴ (SAS).
    ∴ .

    ∴ 为等边三角形,
    ∴ .
    ∴ ,
    ∴PM= .
    【点睛】
    本题主要考查了等边三角形判定和性质,全等三角形的判定和性质,图形的旋转,熟练掌握等边三角形判定和性质定理,全等三角形的判定和性质定理,图形的旋转的性质是解题的关键.
    9、证明见解析
    【分析】
    由,,结合公共边 从而可得结论.
    【详解】
    证明:在与中,


    【点睛】
    本题考查的是全等三角形的判定,掌握“利用边边边公理证明三角形全等”是解本题的关键.
    10、(1)①见解析; ②,;③MF=MA+ME,证明见解析;(2)
    【分析】
    (1)①按照要求旋转作图即可;②由旋转和等腰三角形性质解出∠AEF;再由三角形外角定理求出∠AMF; ③在FE上截取GF=ME,连接AG,证明△AFG ≌△AEM且△AGM为等边三角形后即可证得MF=MA+ME;
    (2)根据题意画出图形,根据含30°的直角三角形的性质,即可得到结论.
    【详解】
    解:(1)①补全图形如下图:

    ②∵∠CAE=∠DAC=,
    ∴∠BAE=30°+
    ∴∠FAE=2×(30°+)
    ∴∠AEF==60°-;
    ∵∠AMF=∠CAE+∠AEF=+60°-=60°,
    故答案是:60°-,60°;
    ③MF=MA+ME.
    证明:在FE上截取GF=ME,连接AG .

    ∵点D关于直线AC的对称点为E,
    ∴△ADC ≌△AEC.
    ∴∠CAE =∠CAD =.
    ∵∠BAC=30°,
    ∴∠EAN=30°+.
    又∵点E关于直线AB的对称点为F,
    ∴AB垂直平分EF.
    ∴AF=AE,∠FAN=∠EAN =30°+,
    ∴∠F=∠AEF=.
    ∴∠AMG =.
    ∵AF=AE,∠F=∠AEF, GF=ME,
    ∴△AFG ≌△AEM.
    ∴AG =AM.
    又∵∠AMG=,
    ∴△AGM为等边三角形.
    ∴MA=MG.
    ∴MF=MG+GF=MA+ME.
    (2),理由如下:
    如图1所示,
    ∵点E与点F关于直线AB对称,
    ∴∠ANM=90°,NE=NF,
    又∵∠NAM=30°,
    ∴AM=2MN,
    ∴AM=2NE+2EM =MF+ME,
    ∴MF=AM-ME;

    如图2所示,
    ∵点E与点F关于直线AB对称,
    ∴∠ANM=90°,NE=NF,
    ∵∠NAM=30°,
    ∴AM=2NM,
    ∴AM=2MF+2NF=2MF+NE+NF=ME+MF,
    ∴MF=MA-ME;

    综上所述:MF=MA-ME.
    【点睛】
    本题考查轴对称、三角形全等判定与性质、等边三角形判定与性质,掌握这些是本题关键.

    相关试卷

    沪教版 (五四制)七年级下册第十四章 三角形综合与测试练习:

    这是一份沪教版 (五四制)七年级下册第十四章 三角形综合与测试练习,共29页。试卷主要包含了如图,AB=AC,点D等内容,欢迎下载使用。

    初中第十四章 三角形综合与测试练习题:

    这是一份初中第十四章 三角形综合与测试练习题,共36页。试卷主要包含了下列叙述正确的是,定理,下列说法错误的是等内容,欢迎下载使用。

    初中数学沪教版 (五四制)七年级下册第十四章 三角形综合与测试课时练习:

    这是一份初中数学沪教版 (五四制)七年级下册第十四章 三角形综合与测试课时练习,共35页。试卷主要包含了已知,下列三角形与下图全等的三角形是,定理等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map