2021学年第十四章 三角形综合与测试当堂达标检测题
展开
这是一份2021学年第十四章 三角形综合与测试当堂达标检测题,共28页。试卷主要包含了下列说法错误的是等内容,欢迎下载使用。
沪教版七年级数学第二学期第十四章三角形定向攻克 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、以下长度的三条线段,能组成三角形的是( )A.2,3,5 B.4,4,8 C.3,4.8,7 D.3,5,92、如图,ABC≌DEF,点B、E、C、F在同一直线上,若BC=7,EC=4,则CF的长是( )A.2 B.3 C.4 D.73、下列长度的三条线段能组成三角形的是( )A.2,3,6 B.2,4,7 C.3,3,5 D.3,3,74、若三条线段中a=3,b=5,c为奇数,那么以a、b、c为边组成的三角形共有( )A.1个 B.2个 C.3个 D.4个5、如图,AC=BC,∠C=α,DE⊥AC于E,FD⊥AB于D,则∠EDF等于( ).A.α B.90°-α C.90°-α D.180°-2α6、下列长度的三条线段能组成三角形的是( )A.3 4 8 B.4 4 10 C.5 6 10 D.5 6 117、如图,将△OAB绕点O逆时针旋转80°得到△OCD,若∠A的度数为110°,∠D的度数为40°,则∠AOD的度数是( )A.50° B.60° C.40° D.30°8、下列说法错误的是( )A.任意一个直角三角形都可以被分割成两个等腰三角形B.任意一个等腰三角形都可以被分割成两个等腰三角形C.任意一个直角三角形都可以被分割成两个直角三角形D.任意一个等腰三角形都可以被分割成两个直角三角形9、等腰三角形的一个角是80°,则它的一个底角的度数是( )A.50° B.80° C.50°或80° D.100°或80°10、三角形的外角和是( )A.60° B.90° C.180° D.360°第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,已知△ABC中,AB=AC,将△ABC沿DF折叠,点A落在BC边上的点E处,且DE⊥BC于E,若∠A=56°,则∠AFD的度数为________.2、如图,在△AOB和△COD中,OA=OB,OC=OD,OA<OC,∠AOB=∠COD=50°,连接AC、BD交于点M,连接OM.下列结论:①AC=BD,②∠AMB=50°;③OM平分∠AOD;④MO平分∠AMD.其中正确的结论是 _____.(填序号)3、如图,在△ABC中,点D为BC边的中点,点E为AC上一点,将∠C沿DE翻折,使点C落在AB上的点F处,若∠AEF=50°,则∠A的度数为__.4、如图,AB=CD,若要判定△ABD≌△CDB,则需要添加的一个条件是 ____________.5、如图,与的顶点A、B、D在同一直线上,,,,延长分别交、于点F、G.若,,则______.三、解答题(10小题,每小题5分,共计50分)1、如图,在中,,,点D是内一点,连接CD,过点C作且,连接AD,BE.求证:.2、在中,,,点D是直线AC上一动点,连接BD并延长至点E,使.过点E作于点F.(1)如图1,当点D在线段AC上(点D不与点A和点C重合)时,此时DF与DC的数量关系是______.(2)如图2,当点D在线段AC的延长线上时,依题意补全图形,并证明:.(3)当点D在线段CA的延长线上时,直接用等式表示线段AD,AF,EF之间的数量关系是______.3、如图,在等腰△ABC和等腰△ADE中,AB=AC,AD=AE,∠BAC=∠DAE且C、E、D三点共线,作AM⊥CD于M.若BD=5,DE=4,求CM.4、如图,在中,是角平分线,,.(1)求的度数;(2)若,求的度数.5、如图,已知点B,F,C,E在同一直线上,AB∥DE,BF=CE,AB=ED,求证:∠A=∠D.6、如图是由边长为1的小等边三角形构成的网格,每个小等边三角形的顶点为格点,线段的端点都在格点上.要求以为边画一个等腰,且使得点为格点.请在下面的网格图中画出3种不同的等腰.7、如图,AD是的高,CE是的角平分线.若,,求的度数.8、如图,是的中线,分别过点、作及其延长线的垂线,垂足分别为、.(1)求证:;(2)若的面积为8,的面积为6,求的面积.9、如图,是的角平分线,于点.(1)用尺规完成以下基本作图:过点作于点,连接交于点.(不写作法,保留作图痕迹)(2)在(1)中所作的图形中,求证:.10、如图所示,四边形ABCD中,ADC的角平分线DE与BCD的角平分线CA相交于E点,已知:ACB=32°,CDE=58°.(1)求DEC的度数;(2)试说明直线 -参考答案-一、单选题1、C【分析】由题意根据三角形的三条边必须满足:任意两边之和大于第三边,任意两边之差小于第三边进行分析即可.【详解】解:A、2+3=5,不能组成三角形,不符合题意;B、4+4=8,不能组成三角形,不符合题意;C、3+4.8>7,能组成三角形,符合题意;D、3+5<9,不能组成三角形,不符合题意.故选:C.【点睛】本题主要考查对三角形三边关系的理解应用.注意掌握判断是否可以构成三角形,只要判断两个较小的数的和大于最大的数即可.2、B【分析】根据全等三角形的性质可得,根据即可求得答案.【详解】解:ABC≌DEF,点B、E、C、F在同一直线上,BC=7,EC=4,故选B【点睛】本题考查了全等三角形的性质,掌握全等三角形的性质是解题的关键.3、C【分析】根据三角形的三边关系,逐项判断即可求解.【详解】解:A、因为 ,所以不能组成三角形,故本选项不符合题意;B、因为 ,所以不能组成三角形,故本选项不符合题意;C、因为 ,所以能组成三角形,故本选项符合题意;D、因为 ,所以不能组成三角形,故本选项不符合题意;故选:C【点睛】本题主要考查了三角形的三边关系,熟练掌握三角形的两边之和大于第三边,两边之差小于第三边是解题的关键.4、C【分析】根据三角形的三边关系,得到合题意的边,进而求得三角形的个数.【详解】解:c的范围是:5﹣3<c<5+3,即2<c<8.∵c是奇数,∴c=3或5或7,有3个值.则对应的三角形有3个.故选:C.【点睛】本题主要考查了三角形三边关系,准确分析判断是解题的关键.5、B【分析】AC=BC,∠C=α,DE⊥AC于E,FD⊥AB于D,有,,,即可求得角度.【详解】解:由题意知:,故选B.【点睛】本题考查了等腰三角形的性质,几何图形中角度的计算.解题的关键在于确定各角度之间的数量关系.6、C【分析】根据三角形的任意两边之和大于第三边对各选项分析判断求解即可.【详解】解:A.∵3+4<8,∴不能组成三角形,故本选项不符合题意;B.∵4+4<10,∴不能组成三角形,故本选项不符合题意;C.∵5+6>10,∴能组成三角形,故本选项符合题意;D.∵5+6=11,∴不能组成三角形,故本选项不符合题意;故选:C.【点睛】本题考查了三角形的三边关系,熟记三角形的任意两边之和大于第三边是解决问题的关键.7、A【分析】根据旋转的性质求解再利用三角形的内角和定理求解再利用角的和差关系可得答案.【详解】解: 将△OAB绕点O逆时针旋转80°得到△OCD, ∠A的度数为110°,∠D的度数为40°, 故选A【点睛】本题考查的是三角形的内角和定理的应用,旋转的性质,掌握“旋转前后的对应角相等”是解本题的关键.8、B【分析】根据等腰三角形和直角三角形的性质判断各选项即可得出答案.【详解】解:、任意一个直角三角形一定能分成两个等腰三角形,本选项正确,不符合题意;、任意一个等腰三角形不一定能分成两个等腰三角形,本选项错误,符合题意;、任意一个直角三角形都可以被分割成两个直角三角形,本选项正确,不符合题意;、任意一个等腰三角形都可以被分割成两个直角三角形,本选项正确,不符合题意;故选:B.【点睛】本题考查了等腰三角形和直角三角形的知识,解题的关键是能判断等腰三角形及直角三角形,可动手操作进行判断.9、C【分析】已知给出一个角的的度数为80º,没有明确是顶角还是底角,要分类讨论,联合内角和求出底角即可.【详解】解:等腰三角形的一个角是80°,当80º为底角时,它的一个底角是80º,当80º为顶角时,它的一个底角是,则它的一个底角是50º或80º.故选:C.【点睛】本题考查等腰三角形的性质,内角和定理,掌握分类讨论的思想是解决问题的关键.10、D【分析】根据三角形的内角和定理、邻补角的性质即可得.【详解】解:如图,,,又,,即三角形的外角和是,故选:D.【点睛】本题考查了三角形的内角和定理、邻补角的性质,熟练掌握三角形的内角和定理是解题关键.二、填空题1、48°48度【分析】先求出∠ABC和∠ACB的度数,再利用直角三角形的性质得出∠BDE的度数,根据由翻折的性质可得:,最后利用三角形的内角和定理得出结论.【详解】解:∵AB=AC,∠A=56°∴,∵DE⊥BC,∴,由折叠的性质可得:,∵,∴,∴∠AFD=180°-∠A-∠ADF=180°-56°-76°=48°,故答案为:48°.【点睛】本题考查了等腰三角形的性质,轴对称的性质,直角三角形的性质及三角形的内角和定理,解题的关键是熟练掌握这些性质.2、①②④【分析】由证明得出,,①正确;由全等三角形的性质得出,由三角形的外角性质得:,得出,②正确;作于,于,如图所示:则,利用全等三角形对应边上的高相等,得出,由角平分线的判定方法得出平分,④正确;假设平分,则,由全等三角形的判定定理可得,得,而,所以,而,故③错误;即可得出结论.【详解】解:,,即,在和中,,,,,故①正确;,由三角形的外角性质得:,,故②正确;作于,于,如图所示,则,,,平分,故④正确;假设平分,则,在与中,,,,,,而,故③错误;所以其中正确的结论是①②④.故答案为:①②④.【点睛】本题考查了全等三角形的判定与性质、三角形的外角性质、角平分线的判定等知识;证明三角形全等是解题的关键.3、65°度【分析】由点D为BC边的中点,得到BD=CD,根据折叠的性质得到DF=CD,∠EFD=∠C,得到DF=BD,根据等腰三角形的性质得到∠BFD=∠B,由三角形的内角和和平角的定义得到∠A=∠AFE,于是得到结论.【详解】解:∵点D为BC边的中点,∴BD=CD,∵将∠C沿DE翻折,使点C落在AB上的点F处,∴DF=CD,∠EFD=∠C,∴DF=BD,∴∠BFD=∠B,∵∠A=180°-∠C-∠B,∠AFE=180°-∠EFD-∠DFB,∴∠A=∠AFE,∵∠AEF=50°,∴∠A=(180°-50°)=65°.故答案为:65°.【点睛】本题考查的是图形翻折变换的图形能够重合的性质,以及等边对等角的性质,熟知折叠的性质是解答此题的关键.4、∠1=∠2(或填AD=CB)【分析】根据题意知,在△ABD与△CDB中,AB=CD,BD=DB,所以由三角形判定定理SAS可以推知,只需添加∠1=∠2即可.由三角形判定定理SSS可以推知,只需要添加AD=CB即可.【详解】解:∵在△ABD与△CDB中,AB=CD,BD=DB,∴添加∠1=∠2时,可以根据SAS判定△ABD≌△CDB,添加AD=CB时,可以根据SSS判定△ABD≌△CDB,,故答案为∠1=∠2(或填AD=CB).【点睛】本题考查了全等三角形的判定,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.5、【分析】先证明△ABC≌△EDB,可得∠E=,然后利用三角形外角的性质求解.【详解】解:∵,∴∠ABC=∠D,在△ABC和△EDB中,∴△ABC≌△EDB,∴∠E=,∴,,∴∠EGF=30°+50°=80°,∴80°+30°=110°,故答案为:110°.【点睛】本题考查了平行线的性质,全等三角形的判定与性质,以及三角形外角的性质,熟练掌握三角形的外角等于不相邻的两个内角和是解答本题的关键.三、解答题1、证明见解析.【分析】先根据角的和差可得,再根据三角形全等的判定定理证出,然后根据全等三角形的性质即可得证.【详解】证明:,,,,,在和中,,,.【点睛】本题考查了三角形全等的判定定理与性质等知识点,熟练掌握三角形全等的判定方法是解题关键.2、(1)(2)见解析(3)【分析】(1)利用边相等和角相等,直接证明,即可得到结论.(2)利用边相等和角相等,直接证明,得到和,最后通过边与边之间的关系,即可证明结论成立.(3)要证明,先利用边相等和角相等,直接证明,得到和,最后通过边与边之间的关系,即可证明结论成立.【详解】(1)解:,,,在和中, ,.(2)解:当点D在线段AC的延长线上时,如下图所示:,,,在和中, ,,,.(3)解:,如下图所示:,,,在和中, ,,,.【点睛】本题主要是考查了三角形全等的判定和性质,熟练利用条件证明三角形全等,然后利用边相等以及边与边之间关系,即可证明结论成立,这是解决该题的关键.3、CM=7.【分析】根据题意由“SAS”可证△AEC≌△ADB,可得BD=CE,由等腰三角形的性质可得DM=ME=2进行分析计算即可得出答案.【详解】解:∵∠BAC=∠DAE,∴∠BAC﹣∠BAE=∠DAE﹣∠BAE,∴∠BAD=∠CAE,在△AEC和△ADB中,,∴△AEC≌△ADB(SAS),又∵BD=5,∴CE=BD=5,∵AD=AE,AM⊥CD,DE=4,∴,∴CM=CE+EM=5+2=7.【点睛】本题考查全等三角形的判定和性质以及等腰三角形的性质,熟练掌握全等三角形的判定定理是解答本题的关键.4、(1);(2).【分析】(1)根据三角形内角和定理可求出,然后利用角平分线进行计算即可得;(2)根据垂直得出,然后根据三角形内角和定理即可得.(1)解:∵,,∴,∵AD是角平分线,∴,∴;(2)∵,∴,∴,∴.【点睛】题目主要考查三角形内角和定理,角平分线的计算等,熟练运用三角形内角和定理是解题关键.5、见解析【分析】根据平行线的性质得出∠B=∠E,进而利用SAS证明,利用全等三角形的性质解答即可.【详解】证明:,,即.,.在和中,,.【点睛】本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,本题中求证是解题的关键.6、答案见解析【分析】AB为4个等边三角形组成的平行四边形的对角线,因此只要找到另一腰也4个等边三角形组成的平行四边形的对角线即可【详解】解:如图,……[答案不唯一]【点睛】本题考查等腰三角形的绘图,掌握等边三角形和等腰三角形性质即可.7、【分析】AD是的高,有;由知;CE是的角平分线可得;,;在中,.【详解】解:∵AD是的高∴∵∴∵CE是的角平分线∴∵∴∴在中,.【点睛】本题考查了角平分线.解题的关键在于正确表示各角度之间的数量关系.8、(1)见解析(2)的面积为20.【分析】(1)根据已知条件得到、,然后利用全等三角形的判定,进行证明即可.(2)分别根据和的面积,用CF表示AF、DF,通过,得到,,用CF表示出AE的长,最后利用面积公式求解即可.(1)(1)解:由题意可知: 是的中线 在与中 .(2)解:的面积为8,的面积为6.,即 ,即 由(1)可知:, .【点睛】本题主要是考查了全等三角形的判定和性质,熟练根据条件证明三角形全等,利用其性质,证明对应边相等,这是解决本题的关键.9、(1)见解析;(2)见解析.【分析】(1)以点D为圆心,适当长为半径,作弧,交AC于两点,再分别以这两点为圆心,适当长为半径作弧,连接两条弧的交点所在的直线,该直线与AC的交点即为点F,连接交于点;(2)利用角平分线性质可得,由此证明,得到,继而证明,证得即可解题.【详解】解:(1)如图,点F、G即为所求作的点;(2)是的角平分线,,,【点睛】本题考查角平分线的性质、全等三角形的判定与性质等知识,是重要考点,难度一般,掌握相关知识是解题关键.10、(1)90°;(2)见解析【分析】(1)根据三角形内角和定理即可求解;(2)首先求得∠ADC的度数和∠DCB的度数,根据同旁内角互补,两直线平行即可证得.【详解】解:(1)∵AC是BCD的平分线∴ ∵ ∴∠DEC=180°-∠ACD-∠CDE=180°-32°-58°=90°;(2)∵DE平分∠ADC,CA平分∠BCD∴∠ADC=2∠CDE=116°,∠BCD=2∠ACD=64°∵∠ADC+∠BCD=116°+64°=180°∴【点睛】本题主要考查了角平分线,平行线的判定以及三角形内角和定理,熟练掌握相关性质和定理是解答本题的关键.
相关试卷
这是一份数学七年级下册第十四章 三角形综合与测试一课一练,共29页。试卷主要包含了下列命题是真命题的是,已知等内容,欢迎下载使用。
这是一份数学七年级下册第十四章 三角形综合与测试课时练习,共36页。试卷主要包含了已知长方形纸片ABCD,点E等内容,欢迎下载使用。
这是一份沪教版 (五四制)七年级下册第十四章 三角形综合与测试随堂练习题,共36页。试卷主要包含了下列三角形与下图全等的三角形是,若一个三角形的三个外角之比为3等内容,欢迎下载使用。