终身会员
搜索
    上传资料 赚现金

    2022年必考点解析沪教版七年级数学第二学期第十四章三角形专项测评试题(无超纲)

    立即下载
    加入资料篮
    2022年必考点解析沪教版七年级数学第二学期第十四章三角形专项测评试题(无超纲)第1页
    2022年必考点解析沪教版七年级数学第二学期第十四章三角形专项测评试题(无超纲)第2页
    2022年必考点解析沪教版七年级数学第二学期第十四章三角形专项测评试题(无超纲)第3页
    还剩37页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学沪教版 (五四制)七年级下册第十四章 三角形综合与测试综合训练题

    展开

    这是一份初中数学沪教版 (五四制)七年级下册第十四章 三角形综合与测试综合训练题,共40页。试卷主要包含了如图,点D等内容,欢迎下载使用。
    沪教版七年级数学第二学期第十四章三角形专项测评
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、如图,,于点,与交于点,若,则等于( )

    A.20° B.50° C.70° D.110°
    2、如图,等腰△ABC中,AB=AC,点D是BC边中点,则下列结论不正确的是( )

    A.ÐB=ÐC B.AD⊥BC C.ÐBAD=ÐCAD D.AB=2BC
    3、满足下列条件的两个三角形不一定全等的是( )
    A.周长相等的两个三角形 B.有一腰和底边对应相等的两个等腰三角形
    C.三边都对应相等的两个三角形 D.两条直角边对应相等的两个直角三角形
    4、如图,等腰中,,,于D,点O是线段AD上一点,点P是BA延长线上一点,若,则下列结论:①;②;③是等边三角形;④.其中正确的是( )

    A.①③④ B.①②③ C.②③④ D.①②③④
    5、如图,点D、E分别在∠ABC的边BA、BC上,DE⊥AB,过BA上的点F(位于点D上方)作FG∥BC,若∠AFG=42°,则∠DEB的度数为( )

    A.42° B.48° C.52° D.58°
    6、有两边相等的三角形的两边长为,,则它的周长为( )
    A. B. C. D.或
    7、根据下列已知条件,不能画出唯一的是( )
    A.,, B.,,
    C.,, D.,,
    8、如图,在中,,,,将绕点顺时针旋转得到,当点的对应点恰好落在边上时,的长为( )

    A.3 B.4 C.5 D.6
    9、下列长度的三条线段能组成三角形的是( )
    A.2,3,6 B.2,4,7 C.3,3,5 D.3,3,7
    10、如图,在中,,,AD平分交BC于点D,在AB上截取,则的度数为( )


    A.30° B.20° C.10° D.15°
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、若一条长为24cm的细线能围成一边长等于9cm的等腰三角形,则该等腰三角形的腰长为_____cm.
    2、如图,已知,点,,,在射线ON上,点,,,在射线OM上,,,,均为等边三角形,若,则的边长为______.的边长为______.

    3、如图,一把直尺的一边缘经过直角三角形的直角顶点,交斜边于点;直尺的另一边缘分别交、于点、,若,,则___________度.

    4、如图,是等腰直角三角形,AB是斜边,以BC为一边在右侧作等边三角形BCD,连接AD与BC交于点E,则的度数为______度.

    5、如图,线段AC与BD相交于点O,∠A=∠D=90°,要证明△ABC≌△DCB,还需添加的一个条件是____________.(只需填一个条件即可)

    三、解答题(10小题,每小题5分,共计50分)
    1、阅读下面材料:活动1利用折纸作角平分线
    ①画图:在透明纸片上画出(如图1-①);②折纸:让的两边QP与QR重合,得到折痕QH(如图1-②);③获得结论:展开纸片,QH就是的平分线(如图1-③).

    活动2利用折纸求角
    如图2,纸片上的长方形ABCD,直线EF与边AB,CD分别相交于点E,F.将对折,点A落在直线EF上的点处,折痕EN与AD的交点为N;将对折,点B落在直线EF上的点处,折痕EM与BC的交点为M.这时的度数可知,而且图中存在互余或者互补的角.
    解答问题:(1)求的度数;
    (2)①图2中,用数字所表示的角,哪些与互为余角?
    ②写出的一个补角.
    解:(1)利用活动1可知,EN是的平分线,EM是的平分线,所以 , .由题意可知,是平角.所以(∠ +∠ )= °.
    (2)①图2中,用数字所表示的角,所有与互余的角是: ;
    ②的一个补角是 .

    2、如图,在△ABC中,AB=AC,CD⊥AB于点D,∠A=50°,求∠BCD的度数.

    3、如图,为等边三角形,D是BC中点,,CE是的外角的平分线.
    求证:.

    4、在四边形ABCD中,,点E在直线AB上,且.
    (1)如图1,若,,,求AB的长;
    (2)如图2,若DE交BC于点F,,求证:.

    5、如图,四边形中,,,于点.

    (1)如图1,求证:;
    (2)如图2,延长交的延长线于点,点在上,连接,且,求证:;
    (3)如图3,在(2)的条件下,点在的延长线上,连接,交于点,连接,且,当,时,求的长.
    6、如图,在中,是角平分线,,.

    (1)求的度数;
    (2)若,求的度数.
    7、已知AMCN,点B在直线AM、CN之间,AB⊥BC于点B.
    (1)如图1,请直接写出∠A和∠C之间的数量关系: .
    (2)如图2,∠A和∠C满足怎样的数量关系?请说明理由.
    (3)如图3,AE平分∠MAB,CH平分∠NCB,AE与CH交于点G,则∠AGH的度数为 .

    8、在中,,,点D是直线AC上一动点,连接BD并延长至点E,使.过点E作于点F.

    (1)如图1,当点D在线段AC上(点D不与点A和点C重合)时,此时DF与DC的数量关系是______.
    (2)如图2,当点D在线段AC的延长线上时,依题意补全图形,并证明:.
    (3)当点D在线段CA的延长线上时,直接用等式表示线段AD,AF,EF之间的数量关系是______.

    9、如图,在等边中,D为BC边上一点,连接AD,将沿AD翻折得到,连接BE并延长交AD的延长线于点F,连接CF.

    (1)若,求的度数;
    (2)若,求的大小;
    (3)猜想CF,BF,AF之间的数量关系,并证明.
    10、如图,△ABC是等边三角形,点D、E、F分别同时从A、B、C以同样的速度沿AB、BC、CA方向运动,当点D运动到点B时,三个点都停止运动.
    (1)在运动过程中△DEF是什么形状的三角形,并说明理由;
    (2)若运动到某一时刻时,BE=4,∠DEC=150°,求等边△ABC的周长;


    -参考答案-
    一、单选题
    1、C
    【分析】
    由与,即可求得的度数,又由,根据两直线平行,同位角相等,即可求得的度数.
    【详解】
    解:∵,
    ∴,
    ∵,
    ∴,
    ∵,
    ∴.
    故选:C.
    【点睛】
    题目主要考查了平行线的性质与垂直的性质、三角形内角和定理,熟练掌握平行线的性质是解题关键.
    2、D
    【分析】
    根据等腰三角形的等边对等角的性质及三线合一的性质判断.
    【详解】
    解:∵AB=AC,点D是BC边中点,
    ∴ÐB=ÐC,AD⊥BC,ÐBAD=ÐCAD,
    故选:D.
    【点睛】
    此题考查了等腰三角形的性质:等边对等角,三线合一,熟记等腰三角形的性质是解题的关键.
    3、A
    【分析】
    根据全等三角形的判定方法求解即可.判定三角形全等的方法有:SSS,SAS对各选项进行一一判断即可.
    【详解】
    解:A、周长相等的两个三角形不一定全等,符合题意;
    B、有一腰和底边对应相等的两个等腰三角形根据三边对应相等判定定理可判定全等,不符合题意;
    C、三边都对应相等的两个三角形根据三边对应相等判定定理可判定全等,不符合题意;
    D、两条直角边对应相等的两个直角三角形根据SAS判定定理可判定全等,不符合题意.
    故选:A.
    【点睛】
    此题考查了全等三角形的判定方法,解题的关键是熟练掌握全等三角形的判定方法.判定三角形全等的方法有:SSS,SAS,AAS,ASA,HL(直角三角形).
    4、A
    【分析】
    ①利用等边对等角得:∠APO=∠ABO,∠DCO=∠DBO,则∠APO+∠DCO=∠ABO+∠DBO=∠ABD,据此即可求解;②因为点O是线段AD上一点,所以BO不一定是∠ABD的角平分线,可作判断;③证明∠POC=60°且OP=OC,即可证得△OPC是等边三角形;④证明△OPA≌△CPE,则AO=CE,得AC=AE+CE=AO+AP.
    【详解】
    解:①如图1,连接OB,

    ∵AB=AC,AD⊥BC,
    ∴BD=CD,∠BAD=∠BAC=×120°=60°,
    ∴OB=OC,∠ABC=90°﹣∠BAD=30°
    ∵OP=OC,
    ∴OB=OC=OP,
    ∴∠APO=∠ABO,∠DCO=∠DBO,
    ∴∠APO+∠DCO=∠ABO+∠DBO=∠ABD=30°,故①正确;
    ②由①知:∠APO=∠ABO,∠DCO=∠DBO,
    ∵点O是线段AD上一点,
    ∴∠ABO与∠DBO不一定相等,
    则∠APO与∠DCO不一定相等,故②不正确;
    ③∵∠APC+∠DCP+∠PBC=180°,
    ∴∠APC+∠DCP=150°,
    ∵∠APO+∠DCO=30°,
    ∴∠OPC+∠OCP=120°,
    ∴∠POC=180°﹣(∠OPC+∠OCP)=60°,
    ∵OP=OC,
    ∴△OPC是等边三角形,故③正确;
    ④如图2,在AC上截取AE=PA,

    ∵∠PAE=180°﹣∠BAC=60°,
    ∴△APE是等边三角形,
    ∴∠PEA=∠APE=60°,PE=PA,
    ∴∠APO+∠OPE=60°,
    ∵∠OPE+∠CPE=∠CPO=60°,
    ∴∠APO=∠CPE,
    ∵OP=CP,
    在△OPA和△CPE中,

    ∴△OPA≌△CPE(SAS),
    ∴AO=CE,
    ∴AC=AE+CE=AO+AP,
    ∴AB=AO+AP,故④正确;
    正确的结论有:①③④,
    故选:A.
    【点睛】
    本题主要考查了全等三角形的判定与性质、等腰三角形的判定与性质、等边三角形的判定与性质等知识,正确作出辅助线是解决问题的关键.
    5、B
    【分析】
    根据两直线平行,同位角相等可得,再由垂直的性质及三角形内角和定理即可得.
    【详解】
    解:∵,
    ∴,
    ∵,
    ∴,
    ∴,
    故选:B.
    【点睛】
    题目主要考查平行线及垂线的性质,三角形内角和定理等,理解题意,熟练运用平行线的性质是解题关键.
    6、D
    【分析】
    有两边相等的三角形,是等腰三角形,两边分别为和,但没有明确哪是底边,哪是腰,所以有两种情况,需要分类讨论.
    【详解】
    解:当4为底时,其它两边都为5,
    4、5、5可以构成三角形,周长为;
    当4为腰时,其它两边为4和5,
    4、4、5可以构成三角形,周长为.
    综上所述,该等腰三角形的周长是或.
    故选:D.
    【点睛】
    本题考查了等腰三角形的性质和三角形的三边关系,解题的关键是对于底和腰不等的等腰三角形,若条件中没有明确哪边是底哪边是腰时,应在符合三角形三边关系的前提下分类讨论.
    7、B
    【分析】
    根据三角形存在的条件去判断.
    【详解】
    ∵,,,满足ASA的要求,
    ∴可以画出唯一的三角形,A不符合题意;
    ∵,,,∠A不是AB,BC的夹角,
    ∴可以画出多个三角形,B符合题意;
    ∵,,,满足SAS的要求,
    ∴可以画出唯一的三角形,C不符合题意;
    ∵,,,AB最大,
    ∴可以画出唯一的三角形,D不符合题意;
    故选B.
    【点睛】
    本题考查了三角形的存在性,熟练掌握三角形全等的判定方法是解题的关键.
    8、A
    【分析】
    先根据旋转的性质可得,再根据等边三角形的判定与性质可得,然后根据线段的和差即可得.
    【详解】
    由旋转的性质得:,

    是等边三角形,



    故选:A.
    【点睛】
    本题考查了旋转的性质、等边三角形的判定与性质等知识点,熟练掌握旋转的性质是解题关键.
    9、C
    【分析】
    根据三角形的三边关系,逐项判断即可求解.
    【详解】
    解:A、因为 ,所以不能组成三角形,故本选项不符合题意;
    B、因为 ,所以不能组成三角形,故本选项不符合题意;
    C、因为 ,所以能组成三角形,故本选项符合题意;
    D、因为 ,所以不能组成三角形,故本选项不符合题意;
    故选:C
    【点睛】
    本题主要考查了三角形的三边关系,熟练掌握三角形的两边之和大于第三边,两边之差小于第三边是解题的关键.
    10、B
    【分析】
    利用已知条件证明△ADE≌△ADC(SAS),得到∠DEA=∠C,根据外角的性质可求的度数.
    【详解】
    解:∵AD是∠BAC的平分线,
    ∴∠EAD=∠CAD
    在△ADE和△ADC中,

    ∴△ADE≌△ADC(SAS),
    ∴∠DEA=∠C,
    ∵,∠DEA=∠B +,
    ∴;
    故选:B
    【点睛】
    本题考查了全等三角形的性质与判定,解决本题的关键是证明△ADE≌△ADC.
    二、填空题
    1、9或7.5或9
    【分析】
    分9是底边和腰长两种情况,分别列出方程,求解即可得到结果.
    【详解】
    解:若9cm为底时,腰长应该是(24-9)=7.5cm,
    故三角形的三边分别为7.5cm、7.5cm、9cm,
    ∵7.5+7.5=15>9,
    故能围成等腰三角形;
    若9cm为腰时,底边长应该是24-9×2=6,
    故三角形的三边为9cm、9cm、6cm,
    ∵6+9=15>9,
    ∴以9cm、9cm、6cm为三边能围成三角形,
    综上所述,腰长是9cm或7.5cm,
    故答案为:9或7.5.
    【点睛】
    本题考查了等腰三角形的性质,三角形的周长,掌握等腰三角形的两腰相等是解题的关键.
    2、2a 2n﹣1a
    【分析】
    利用等边三角形的性质得到∠A1OB1=∠A1B1O=30°,OA1=A1B1=A2B1=a,利用同样的方法得到A2O=A2B2=2a=21a,A3B3=A3O=2A2O=4=22a,利用此规律即可得到AnBn=2n﹣1a.
    【详解】
    解:∵△A1B1A2为等边三角形,∠MON=30°,
    ∴∠A1OB1=∠A1B1O=30°,OA1=A1B1=A2B1=a,
    同理:A2O=A2B2=2=21a,
    A3B3=A3O=2A2O=4a=22a,
    …….
    以此类推可得△AnBnAn+1的边长为AnBn=2n﹣1a.
    故答案为:2a;2n﹣1a.
    【点睛】
    本题考查规律型:图形的变化类,等边三角形的性质,解题关键是掌握三角形边长的变化规律.
    3、20
    【分析】
    利用平行线的性质求出∠1,再利用三角形外角的性质求出∠DCB即可.
    【详解】
    解:∵EF∥CD,
    ∴,
    ∵∠1是△DCB的外角,
    ∴∠1-∠B=50°-30°=20º,
    故答案为:20.

    【点睛】
    本题考查了平行线的性质,三角形外角的性质等知识,解题的关键是熟练掌握基本知识.
    4、75
    【分析】
    由题意,是等腰三角形,然后求出的度数,再根据三角形的外角性质,即可求出的度数.
    【详解】
    解:∵是等腰直角三角形,
    ∴AC=BC,∠ABC=∠BAC=45°,∠ACB=90°,
    ∵△BCD是等边三角形,
    ∴BC=CD,∠BCD=60°,
    ∴AC=CD,∠ACD=90°+60°=150°,
    ∴是等腰三角形,
    ∴,
    ∴,
    ∴;
    故答案为:75.
    【点睛】
    本题考查了等边三角形的性质,等腰直角三角形的性质,三角形的外角性质,三角形的内角和定理,解题的关键是掌握所学的知识,正确的求出.
    5、答案不唯一,如:AC=DB,AB=DC,∠ABC=∠DCB
    【分析】
    根据全等三角形的判定条件求解即可.
    【详解】
    解:∵∠A=∠D=90°,BC=CB,
    ∴只需要添加:AC=DB或AB=DC,即可利用HL证明△ABC≌△DCB;添加∠ABC=∠DCB可以利用AAS证明△ABC≌△DCB,
    故答案为:答案不唯一,如:AC=DB,AB=DC,∠ABC=∠DCB.
    【点睛】
    本题主要考查了全等三角形的判定,熟知全等三角形的判定条件是解题的关键.
    三、解答题
    1、(1),,,90;(2)①∠1、∠2;②∠CME或∠NEB.
    【分析】

    【详解】
    解:(1)∵折叠
    ∴EN是的平分线,EM是的平分线,
    ∴∠NEA=∠NEA′=,∠BEM=∠B′EM=,
    ∵是平角.
    ∴∠NEM=∠NEA′+∠B′EM==+,
    故答案为:,,,90;

    (2)①∵∠1=∠2,∠A′EN=∠3,∠NEM=90°,
    ∴∠A′EN+∠1=∠NEM=90°,
    ∴互为余角为∠1和∠2,
    故答案为:∠1、∠2;
    ②∵∠A′EN=∠3,∠3+∠NEB=180°,
    ∴∠A′EN的补角为∠NEB.
    ∵∠B=90°,
    ∴∠2+∠EMB=90°,
    ∴∠3=∠EMB,
    ∵∠CME+∠EMB=180°,
    ∴∠3+∠CME=180°,
    ∴∠A′EN的补角为∠CME,
    ∴∠A′EN的补角为∠CME或∠NEB.
    故答案为∠CME或∠NEB.
    【点睛】
    本题考查折叠性质,平角,角平分线,余角性质,补角性质,掌握折叠性质,平角,角平分线,余角性质,补角性质是解题关键.
    2、25°
    【分析】
    直接利用等腰三角形的性质得出∠ABC=∠ACB=65°,进而利用三角形内角和定理得出答案.
    【详解】
    ∵AB=AC,∠A=50°,
    ∴∠ABC=∠ACB=65°,
    ∵CD⊥BC于点D,
    ∴∠BCD的度数为:180°−90°−65°=25°.
    【点睛】
    此题主要考查了等腰三角形的性质,正确得出∠B的度数是解题关键.
    3、证明见解析.
    【分析】
    过D作DG∥AC交AB于G,由等边三角形的性质和平行线的性质得到∠BDG=∠BGD=60°,于是得到△BDG是等边三角形,再证明△AGD≌△DCE即可得到结论.
    【详解】
    证明:过D作DG∥AC交AB于G,

    ∵△ABC是等边三角形,
    ∴AB=AC,∠B=∠ACB=∠BAC=60°,
    又∵DG∥AC,
    ∴∠BDG=∠BGD=60°,
    ∴△BDG是等边三角形,∠AGD=180°−∠BGD=120°,
    ∴DG=BD,
    ∵点D为BC的中点,
    ∴BD=CD,
    ∴DG=CD,
    ∵EC是△ABC外角的平分线,
    ∴∠ACE=(180°−∠ACB)=60°,
    ∴∠BCE=∠ACB+∠ACE=120°=∠AGD,
    ∵AB=AC,点D为BC的中点,
    ∴∠ADB=∠ADC=90°,
    又∵∠BDG=60°,∠ADE=60°,
    ∴∠ADG=∠EDC=30°,
    在△AGD和△ECD中,

    ∴△AGD≌△ECD(ASA).
    ∴AD=DE.
    【点睛】
    本题是三角形综合题,主要考查了平行线的性质,全等三角形的性质与判定,等边三角形的判定与性质,熟练掌握全等三角形的判定与性质是解题的关键.
    4、(1)5;(2)证明见解析
    【分析】
    (1)推出∠ADE=∠BEC,根据AAS证△AED≌△CEB,推出AE=BC,BE=AD,代入求出即可;
    (2)推出∠A=∠EBC,∠AED=∠BCE,根据AAS证△AED≌△BCE,推出AD=BE,AE=BC,即可得出结论.
    【详解】
    (1)解:∵∠DEC=∠A=90°,
    ∴∠ADE+∠AED=90°,∠AED+∠BEC=90°,
    ∴∠ADE=∠BEC,
    ∵,∠A=90°,
    ∴∠B+∠A=180°,
    ∴∠B=∠A=90°,
    在△AED和△CEB中

    ∴△AED≌△BCE(AAS),
    ∴AE=BC=3,BE=AD=2,
    ∴AB=AE+BE=2+3=5.
    (2)证明:∵,
    ∴∠A=∠EBC,
    ∵∠DFC=∠AEC,
    ∠DFC=∠BCE+∠DEC,∠AEC=∠AED+∠DEC,
    ∴∠AED=∠BCE,
    在△AED和△BCE中

    ∴△AED≌△BCE(AAS),
    ∴AD=BE,AE=BC,
    ∵BC=AE=AB+BE=AB+AD,
    即AB+AD=BC.
    【点睛】
    本题考查了三角形的外角的性质,全等三角形的性质和判定,平行线的性质等知识点的运用,掌握“利用证明两个三角形全等”是解本题的关键.
    5、(1)见解析;(2)见解析;(3)2
    【分析】
    (1)过点B作于点Q,根据AAS证明△得,再证明四边形是矩形得BQ=CG,从而得出结论;
    (2) 在GF上截取GH=GE,连接AH,证明AH=FH,GE=GH即可;
    (3) 过点A作于点P,在FC上截取,连接,证明得,可证明AC是EH的垂直平分线,再证明和△得可求出,从而可得结论.
    【详解】
    解:(1)证明:过点B作于点Q,如图1





    又,
    ∴△


    ∴四边形是矩形


    (2)在GF上截取GH=GE,连接AH,如图2,











    (3)过点A作于点P,在FC上截取,连接,如图3,

    由(1)、(2)知,,





    ∴∠

    ∴∠


    ∴∠

    ∴AC是EH的垂直平分线,


    又∵

    ∴∠
    ∴∠
    ∵∠,
    ∴∠




    ∵∠
    ∴,即

    ∵,即

    在和中,
    AH=AM∠HAB=∠MADAB=AD
    ∴△




    【点睛】
    本题考查的是全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理是解题的关键.
    6、
    (1);
    (2).
    【分析】
    (1)根据三角形内角和定理可求出,然后利用角平分线进行计算即可得;
    (2)根据垂直得出,然后根据三角形内角和定理即可得.
    (1)
    解:∵,,
    ∴,
    ∵AD是角平分线,
    ∴,
    ∴;
    (2)
    ∵,
    ∴,
    ∴,
    ∴.
    【点睛】
    题目主要考查三角形内角和定理,角平分线的计算等,熟练运用三角形内角和定理是解题关键.
    7、(1)∠A+∠C=90°;(2)∠C﹣∠A=90°,见解析;(3)45°
    【分析】
    (1)过点B作BE∥AM,利用平行线的性质即可求得结论;
    (2)过点B作BE∥AM,利用平行线的性质即可求得结论;
    (3)利用(2)的结论和三角形的外角等于和它不相邻的两个内角的和即可求得结论.
    【详解】
    (1)过点B作BE∥AM,如图,

    ∵BE∥AM,
    ∴∠A=∠ABE,
    ∵BE∥AM,AM∥CN,
    ∴BE∥CN,
    ∴∠C=∠CBE,
    ∵AB⊥BC,
    ∴∠ABC=90°,
    ∴∠A+∠C=∠ABE+∠CBE=∠ABC=90°.
    故答案为:∠A+∠C=90°;
    (2)∠A和∠C满足:∠C﹣∠A=90°.理由:
    过点B作BE∥AM,如图,

    ∵BE∥AM,
    ∴∠A=∠ABE,
    ∵BE∥AM,AM∥CN,
    ∴BE∥CN,
    ∴∠C+∠CBE=180°,
    ∴∠CBE=180°﹣∠C,
    ∵AB⊥BC,
    ∴∠ABC=90°,
    ∴∠ABE+∠CBE=90°,
    ∴∠A+180°﹣∠C=90°,
    ∴∠C﹣∠A=90°;
    (3)设CH与AB交于点F,如图,

    ∵AE平分∠MAB,
    ∴∠GAF=∠MAB,
    ∵CH平分∠NCB,
    ∴∠BCF=∠BCN,
    ∵∠B=90°,
    ∴∠BFC=90°﹣∠BCF,
    ∵∠AFG=∠BFC,
    ∴∠AFG=90°﹣∠BCF.
    ∵∠AGH=∠GAF+∠AFG,
    ∴∠AGH=∠MAB+90°﹣∠BCN=90°﹣(∠BCN﹣∠MAB).
    由(2)知:∠BCN﹣∠MAB=90°,
    ∴∠AGH=90°﹣45°=45°.
    故答案为:45°.
    【点睛】
    本题考查平行线的性质以及三角形外角的性质,由题作出辅助线是解题的关键.
    8、(1)(2)见解析(3)
    【分析】
    (1)利用边相等和角相等,直接证明,即可得到结论.
    (2)利用边相等和角相等,直接证明,得到和,最后通过边与边之间的关系,即可证明结论成立.
    (3)要证明,先利用边相等和角相等,直接证明,得到和,最后通过边与边之间的关系,即可证明结论成立.
    【详解】
    (1)解:
    ,,

    在和中,



    (2)解:当点D在线段AC的延长线上时,如下图所示:

    ,,

    在和中,


    ,,

    (3)解:,如下图所示:

    ,,

    在和中,


    ,,

    【点睛】
    本题主要是考查了三角形全等的判定和性质,熟练利用条件证明三角形全等,然后利用边相等以及边与边之间关系,即可证明结论成立,这是解决该题的关键.
    9、(1)20°;(2);(3)AF= CF+BF,理由见解析
    【分析】
    (1)由△ABC是等边三角形,得到AB=AC,∠BAC=∠ABC=60°,由折叠的性质可知,∠EAD=∠CAD=20°,AC=AE,则∠BAE=∠BAC-∠EAD-∠CAD=20°,AB=AE,,∠CBF=∠ABE-∠ABC=20°;
    (2)同(1)求解即可;
    (3)如图所示,将△ABF绕点A逆时针旋转60°得到△ACG,先证明△AEF≌△ACF得到∠AFE=∠AFC,然后证明∠AFE=∠AFC=60°,得到∠BFC=120°,即可证明F、C、G三点共线,得到△AFG是等边三角形,则AF=GF=CF+CG=CF+BF.
    【详解】
    解:(1)∵△ABC是等边三角形,
    ∴AB=AC,∠BAC=∠ABC=60°,
    由折叠的性质可知,∠EAD=∠CAD=20°,AC=AE,
    ∴∠BAE=∠BAC-∠EAD-∠CAD=20°,AB=AE,
    ∴,
    ∴∠CBF=∠ABE-∠ABC=20°;
    (2)∵△ABC是等边三角形,
    ∴AB=AC,∠BAC=∠ABC=60°,
    由折叠的性质可知,,AC=AE,
    ∴ ,AB=AE,
    ∴,
    ∴;
    (3)AF= CF+BF,理由如下:
    如图所示,将△ABF绕点A逆时针旋转60°得到△ACG,
    ∴AF=AG,∠FAG=60°,∠ACG=∠ABF,BF=CG
    在△AEF和△ACF中,

    ∴△AEF≌△ACF(SAS),
    ∴∠AFE=∠AFC,
    ∵∠CBF+∠BCF+∠BFD+∠CFD=180°,∠CAF+∠CFA+∠ACD+∠CFD=180°,
    ∴∠BFD=∠ACD=60°,
    ∴∠AFE=∠AFC=60°,
    ∴∠BFC=120°,
    ∴∠BAC+∠BFC=180°,
    ∴∠ABF+∠ACF=180°,
    ∴∠ACG+∠ACF=180°,
    ∴F、C、G三点共线,
    ∴△AFG是等边三角形,
    ∴AF=GF=CF+CG=CF+BF.

    【点睛】
    本题主要考查了等边三角形的性质与判定,旋转的性质,折叠的性质,全等三角形的性质与判定,三角形内角和定理,熟知相关知识是解题的关键.
    10、(1)△DEF是等边三角形,理由见解析(2)等边△ABC的周长为
    【分析】
    (1)利用△DEF是等边三角形的性质以及三点的运动情况,求证和,进而证明,最后即可说明△DEF是等边三角形.
    (2)利用题(1)的条件即∠DEC=150°,得出是含角的直角三角形,求出,最后求解出等边△ABC的长,最后即可求出等边△ABC的周长.
    【详解】
    (1)解:△DEF是等边三角形,
    证明:由点D、E、F的运动情况可知:,
    △ABC是等边三角形,
    ,,
    ,

    在与中,



    同理可证,进而有,

    故△DEF是等边三角形.
    (2)解:由(1)可知△DEF是等边三角形,且,
    ,,,


    在中,,



    等边△ABC的周长为.
    【点睛】
    本题主要是考查了全等三角形的性质及判定、等边三角形的判定及性质和含角直角三角形的性质,熟练利用等边三角形的性质,找到相等条件,进而证明全等三角形,综合利用全等三角形以及含角直角三角形的性质,求出对应边长,是解决该题的关键.

    相关试卷

    数学七年级下册第十四章 三角形综合与测试同步训练题:

    这是一份数学七年级下册第十四章 三角形综合与测试同步训练题,共39页。

    初中数学沪教版 (五四制)七年级下册第十四章 三角形综合与测试当堂达标检测题:

    这是一份初中数学沪教版 (五四制)七年级下册第十四章 三角形综合与测试当堂达标检测题,共38页。试卷主要包含了三角形的外角和是等内容,欢迎下载使用。

    初中数学沪教版 (五四制)七年级下册第十四章 三角形综合与测试同步练习题:

    这是一份初中数学沪教版 (五四制)七年级下册第十四章 三角形综合与测试同步练习题,共32页。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map