初中数学沪教版 (五四制)七年级下册第十四章 三角形综合与测试测试题
展开
这是一份初中数学沪教版 (五四制)七年级下册第十四章 三角形综合与测试测试题,共29页。试卷主要包含了如图,点D等内容,欢迎下载使用。
沪教版七年级数学第二学期第十四章三角形章节测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知长方形纸片ABCD,点E、F分别在边AB、CD上,连接EF,将∠BEF对折,点B落在直线EF上的点B′处,得折痕EM,将∠AEF对折,点A落在直线EF上的点A′处,得折痕EN,则图中与∠B′ME互余的角有( )A.2个 B.3个 C.4个 D.5个2、我们称网格线的交点为格点.如图,在4×4的长方形网格中有两个格点A、B,连接AB,在网格中再找一个格点C,使得△ABC是等腰直角三角形,则满足条件的格点C的个数是( )A.3 B.4 C.5 D.63、如图,ABC中,∠ACB=90°,∠ABC=40°.将ABC绕点B逆时针旋转得到,使点C的对应点恰好落在边AB上,则的度数是( )A.50° B.70° C.110° D.120°4、已知,,,的相关数据如图所示,则下列选项正确的是( )A. B. C. D.5、如图,在△ABC中,BD平分∠ABC,∠C=2∠CDB,AB=12,CD=3,则△ABC的周长为( )A.21 B.24 C.27 D.306、如图,已知为的外角,,,那么的度数是( )A.30° B.40° C.50° D.60°7、如图,,点E在线段AB上,,则的度数为( )A.20° B.25° C.30° D.40°8、如图,点D、E分别在∠ABC的边BA、BC上,DE⊥AB,过BA上的点F(位于点D上方)作FG∥BC,若∠AFG=42°,则∠DEB的度数为( )A.42° B.48° C.52° D.58°9、如图,将的BC边对折,使点B与点C重合,DE为折痕,若,,则( ).A.45° B.60° C.35° D.40°10、如图,点A、B、C、D在一条直线上,点E、F在AD两侧,,,添加下列条件不能判定的是( )A. B. C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,______.2、已知:如图,AB = DB.只需添加一个条件即可证明.这个条件可以是______.(写出一个即可).3、如图,在中,,,E为BC延长线上一点,与的平分线相交于点D,则∠D的度数为______.4、等腰三角形中,一条边长是2cm,另一条边长是3cm,这个等腰三角形的周长是________.5、如图,在ABC中,AB=AC,∠A=36°,点D在AC上,且BD=BC,则∠BDC=_______.三、解答题(10小题,每小题5分,共计50分)1、如图,在△ABC中,CE平分∠ACB交AB于点E,AD是△ABC边BC上的高,AD与CE相交于点F,且∠ACB=80°,求∠AFE的度数.2、如图,在四边形ABCD中,点E在BC上,连接DE、AC相交于点F,∠BAE=∠CAD,AB=AE,AD=AC.(1)求证:∠DEC=∠BAE;(2)如图2,当∠BAE=∠CAD=30°,AD⊥AB时,延长DE、AB交于点G,请直接写出图中除△ABE、△ADC以外的等腰三角形.3、在等边中,D、E是BC边上两动点(不与B,C重合)(1)如图1,,求的度数;(2)点D在点E的左侧,且AD=AE,点E关于直线AC的对称点为F,连接AF,DF.①依题意将图2补全;②求证:.4、如图,在△ABC中, AB=AC,AD是△ABC的中线,BE平分∠ABC交AD于点E,连接EC.求证:CE平分∠ACB.5、如图,是等边三角形,D点是BC上一点,,于点E,CE交AD于点P.求的度数.6、如图,在中,是的平分线,点在边上,且.(Ⅰ)求证:;(Ⅱ)若,,求的大小.7、如图,已知△ABC≌△DEB,点E在AB上,AC与BD交于点F,AB=6,BC=3,∠C=55°,∠D=25°.(1)求AE的长度;(2)求∠AED的度数.8、如图,在中,AD平分,于点E.求证:.9、已知:在△ABC中,AD平分∠BAC,AE=AC.求证:AD∥CE.10、如图,,,E为BC中点,DE平分.(1)求证:平分;(2)求证:;(3)求证:. -参考答案-一、单选题1、C【分析】先由翻折的性质得到∠AEN=∠A′EN,∠BEM=∠B′EM,从而可知∠NEM=×180°=90°,然后根据余角的定义找出∠B′ME的余角即可.【详解】解:由翻折的性质可知:∠AEN=∠A′EN,∠BEM=∠B′EM.∠NEM=∠A′EN+∠B′EM=∠AEA′+∠B′EB=×180°=90°.由翻折的性质可知:∠MB′E=∠B=90°.由直角三角形两锐角互余可知:∠B′ME的一个余角是∠B′EM.∵∠BEM=∠B′EM,∴∠BEM也是∠B′ME的一个余角.∵∠NBF+∠B′EM=90°,∴∠NEF=∠B′ME.∴∠ANE、∠A′NE是∠B′ME的余角.综上所述,∠B′ME的余角有∠ANE、∠A′NE、∠B′EM、∠BEM.故选:C.【点睛】本题主要考查的是翻折的性质、余角的定义,掌握翻折的性质是解题的关键.2、A【分析】根据题意,结合图形,分两种情况讨论:①AB为等腰直角△ABC底边;②AB为等腰直角△ABC其中的一条腰.【详解】解:如图:分情况讨论:①AB为等腰直角△ABC底边时,符合条件的格点C点有0个;②AB为等腰直角△ABC其中的一条腰时,符合条件的格点C点有3个.故共有3个点,故选:A.【点睛】本题考查了等腰三角形的性质和判定;解答本题关键是根据题意,画出符合实际条件的图形,数形结合的思想是数学解题中很重要的解题思想.3、B【分析】根据旋转可得,,得.【详解】解:,,,将绕点逆时针旋转得到△,使点的对应点恰好落在边上,,,.故选:B.【点睛】本题考查了旋转的性质,等腰三角形的性质,三角形内角和定理,解决本题的关键是掌握旋转的性质.4、D【分析】根据三角形内角和定理分别求出三个三角形中未知角的度数,然后依据全等三角形的判定定理,从三个三角形中寻找条件证明全等,即可得出选项.【详解】解:,,在与中,,∴≅,∴,A、B、C三个选项均不能证明,故选:D.【点睛】题目主要考查三角形内角和定理、全等三角形的判定和性质,理解题意,熟练运用全等三角形的判定定理是解题关键.5、C【分析】根据题意在AB上截取BE=BC,由“SAS”可证△CBD≌△EBD,可得∠CDB=∠BDE,∠C=∠DEB,可证∠ADE=∠AED,可得AD=AE,进而即可求解.【详解】解:如图,在AB上截取BE=BC,连接DE,∵BD平分∠ABC,∴∠ABD=∠CBD,在△CBD和△EBD中,,∴△CBD≌△EBD(SAS),∴∠CDB=∠BDE,∠C=∠DEB,∵∠C=2∠CDB,∴∠CDE=∠DEB,∴∠ADE=∠AED,∴AD=AE,∴△ABC的周长=AD+AE+BE+BC+CD=AB+AB+CD=27,故选:C.【点睛】本题考查全等三角形的判定和性质以及等腰三角形的性质,注意掌握添加恰当辅助线构造全等三角形是解题的关键.6、B【分析】根据三角形的外角性质解答即可.【详解】解:∵∠ACD=60°,∠B=20°,∴∠A=∠ACD−∠B=60°−20°=40°,故选:B.【点睛】此题考查三角形的外角性质,关键是根据三角形外角性质解答.7、C【分析】根据全等三角形的性质可证得BC=CE,∠ACB=∠DCE即∠ACD=∠BCE,根据等腰三角形的性质和三角形的内角和定理求解∠B=∠BEC和∠BCE即可.【详解】解:∵,∴BC=CE,∠ACB=∠DCE,∴∠B=∠BEC,∠ACD=∠BCE,∵,∴∠ACD=∠BCE=180°-2×75°=30°,故选:C.【点睛】本题考查全等三角形的性质、等腰三角形的性质、三角形的内角和定理,熟练掌握全等三角形的性质和等腰三角形的性质是解答的关键.8、B【分析】根据两直线平行,同位角相等可得,再由垂直的性质及三角形内角和定理即可得.【详解】解:∵,∴,∵,∴,∴,故选:B.【点睛】题目主要考查平行线及垂线的性质,三角形内角和定理等,理解题意,熟练运用平行线的性质是解题关键.9、A【分析】由折叠得到∠B=∠BCD,根据三角形的内角和得∠A+∠B+∠ACB=180°,代入度数计算即可.【详解】解:由折叠得∠B=∠BCD,∵∠A+∠B+∠ACB=180°,,,∴65°+2∠B+25°=180°,∴∠B=45°,故选:A.【点睛】此题考查了折叠的性质,三角形内角和定理,熟记折叠的性质是解题的关键.10、A【分析】根据题意,可得,结合选项根据三角形全等的性质与判定逐项分析即可.【详解】解:A. ,,不能根据SSA证明三角形全等,故该选项符合题意;B. ,故能判定,不符合题意;C. ,,,故能判定,不符合题意;D.,故能判定,不符合题意;故选A【点睛】本题考查了平行线的性质,三角形全等的性质与判定,掌握三角形全等的性质与判定是解题的关键.二、填空题1、180度【分析】如图,连接 记的交点为 先证明再利用三角形的内角和定理可得答案.【详解】解:如图,连接 记的交点为 故答案为:【点睛】本题考查的是三角形的内角和定理,作出合适的辅助线构建三角形是解本题的关键.2、AC=DC【分析】由题意可得,BC为公共边,AB=DB,即添加一组边对应相等,可证△ABC与△DBC全等.【详解】解:∵AB=DB,BC=BC,添加AC=DC,∴在△ABC与△DBC中,,∴△ABC≌△DBC(SSS),故答案为:AC=DC.【点睛】本题考查了全等三角形的判定,灵活运用全等三角形的判定是本题的关键.3、20°度【分析】根据角平分线的性质得到,再利用三角形外角的性质计算.【详解】解:∵与的平分线相交于点D,∴,∵∠ACE=∠A+∠ABC,∠DCE=∠D+∠DBC,∴∠D=∠DCE-∠DBC=,故答案为:20°.【点睛】此题考查了三角形的外角性质及角平分线的性质,熟记三角形外角的性质定理是解题的关键.4、或【分析】因为已知长度为和两边,没有明确是底边还是腰,所以有两种情况,需要分类讨论.【详解】解:①当为底时,其它两边都为,、、可以构成三角形,周长为;②当为底时,其它两边都为,、、可以构成三角形,周长为;故答案为:或.【点睛】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,解题的关键是利用分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要.5、72°72度【分析】根据AB=AC求出∠ACB,利用BD=BC,求出∠BDC的度数.【详解】解:∵AB=AC,∠A=36°,∴,∵BD=BC,∴∠BDC=∠ACB=72°,故答案为:72°.【点睛】此题考查了等腰三角形的性质:等边对等角,熟记性质是解题的关键.三、解答题1、∠AFE=50°.【分析】根据CE平分∠ACB,∠ACB=80°,得出∠ECB=,根据高线性质得出∠ADC=90°,根据三角形内角和得出∠DFC=180°-∠ADC-∠ECB=180°-90°-40°=50°,利用对顶角性质得出∠AFE=∠DFC=50°即可.【详解】解:∵CE平分∠ACB,∠ACB=80°,∴∠ECB=,∵AD是△ABC边BC上的高,AD⊥BC,∴∠ADC=90°,∴∠DFC=180°-∠ADC-∠ECB=180°-90°-40°=50°,∴∠AFE=∠DFC=50°.【点睛】本题考查角平分线定义,垂线性质,三角形内角和,对顶角性质,掌握角平分线定义,垂线性质,三角形内角和,对顶角性质是解题关键.2、(1)见解析;(2)△AEF、△ADG、△DCF、△ECD【分析】(1)根据已知条件得到∠BAE=∠CAD,根据全等三角形的性质得到∠AED=∠ABC,根据等腰三角形的性质得到∠ABC=∠AEB,于是得到结论;(2)根据等腰三角形的判定定理即可得到结论.【详解】证明:(1)如图1,∵∠BAE=∠CAD, ∴∠BAE+∠CAE=∠CAD+∠CAE,即∠BAC=∠EAD,在△AED与△ABC中,∴△AED≌△ABC,∴∠AED=∠ABC,∵∠BAE+∠ABC+∠AEB=180°,∠CED+∠AED+∠AEB=180°,∵AB=AE,∴∠ABC=∠AEB,∴∠BAE+2∠AEB=180°,∠CED+2∠AEB=180°,∴∠DEC=∠BAE;(2)解:如图2, ①∵∠BAE=∠CAD=30°,∴∠ABC=∠AEB=∠ACD=∠ADC=75°,由(1)得:∠AED=∠ABC=75°,∠DEC=∠BAE=30°,∵AD⊥AB,∴∠BAD=90°,∴∠CAE=30°,∴∠AFE=180°−30°−75°=75°,∴∠AEF=∠AFE, ∴△AEF是等腰三角形, ②∵∠BEG=∠DEC=30°,∠ABC=75°,∴∠G=45°,在Rt△AGD中,∠ADG=45°,∴△ADG是等腰直角三角形, ③∠CDF=75°−45°=30°,∴∠DCF=∠DFC=75°,∴△DCF是等腰直角三角形;④∵∠CED=∠EDC=30°,∴△ECD是等腰三角形.【点睛】本题考查了全等三角形的判定与性质,等腰直角三角形的判定,等腰三角形的判定和性质,熟练掌握全等三角形的判定与性质是解题的关键.3、(1);(2)①作图见解析;②证明见解析【分析】(1)等边三角形中,由知,,进而求出的值;(2)①作图见详解;② ,,,点E,F关于直线对称,,,,为等边三角形,进而可得到.【详解】解:(1)为等边三角形.(2)①补全图形如图所示,②证明:为等边三角形 ,点E,F关于直线对称,即为等边三角形.【点睛】本题考察了等边三角形的判定与性质,等腰三角形的性质,轴对称的性质.解题的关键在于角度的转化.4、见解析【分析】根据等腰三角形的性质,可得∠ADB=∠ADC=90°,∠ABC=∠ACB,BD=CD,从而得到△BDE≌△CDE,进而得到∠DCE=∠DBE,再由BE平分∠ABC,可得 ,进而得到,即可求证.【详解】解:∵AB=AC,AD是△ABC的中线,∴∠ADB=∠ADC=90°,∠ABC=∠ACB,BD=CD,∵DE=DE,∴△BDE≌△CDE,∴∠DCE=∠DBE,∵BE平分∠ABC,∴ ,∴,∴,∴CE平分∠ACB.【点睛】本题主要考查了等腰三角形的性质,全等三角形的判定和性质,熟练掌握等腰三角形的两底角相等,等腰三角形“三线合一”是解题的关键.5、【分析】由题意易得,,则有,然后可得,进而可证,则有,最后问题可求解.【详解】解:∵是等边三角形,∴,,∵,∴,∴,∴,∵,∴,∴(SAS),∴,∵,∴.【点睛】本题主要考查等边三角形的性质、含30度直角三角形的性质及全等三角形的性质与判定,熟练掌握等边三角形的性质、含30度直角三角形的性质及全等三角形的性质与判定是解题的关键.6、(Ⅰ)见解析;(Ⅱ)【分析】(Ⅰ)由CD是的平分线得出,由得出从而得出,由平行线的判断即可得证;(Ⅱ)由三角形内角和求出,由角平分线得出,由三角形内角和求出即可得出答案.【详解】(Ⅰ)∵CD是的平分线,∴,∵,∴,∴,∴;(Ⅱ)∵,,∴,∴,∴.【点睛】本题考查平行线的判定以及三角形内角和定理,掌握相关知识是解题的关键7、(1);(2).【分析】(1)先根据全等三角形的性质可得,再根据线段的和差即可得;(2)先根据全等三角形的性质可得,再根据三角形的外角性质即可得.【详解】解:(1)∵,∴,∵,∴;(2)∵,∴,∵,∴.【点睛】本题考查全等三角形的性质等知识点,熟练掌握全等三角形的对应角和对应边相等是解题关键.8、证明见解析.【分析】延长CE交AB于F,求出∠AEC=∠AEF,∠FAE=∠CAE,根据ASA证△FAE≌△CAE,推出∠ACE=∠AFC,根据三角形外角性质得出∠AFC=∠B+∠ECD,代入即可.【详解】证明:延长CE交AB于F,∵CE⊥AD,∴∠AEC=∠AEF,∵AD平分∠BAC,∴∠FAE=∠CAE,在△FAE和△CAE中,∵ ,∴△FAE≌△CAE(ASA),∴∠ACE=∠AFC,∵∠AFC=∠B+∠ECD,∴∠ACE=∠B+∠ECD.【点睛】本题考查了全等三角形的性质和判定,三角形的外角性质等知识点,关键是作辅助线后求出∠AFC=∠ACE.9、见解析.【分析】先根据角平分线的定义得到∠BAD=∠BAC,再根据等腰三角形的性质和三角形外角定理得到∠E=∠BAC,从而得到∠BAD=∠E,即可证明AD∥CE.【详解】解:∵AD平分∠BAC,∴∠BAD=∠BAC,∵AE=AC,∴∠E=∠ACE,∵∠E+∠ACE=∠BAC,∴∠E=∠BAC,∴∠BAD=∠E,∴AD∥CE.【点睛】本题考查了角平分线的定义,等腰三角形的性质,平行线的判定,三角形外角定理,熟知相关定理并灵活应用是解题关键.10、(1)见解析;(2)见解析;(3)见解析【分析】(1)延长DE交AB延长线于F,由∠B=∠C=90°,推出AB∥CD,则∠CDE=∠F,再由DE平分∠ADC,即可推出∠ADF=∠F,得到AD=AF,即△ADF是等腰三角形,然后证明△CDE≌△BFE得到DE=FE,即E是DF的中点,即可证明AE平分∠BAD;(2)由(1)即可用三线合一定理证明;(3)由△CDE≌△BFE,得到CD=BF,则AD=AF=AB+BF=AB+CD.【详解】解:(1)如图所示,延长DE交AB延长线于F,∵∠B=∠C=90°,∴AB∥CD,∴∠CDE=∠F,∵DE平分∠ADC,∴∠CDE=∠ADE,∴∠ADF=∠F,∴AD=AF,∴△ADF是等腰三角形,∵E是BC的中点,∴CE=BE,∴△CDE≌△BFE(AAS),∴DE=FE,∴E是DF的中点,∴AE平分∠BAD;(2)由(1)得△ADF是等腰三角形,AD=AF,E是DF的中点,∴AE⊥DE;(3)∵△CDE≌△BFE,∴CD=BF,∴AD=AF=AB+BF=AB+CD.【点睛】本题主要考查了平行线的性质与判定,全等三角形的性质与判定,等腰三角形的性质与判定,熟知相关知识是解题的关键.
相关试卷
这是一份数学沪教版 (五四制)第十四章 三角形综合与测试课时练习,共35页。试卷主要包含了如图,ABC≌DEF,点B等内容,欢迎下载使用。
这是一份沪教版 (五四制)七年级下册第十四章 三角形综合与测试复习练习题,共34页。试卷主要包含了下列三个说法,如图,ABC≌DEF,点B,若一个三角形的三个外角之比为3等内容,欢迎下载使用。
这是一份沪教版 (五四制)七年级下册第十四章 三角形综合与测试课时训练,共33页。试卷主要包含了已知,三角形的外角和是,已知长方形纸片ABCD,点E等内容,欢迎下载使用。