搜索
    上传资料 赚现金
    英语朗读宝

    2022年沪教版七年级数学第二学期第十四章三角形定向训练练习题(无超纲)

    2022年沪教版七年级数学第二学期第十四章三角形定向训练练习题(无超纲)第1页
    2022年沪教版七年级数学第二学期第十四章三角形定向训练练习题(无超纲)第2页
    2022年沪教版七年级数学第二学期第十四章三角形定向训练练习题(无超纲)第3页
    还剩34页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学第十四章 三角形综合与测试巩固练习

    展开

    这是一份初中数学第十四章 三角形综合与测试巩固练习,共37页。试卷主要包含了有下列说法,下列三角形与下图全等的三角形是等内容,欢迎下载使用。
    沪教版七年级数学第二学期第十四章三角形定向训练
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、已知的三边长分别为a,b,c,则a,b,c的值可能分别是( )
    A.1,2,3 B.3,4,7
    C.2,3,4 D.4,5,10
    2、如图,AD是的角平分线,,垂足为F.若,,则的度数为( )

    A.35° B.40° C.45° D.50°
    3、如图,若绕点A按逆时针方向旋转40°后与重合,则( ) .

    A.40° B.50° C.70° D.100
    4、如图,∠A=α,∠DBC=3∠DBA,∠DCB=3∠DCA,则∠BDC的大小为( )

    A. B. C. D.
    5、如图,在△ABC中,BD平分∠ABC,∠C=2∠CDB,AB=12,CD=3,则△ABC的周长为(  )

    A.21 B.24 C.27 D.30
    6、三个等边三角形的摆放位置如图所示,若,则的度数为  

    A. B. C. D.
    7、如图,在中,AD是角平分线,且,若,则的度数是( )

    A.45° B.50° C.52° D.58°
    8、有下列说法:①轴对称图形的对称轴是任何一对对应点所连线段的垂直平分线;②等腰三角形一腰上的高与底边的夹角与顶角互余;③等腰三角形顶角的平分线是它的对称轴;④等腰三角形两腰上的中线相等.其中正确的说法有( )个.
    A.1 B.2 C.3 D.4
    9、下列三角形与下图全等的三角形是( )

    A. B. C. D.
    10、已知:如图,D、E分别在AB、AC上,若AB=AC,AD=AE,∠A=60°,∠B=25°,则∠BDC的度数是(  )

    A.95° B.90° C.85° D.80°
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、如图,在△ABC中,点D为BC边延长线上一点,若∠ACD=75°,∠A=45°,则∠B的度数为__________.

    2、如图,在Rt△ABC中,∠C=90°,两锐角的角平分线交于点P,点E、F分别在边BC、AC上,且都不与点C重合,若∠EPF=45°,连接EF,当AC=6,BC=8,AB=10时,则△CEF的周长为 _____.

    3、如图,AB,CD相交于点O,,请你补充一个条件,使得,你补充的条件是______.

    4、如图,在△AOB和△COD中,OA=OB,OC=OD,OA<OC,∠AOB=∠COD=50°,连接AC、BD交于点M,连接OM.下列结论:①AC=BD,②∠AMB=50°;③OM平分∠AOD;④MO平分∠AMD.其中正确的结论是 _____.(填序号)

    5、已知△ABC是等腰三角形,若∠A=70°,则∠B=_____.
    三、解答题(10小题,每小题5分,共计50分)
    1、阅读填空,将三角尺(△MPN,∠MPN=90°)放置在△ABC上(点P在△ABC内),如图①所示,三角尺的两边PM、PN恰好经过点B和点C,我们来研究∠ABP与∠ACP是否存在某种数量关系.

    (1)特例探索:
    若∠A=50°,则∠PBC+∠PCB= 度,∠ABP+∠ACP= 度.
    (2)类比探索:
    ∠ABP、∠ACP、∠A的关系是 .
    (3)变式探索:
    如图②所示,改变三角尺的位置,使点P在△ABC外,三角尺的两边PM、PN仍恰好经过点B和点C,则∠ABP、∠ACP、∠A的关系是 .
    2、 “三等分角”是被称为几何三大难题的三个古希腊作图难题之一.如图1所示的“三等分角仪”是利用阿基米德原理做出的.这个仪器由两根有槽的棒PA,PB组成,两根棒在P点相连并可绕点P旋转,C点是棒PA上的一个固定点,点A,O可在棒PA,PB内的槽中滑动,且始终保持OA=OC=PC.∠AOB为要三等分的任意角.则利用“三等分角仪”可以得到∠APB =∠AOB.
    我们把“三等分角仪”抽象成如图2所示的图形,完成下面的证明.
    已知:如图2,点O,C分别在∠APB的边PB,PA上,且OA=OC=PC.
    求证:∠APB =∠AOB.

    3、如图,是的角平分线,于点.

    (1)用尺规完成以下基本作图:过点作于点,连接交于点.(不写作法,保留作图痕迹)
    (2)在(1)中所作的图形中,求证:.
    4、在中,,,点D是直线AC上一动点,连接BD并延长至点E,使.过点E作于点F.

    (1)如图1,当点D在线段AC上(点D不与点A和点C重合)时,此时DF与DC的数量关系是______.
    (2)如图2,当点D在线段AC的延长线上时,依题意补全图形,并证明:.
    (3)当点D在线段CA的延长线上时,直接用等式表示线段AD,AF,EF之间的数量关系是______.

    5、如图,AD为△ABC的角平分线.

    (1)如图1,若BE⊥AD于点E,交AC于点F,AB=4,AC=7.则CF=   ;
    (2)如图2,CG⊥AD于点G,连接BG,若△ABG的面积是6,求△ABC的面积;
    (3)如图3,若∠B=2∠C,AB=m,AC=n,则CD的长为    .(用含m,n的式子表示)
    6、如图,和是顶角相等的等腰三角形,BC,DE分别是这两个等腰三角形的底边.求证.

    7、如图1,点O是线段AD的中点,分别以AO和DO为边在线段AD的同侧作等边三角形OAB和等边三角形OCD,连接AC和BD,相交于点E,连接BC.
    (1)求证DOB≌AOC;
    (2)求∠CEB的大小;
    (3)如图2,OAB固定不动,保持△OCD的形状和大小不变,将OCD绕点O旋转(OAB和OCD不能重叠),求∠CEB的大小.

    8、如图,在△ABC中,AB=AC,CD⊥AB于点D,∠A=50°,求∠BCD的度数.

    9、如图,在等边△ABC中,点P是BC边上一点,∠BAP=(30°<<60°),作点B关于直线AP的对称点D,连接DC并延长交直线AP于点E,连接BE.
    (1)依题意补全图形,并直接写出∠AEB的度数;
    (2)用等式表示线段AE,BE,CE之间的数量关系,并证明.
    分析:①涉及的知识要素:图形轴对称的性质;等边三角形的性质;全等三角形的判定与性质……
    ②通过截长补短,利用60°角构造等边三角形,进而构造出全等三角形,从而达到转移边的目的.
    请根据上述分析过程,完成解答过程.

    10、如图,已知点E、C在线段BF上,,,.求证:ΔABC≅ΔDEF.


    -参考答案-
    一、单选题
    1、C
    【分析】
    三角形的三边应满足两边之和大于第三边,两边之差小于第三边,据此求解.
    【详解】
    解:A、1+2=3,不能组成三角形,不符合题意;
    B、3+4=7,不能组成三角形,不符合题意;
    C、2+3>4,能组成三角形,符合题意;
    D、4+5<10,不能组成三角形,不符合题意;
    故选:C.
    【点睛】
    本题考查了三角形的三边关系,满足两条较小边的和大于最大边即可.
    2、B
    【分析】
    根据三角形的内角和求出∠ACB=90°,利用三角形全等,求出DC=DE,再利用外角求出答案.
    【详解】
    解:∵∠CAB=40°,∠B=50°,
    ∴∠ACB=180°−40°−50°=90°,
    ∵CE⊥AD,
    ∴∠AFC=∠AFE=90°,
    ∵AD是△ABC的角平分线,
    ∴∠CAD=∠EAD=×40°=20°,
    又∵AF=AF,
    ∴△ACF≌△AEF(ASA)
    ∴AC=AE,
    ∵AD=AD,∠CAD=∠EAD,
    ∴△ACD≌△AED (SAS),
    ∴DC=DE,
    ∴∠DCE=∠DEC,
    ∵∠ACE=90°−20°=70°,
    ∴∠DCE=∠DEC=∠ACB−∠ACE=90°−70°=20°,
    ∴∠BDE=∠DCE+∠DEC=20°+20°=40°,
    故选:B.
    【点睛】
    考查角平分线、全等三角形的判定和性质、三角形的内角和等知识,根据三角形的内角和求出相应各个角的度数是解决问题的关键.
    3、C
    【分析】
    根据旋转的性质,可得 , ,从而得到,即可求解.
    【详解】
    解:∵绕点A按逆时针方向旋转40°后与重合,
    ∴ , ,
    ∴.
    故选:C
    【点睛】
    本题主要考查了图形的旋转,等腰三角形的性质,熟练掌握图形旋转前后对应线段相等,对应角相等是解题的关键.
    4、A
    【分析】
    根据题意设,根据三角形内角和公式定理,进而表示出,进而根据三角形内角和定理根据即可求解
    【详解】
    解:∵∠A=α,∠DBC=3∠DBA,∠DCB=3∠DCA,设,





    故选A
    【点睛】
    本题考查了三角形内角和定理,掌握三角形内角和定理是解题的关键.
    5、C
    【分析】
    根据题意在AB上截取BE=BC,由“SAS”可证△CBD≌△EBD,可得∠CDB=∠BDE,∠C=∠DEB,可证∠ADE=∠AED,可得AD=AE,进而即可求解.
    【详解】
    解:如图,在AB上截取BE=BC,连接DE,

    ∵BD平分∠ABC,
    ∴∠ABD=∠CBD,
    在△CBD和△EBD中,

    ∴△CBD≌△EBD(SAS),
    ∴∠CDB=∠BDE,∠C=∠DEB,
    ∵∠C=2∠CDB,
    ∴∠CDE=∠DEB,
    ∴∠ADE=∠AED,
    ∴AD=AE,
    ∴△ABC的周长=AD+AE+BE+BC+CD=AB+AB+CD=27,
    故选:C.
    【点睛】
    本题考查全等三角形的判定和性质以及等腰三角形的性质,注意掌握添加恰当辅助线构造全等三角形是解题的关键.
    6、A
    【分析】
    利用三个平角的和减去中间三角形的内角和,再减去三个的角即可.
    【详解】
    解:,,




    故选:.
    【点睛】
    本题主要考查了三角形的内角和定理,灵活运用三角形内角和定理成为解答本题的关键.
    7、A
    【分析】
    根据角平分线性质求出∠DCA,再根据等腰三角形的性质和三角形的内角和定理求解∠C和∠B即可.
    【详解】
    解:∵AD是角平分线,,
    ∴∠DCA==30°,
    ∵AD=AC,
    ∴∠C=(180°-∠DCA)÷2=75°,
    ∴∠B=180°-∠BAC-∠C=180°-60°-75°=45°,
    故选:A.
    【点睛】
    本题考查角平分线的性质、等腰三角形的性质、三角形的内角和定理,熟练掌握等腰三角形的性质是解答的关键.
    8、B
    【分析】
    根据轴对称的性质,轴对称图形的概念,等腰三角形的性质判断即可.
    【详解】
    解:①轴对称图形的对称轴是任何一对对应点所连线段的垂直平分线,说法正确;
    ②等腰三角形一腰上的高与底边的夹角与底角互余,原说法错误;
    ③等腰三角形的顶角平分线在它的对称轴上,原说法错误;
    ④等腰三角形两腰上的中线相等,说法正确.
    综上,正确的有①④,共2个,
    故选:B.
    【点睛】
    本题考查了轴对称的性质及等腰三角形的性质,掌握轴对称的性质,轴对称图形的概念,等腰三角形的性质是解题的关键.
    9、C
    【分析】
    根据已知的三角形求第三个内角的度数,由全等三角形的判定定理即可得出答案.
    【详解】
    由题可知,第三个内角的度数为,
    A.只有两边,故不能判断三角形全等,故此选项错误;
    B.两边夹的角度数不相等,故两三角形不全等,故此选项错误;
    C.两边相等且夹角相等,故能判断两三角形全等,故此选项正确;
    D. 两边夹的角度数不相等,故两三角形不全等,故此选项错误.
    故选:C.
    【点睛】
    本题考查全等三角形的判定,掌握全等三角形的判定定理是解题的关键.
    10、C
    【分析】
    根据SAS证△ABE≌△ACD,推出∠C=∠B,求出∠C的度数,根据三角形的外角性质得出∠BDC=∠A+∠C,代入求出即可.
    【详解】
    解:在△ABE和△ACD中,

    ∴△ABE≌△ACD(SAS),
    ∴∠C=∠B,
    ∵∠B=25°,
    ∴∠C=25°,
    ∵∠A=60°,
    ∴∠BDC=∠A+∠C=85°,
    故选C.
    【点睛】
    本题主要考查了全等三角形的性质与判定,三角形外角的性质,解题的关键在于能够熟练掌握全等三角形的性质与判定条件.
    二、填空题
    1、30°
    【分析】
    根据三角形的外角的性质,即可求解.
    【详解】
    解:∵ ,
    ∴ ,
    ∵∠ACD=75°,∠A=45°,
    ∴ .
    故答案为:30°
    【点睛】
    本题主要考查了三角形的外角性质,熟练掌握三角形的一个外角等于与它不相邻的两个内角的和是解题的关键.
    2、4
    【分析】
    根据题意过点P作PM⊥BC于M,PN⊥AC于N,PK⊥AB于K,在EB上取一点J,使得MJ=FN,连接PJ,进而利用全等三角形的性质证明EF=EM+EN,即可得出结论.
    【详解】
    解:如图,过点P作PM⊥BC于M,PN⊥AC于N,PK⊥AB于K,在EB上取一点J,使得MJ=FN,连接PJ.

    ∵BP平分∠BC,PA平分∠CAB,PM⊥BC,PN⊥AC,PK⊥AB,
    ∴PM=PK,PK=PN,
    ∴PM=PN,
    ∵∠C=∠PMC=∠PNC=90°,
    ∴四边形PMCN是矩形,
    ∴四边形PMCN是正方形,
    ∴CM=PM,
    ∴∠MPN=90°,
    在△PMJ和△PNF中,

    ∴△PMJ≌△PNF(SAS),
    ∴∠MPJ=∠FPN,PJ=PF,
    ∴∠JPF=∠MPN=90°,
    ∵∠EPF=45°,
    ∴∠EPF=∠EPJ=45°,
    在△PEF和△PEJ中,

    ∴△PEF≌△PEJ(SAS),
    ∴EF=EJ,
    ∴EF=EM+FN,
    ∴△CEF的周长=CE+EF+CF=CE+EM+CF+FN=2EM=2PM,
    ∵S△ABC=•BC•AC=(AC+BC+AB)•PM,
    ∴PM=2,
    ∴△ECF的周长为4,
    故答案为:4.
    【点睛】
    本题考查角平分线的性质定理,正方形的判定,全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问.
    3、(答案不唯一)
    【分析】
    在与中,已经有条件: 所以补充可以利用证明两个三角形全等.
    【详解】
    解:在与中,

    所以补充:

    故答案为:
    【点睛】
    本题考查的是全等三角形的判定,掌握“利用边边边公理证明两个三角形全等”是解本题的关键.
    4、①②④
    【分析】
    由证明得出,,①正确;
    由全等三角形的性质得出,由三角形的外角性质得:,得出,②正确;
    作于,于,如图所示:则,利用全等三角形对应边上的高相等,得出,由角平分线的判定方法得出平分,④正确;
    假设平分,则,由全等三角形的判定定理可得,得,而,所以,而,故③错误;即可得出结论.
    【详解】
    解:,

    即,
    在和中,


    ,,故①正确;

    由三角形的外角性质得:

    ,故②正确;
    作于,于,如图所示,

    则,


    平分,故④正确;
    假设平分,则,
    在与中,





    而,故③错误;
    所以其中正确的结论是①②④.
    故答案为:①②④.
    【点睛】
    本题考查了全等三角形的判定与性质、三角形的外角性质、角平分线的判定等知识;证明三角形全等是解题的关键.
    5、或或
    【分析】
    分①是顶角,是底角,②是底角,是底角,③是底角,是顶角三种情况,再根据等腰三角形的定义、三角形的内角和定理即可得.
    【详解】
    解:由题意,分以下三种情况:
    ①当是顶角,是底角时,
    则;
    ②当是底角,是底角时,
    则;
    ③当是底角,是顶角时,
    则;
    综上,的度数为或或,
    故答案为:或或.
    【点睛】
    本题考查了等腰三角形、三角形的内角和定理,正确分三种情况讨论是解题关键.
    三、解答题
    1、(1)90,40 ;(2)∠ABP+∠ACP+∠A=90°;(3)∠A+∠ACP-∠ABP=90°.
    【分析】
    (1)由三角形内角和为180°计算和中的角的关系即可.
    (2)由(1)所得即可得出∠ABP、∠ACP、∠A的关系为∠ABP+∠ACP+∠A=90°.
    (3)由三角形外角的性质即可推出∠A+∠ACP-∠ABP=90°.
    【详解】
    (1)在中
    ∵∠MPN=90°
    ∴∠PBC+∠PCB=180°-∠MPN=180°-90°=90°
    在中
    ∵∠A+∠ABC+∠ACB=180°
    又∵∠ABC=∠PBC+∠ABP,∠ACB=∠ACP+∠BCP
    ∴∠A+∠PBC+∠ABP +∠ACP+∠BCP =180°
    ∵∠PBC+∠PCB=90°,∠A=50°
    ∴∠ABP +∠ACP=180°-90°-50°=40°
    (2)由(1)问可知∠A+∠PBC+∠ABP +∠ACP+∠BCP =180°
    又∵∠PBC+∠PCB=90°
    ∴∠A+∠ABP +∠ACP=180°-(∠PBC+∠PCB)=180°-90°=90°
    (3)如图所示,设PN与AB交于点H
    ∵∠A+∠ACP=∠AHP
    又∵∠ABP+∠MPN =∠AHP
    ∴∠A+∠ACP=∠ABP+∠MPN
    又∵∠MPN =90°
    ∴∠A+∠ACP =90°+∠ABP
    ∴∠A+∠ACP-∠ABP=90°.

    【点睛】
    本题考查了三角形的性质以及三角尺的角度计算问题,三角板的角度分别为90°,45°,45°;90°,60°,30°两种直角三角尺,三角形内角和是180°,三角形的一个外角等于与它不相邻的两个内角的和.
    2、见解析
    【分析】
    由,得出为等腰三角形,由外角的性质及等量代换得,再次利用外角的性质及等量代换得,即可证明.
    【详解】
    解:,
    为等腰三角形,

    由外角的性质得:,

    再由外角的性质得:,


    【点睛】
    本题考查了等腰三角形、外角的性质、解题的关键是掌握外角的性质及等量代换的思想进行求解.
    3、(1)见解析;(2)见解析.
    【分析】
    (1)以点D为圆心,适当长为半径,作弧,交AC于两点,再分别以这两点为圆心,适当长为半径作弧,连接两条弧的交点所在的直线,该直线与AC的交点即为点F,连接交于点;
    (2)利用角平分线性质可得,由此证明,得到,继而证明,证得即可解题.
    【详解】
    解:(1)如图,点F、G即为所求作的点;

    (2)是的角平分线,,,










    【点睛】
    本题考查角平分线的性质、全等三角形的判定与性质等知识,是重要考点,难度一般,掌握相关知识是解题关键.
    4、(1)(2)见解析(3)
    【分析】
    (1)利用边相等和角相等,直接证明,即可得到结论.
    (2)利用边相等和角相等,直接证明,得到和,最后通过边与边之间的关系,即可证明结论成立.
    (3)要证明,先利用边相等和角相等,直接证明,得到和,最后通过边与边之间的关系,即可证明结论成立.
    【详解】
    (1)解:
    ,,

    在和中,



    (2)解:当点D在线段AC的延长线上时,如下图所示:

    ,,

    在和中,


    ,,

    (3)解:,如下图所示:

    ,,

    在和中,


    ,,

    【点睛】
    本题主要是考查了三角形全等的判定和性质,熟练利用条件证明三角形全等,然后利用边相等以及边与边之间关系,即可证明结论成立,这是解决该题的关键.
    5、
    (1)3
    (2)12
    (3)
    【分析】
    (1)利用ASA证明△AEF≌△ABE,得AE=AB=4,得出答案;
    (2)延长CG、AB交于点H,设S△BGC=S△HGB=a,用两种方法表示△ACH的面积即可;
    (3)在AC上取AN=AB,可得CD=DN=n-m,根据△ABD和△ACD的高相等,面积比等于底之比可求出CD的长.
    (1)
    ∵AD是△ABC的平分线,
    ∴∠BAD=∠CAD,
    ∵BE⊥AD,
    ∴∠BEA=∠FEA,
    在△AEF和△AEB中,

    ∴△AEF≌△AEB(ASA),
    ∴AF=AB=4,
    ∵AC=7
    ∴CF=AC-AF=7-4=3,
    故答案为:3;
    (2)
    延长CG、AB交于点H,如图,

    由(1)知AC=AH,点G为CH的中点,
    设S△BGC=S△HGB=a,
    根据△ACH的面积可得:
    S△ABC+2a=2(6+a),
    ∴S△ABC=12;
    (3)
    在AC上取AN=AB,如图,

    ∵AD是△ABC的平分线,
    ∴∠NAD=∠BAD,
    在△ADN与△ADB中,

    ∴△ADN≌△ADB(SAS),
    ∴∠AND=∠B,DN=BD,
    ∵∠B=2∠C,
    ∴∠AND=2∠C,
    ∴∠C=∠CDN,
    ∴CN=DN=AC-AB=n-m,
    ∴BD=DN=n-m,
    根据△ABD和△ACD的高相等,面积比等于底之比可得:

    ∴,
    ∴,
    故答案为:.
    【点睛】
    本题主要考查了全等三角形的判定与性质,角平分线的定义,三角形的面积等知识,利用角的轴对称性构造全等三角形是解题的关键.
    6、见解析
    【分析】
    由和是顶角相等的等腰三角形,得出知、、,证即可得证.
    【详解】
    解:和是顶角相等的等腰三角形,得出,
    ,,,
    在和中,



    【点睛】
    本题主要考查全等三角形的判定与性质,解题的关键是熟练掌握等腰三角形的性质与全等三角形的判定和性质.
    7、(1)见详解;(2)120°;(2)120°.
    【分析】
    (1)如图1,根据等边三角形的性质得到OD=OC=OA=OB,∠COD=∠AOB=60°,则利用根据“SAS”判断△AOC≌△BOD;
    (2)利用△AOC≌△BOD得到∠CAO=∠DBO,然后根据三角形内角和可得到∠AEB=∠AOB=60°,即可求出答案;
    (3)如图2,与(1)的方法一样可证明△AOC≌△BOD;则∠CAO=∠DBO,然后根据三角形内角和可求出∠AEB=∠AOB=60°,即可得到答案.
    【详解】
    (1)证明:如图1,

    ∵△ODC和△OAB都是等边三角形,
    ∴OD=OC=OA=OB,∠COD=∠AOB=60°,
    ∴∠BOD=∠AOC=120°,
    在△AOC和△BOD中

    ∴△AOC≌△BOD;
    (2)解:∵△AOC≌△BOD,
    ∴∠CAO=∠DBO,
    ∵∠1=∠2,
    ∴∠AEB=∠AOB=60°,
    ∴;
    (3)解:如图2,

    ∵△ODC和△OAB都是等边三角形,
    ∴OD=OC=OA=OB,∠COD=∠AOB=60°,
    ∴∠AOB+∠BOC=∠COD+∠BOC,即∠AOC=∠BOD,
    在△AOC和△BOD中

    ∴△AOC≌△BOD;
    ∴∠CAO=∠DBO,
    ∵∠1=∠2,
    ∴∠AEB=∠AOB=60°,
    ∴;
    即∠CEB的大小不变.
    【点睛】
    本题考查了几何变换综合题:熟练掌握旋转的性质、等边三角形的性质和全等三角形的判定与性质;利用类比的方法解决(3)小题.
    8、25°
    【分析】
    直接利用等腰三角形的性质得出∠ABC=∠ACB=65°,进而利用三角形内角和定理得出答案.
    【详解】
    ∵AB=AC,∠A=50°,
    ∴∠ABC=∠ACB=65°,
    ∵CD⊥BC于点D,
    ∴∠BCD的度数为:180°−90°−65°=25°.
    【点睛】
    此题主要考查了等腰三角形的性质,正确得出∠B的度数是解题关键.
    9、(1)图见解析,∠AEB=60°;(2)AE=BE+CE,证明见解析
    【分析】
    (1)依题意补全图形,如图所示:然后连接AD,先求出,然后根据轴对称的性质得到,AD=AB=AC,∠AEC=∠AEB,求出,即可求出,再由进行求解即可;
    (2)如图,在AE上截取EG=BE,连接BG.先证明△BGE是等边三角形,得到BG=BE=EG,∠GBE=60°. 再证明∠ABG=∠CBE,即可证明△ABG≌△CBE得到AG=CE,则AE=EG+AG=BE+CE.
    【详解】
    解:(1)依题意补全图形,如图所示:连接AD,
    ∵△ABC是等边三角形,
    ∴∠BAC=60°,AB=AC,
    ∵,
    ∴,
    ∵B、D关于AP对称,
    ∴,AD=AB=AC,∠AEC=∠AEB,
    ∴,
    ∴,
    ∴,

    ∴∠AEB=60°.

    (2)AE=BE+CE.
    证明:如图,在AE上截取EG=BE,连接BG.
    ∵∠AEB=60°,
    ∴△BGE是等边三角形,
    ∴BG=BE=EG,∠GBE=60°.
    ∵△ABC是等边三角形,
    ∴AB=BC,∠ABC=60°,
    ∴∠ABG+∠GBC=∠GBC+∠CBE=60°,
    ∴∠ABG=∠CBE.
    在△ABG和△CBE中,

    ∴△ABG≌△CBE(SAS),
    ∴AG=CE,
    ∴AE=EG+AG=BE+CE.

    【点睛】
    本题主要考查了全等三角形的性质,等边三角形的性质与判定,轴对称的性质,等腰三角形的性质与判定,三角形内角和定理,三角形外角的性质等等,熟知相关知识是解题的关键
    10、见解析
    【分析】
    由平行线的性质可证明.再由,可推出.最后即可利用“ASA”直接证明.
    【详解】
    证明:


    ,即.
    ∴在和中,

    【点睛】
    本题考查三角形全等的判定,平行线的性质,线段的和与差.掌握三角形全等的判定条件是解答本题的关键.

    相关试卷

    沪教版 (五四制)七年级下册第十四章 三角形综合与测试综合训练题:

    这是一份沪教版 (五四制)七年级下册第十四章 三角形综合与测试综合训练题,共27页。试卷主要包含了如图,点D,如图,在中,等内容,欢迎下载使用。

    初中数学沪教版 (五四制)七年级下册第十四章 三角形综合与测试课后测评:

    这是一份初中数学沪教版 (五四制)七年级下册第十四章 三角形综合与测试课后测评,共36页。试卷主要包含了有下列说法,尺规作图,如图,在中,,已知等内容,欢迎下载使用。

    初中数学沪教版 (五四制)七年级下册第十四章 三角形综合与测试练习题:

    这是一份初中数学沪教版 (五四制)七年级下册第十四章 三角形综合与测试练习题,共31页。试卷主要包含了定理等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map