年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    2022年精品解析沪教版七年级数学第二学期第十四章三角形难点解析练习题(无超纲)

    2022年精品解析沪教版七年级数学第二学期第十四章三角形难点解析练习题(无超纲)第1页
    2022年精品解析沪教版七年级数学第二学期第十四章三角形难点解析练习题(无超纲)第2页
    2022年精品解析沪教版七年级数学第二学期第十四章三角形难点解析练习题(无超纲)第3页
    还剩34页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    沪教版 (五四制)七年级下册第十四章 三角形综合与测试同步训练题

    展开

    这是一份沪教版 (五四制)七年级下册第十四章 三角形综合与测试同步训练题,共37页。试卷主要包含了下列说法不正确的是等内容,欢迎下载使用。
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、已知,,,的相关数据如图所示,则下列选项正确的是( )
    A.B.C.D.
    2、根据下列已知条件,不能画出唯一的是( )
    A.,,B.,,
    C.,,D.,,
    3、尺规作图:作角等于已知角.示意图如图所示,则说明的依据是( )

    A.SSSB.SASC.ASAD.AAS
    4、下列说法不正确的是( )
    A.有两边对应相等的两个直角三角形全等;
    B.等边三角形的底角与顶角相等;
    C.有一个角是的直角三角形是等腰直角三角形;
    D.如果点与点到直线的距离相等,那么点与点关于直线对称.
    5、如图,在△ABC和△DEF中,∠A=∠D,AF=DC,添加下列条件中的一个仍无法证明△ABC≌△DEF的是( )
    A.BC=EFB.AB=DEC.∠B=∠ED.∠ACB=∠DFE
    6、如图,ABC中,∠ABC=45°,CD⊥AB于D,BE平分∠ABC,且BE⊥AC于E,与CD相交于点F,DH⊥BC于H,交BE于G,下列结论中正确的是( )
    ①BCD为等腰三角形;②BF=AC;③CE=BF;④BH=CE.
    A.①②B.①③C.①②③D.①②③④
    7、如图,AD∥BC,∠C=30°,∠ADB:∠BDC=1:2,∠EAB=72°,以下四个说法:
    ①∠CDF=30°;②∠ADB=50°;
    ③∠ABD=22°;④∠CBN=108°
    其中正确说法的个数是( )
    A.1个B.2个C.3个D.4个
    8、已知三角形的两边长分别为2cm和3cm,则第三边长可能是( )
    A.6cmB.5cmC.3cmD.1cm
    9、已知三角形的两边长分别为和,则下列长度的四条线段中能作为第三边的是( )
    A.B.C.D.
    10、如图,等腰△ABC中,AB=AC,点D是BC边中点,则下列结论不正确的是( )
    A.B=CB.AD⊥BCC.BAD=CADD.AB=2BC
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、如图,,的平分线交于点,是上的一点,的平分线交于点,且,下列结论:
    ①平分;
    ②;
    ③与互余的角有个;
    ④若,则.
    其中正确的是________.(请把正确结论的序号都填上)
    2、在平面直角坐标系中,,,,,则点的坐标为__________.
    3、如图,在三角形ABC中,,点D为射线CB上一点,过点D作交直线AB于点E,交直线AC于点F,CG平分交DF于点G.若,则______°.
    4、如图,在中,,,E为BC延长线上一点,与的平分线相交于点D,则∠D的度数为______.
    5、两角和它们的夹边分别相等的两个三角形全等(可以简写成 _____).
    三、解答题(10小题,每小题5分,共计50分)
    1、如图,点D在AC上,BC,DE交于点F,,,.
    (1)求证:;
    (2)若,求∠CDE的度数.
    2、如图,△ABC是等边三角形,点D、E、F分别同时从A、B、C以同样的速度沿AB、BC、CA方向运动,当点D运动到点B时,三个点都停止运动.
    (1)在运动过程中△DEF是什么形状的三角形,并说明理由;
    (2)若运动到某一时刻时,BE=4,∠DEC=150°,求等边△ABC的周长;
    3、如图,,,E为BC中点,DE平分.
    (1)求证:平分;
    (2)求证:;
    (3)求证:.
    4、如图,已知点B,F,C,E在同一直线上,AB∥DE,BF=CE,AB=ED,求证:∠A=∠D.
    5、已知:如图,点D为BC的中点,,求证:是等腰三角形.
    6、阅读填空,将三角尺(△MPN,∠MPN=90°)放置在△ABC上(点P在△ABC内),如图①所示,三角尺的两边PM、PN恰好经过点B和点C,我们来研究∠ABP与∠ACP是否存在某种数量关系.
    (1)特例探索:
    若∠A=50°,则∠PBC+∠PCB= 度,∠ABP+∠ACP= 度.
    (2)类比探索:
    ∠ABP、∠ACP、∠A的关系是 .
    (3)变式探索:
    如图②所示,改变三角尺的位置,使点P在△ABC外,三角尺的两边PM、PN仍恰好经过点B和点C,则∠ABP、∠ACP、∠A的关系是 .
    7、如图,Rt△ACB中,∠ACB=90°,AC=BC,E点为射线CB上一动点,连结AE,作AF⊥AE且AF=AE.
    (1)如图1,过F点作FD⊥AC交AC于D点,求证:FD=BC;
    (2)如图2,连结BF交AC于G点,若AG=3,CG=1,求证:E点为BC中点.
    (3)当E点在射线CB上,连结BF与直线AC交子G点,若BC=4,BE=3,则 .(直接写出结果)
    8、(1)我们把两个面积相等但不全等的三角形叫做“偏等积三角形”,如图1,中,,P为上一点,当_______时,与是偏等积三角形;
    (2)如图2,四边形是一片绿色花园,、是等腰直角三角形,.
    ①与是偏等积三角形吗?请说明理由;
    ②已知的面积为.如图3,计划修建一条经过点C的笔直的小路,F在边上,的延长线经过中点G.若小路每米造价600元,请计算修建小路的总造价.
    9、如图,在中,是的平分线,点在边上,且.
    (Ⅰ)求证:;
    (Ⅱ)若,,求的大小.
    10、一个零件形状如图所示,按规定应等于75°,和应分别是18°和22°,某质检员测得,就断定这个零件不合格,请你运用三角形的有关知识说明零件不合格的理由.
    -参考答案-
    一、单选题
    1、D
    【分析】
    根据三角形内角和定理分别求出三个三角形中未知角的度数,然后依据全等三角形的判定定理,从三个三角形中寻找条件证明全等,即可得出选项.
    【详解】
    解:,

    在与ΔFED中,

    ∴≅ΔFED,
    ∴,
    A、B、C三个选项均不能证明,
    故选:D.
    【点睛】
    题目主要考查三角形内角和定理、全等三角形的判定和性质,理解题意,熟练运用全等三角形的判定定理是解题关键.
    2、B
    【分析】
    根据三角形存在的条件去判断.
    【详解】
    ∵,,,满足ASA的要求,
    ∴可以画出唯一的三角形,A不符合题意;
    ∵,,,∠A不是AB,BC的夹角,
    ∴可以画出多个三角形,B符合题意;
    ∵,,,满足SAS的要求,
    ∴可以画出唯一的三角形,C不符合题意;
    ∵,,,AB最大,
    ∴可以画出唯一的三角形,D不符合题意;
    故选B.
    【点睛】
    本题考查了三角形的存在性,熟练掌握三角形全等的判定方法是解题的关键.
    3、A
    【分析】
    利用基本作图得到OD=OC=OD′=OC′,CD=C′D′,则根据全等三角形的判定方法可根据“SSS”可判断△OCD≌△O′C′D′,然后根据全等三角形的性质得到∠A′OB′=∠AOB.
    【详解】
    解:由作法可得OD=OC=OD′=OC′,CD=C′D′,
    所以根据“SSS”可判断△OCD≌△O′C′D′,
    所以∠A′OB′=∠AOB.
    故选:A.
    【点睛】
    本题考查了作图﹣基本作图和全等三角形的判定与性质,解题关键是熟练掌握基本作图和全等三角形的判定定理.
    4、D
    【分析】
    利用全等三角形的判定、等边三角形的判定及轴对称的性质分别判断后即可确定不正确的选项.
    【详解】
    解:A、有两边对应相等的两个直角三角形全等,正确;
    B、等边三角形的三个内角都是60°,所以等边三角形的底角与顶角相等,正确;
    C、有一个角是的直角三角形是等腰直角三角形,正确;
    D、当点与点在直线的同侧时,点与点关于直线不对称,错误,
    故选:D.
    【点睛】
    本题考查了命题与定理的知识,解题的关键是了解全等三角形的判定、等边三角形的判定及轴对称的性质等知识,属于基础定理,难度不大.
    5、A
    【分析】
    根据AF=DC求出AC=DF,再根据全等三角形的判定定理逐个判断即可.
    【详解】
    解:∵AF=DC,
    ∴AF+FC=DC+FC,
    即AC=DF,
    A、BC=EF,AC=DF,∠A=∠D,不符合全等三角形的判定定理,不能推出△ABC≌△DEF,故本选项符合题意;
    B、AB=DE,∠A=∠D,AC=DF,符合全等三角形的判定定理SAS,能推出△ABC≌△DEF,故本选项不符合题意;
    C.∠B=∠E,∠A=∠D,AC=DF,符合全等三角形的判定定理AAS,能推出△ABC≌△DEF,故本选项不符合题意;
    D.∠ACB=∠DFE,AC=DF,∠A=∠D,符合全等三角形的判定定理ASA,能推出△ABC≌△DEF,故本选项不符合题意;
    故选:A.
    【点睛】
    本题考查了全等三角形的判定定理,能熟记全等三角形的判定定理是解此题的关键,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,两直角三角形全等还有HL.
    6、C
    【分析】
    根据∠ABC=45°,CD⊥AB可得出BD=CD;利用AAS判定Rt△DFB≌Rt△DAC,从而得出BF=AC;再利用AAS判定Rt△BEA≌Rt△BEC,即可得到CE=BF;由CE=BF,BH=BC,在三角形BCF中,比较BF、BC的长度即可得到CE<BH.
    【详解】
    解:∵CD⊥AB,∠ABC=45°,
    ∴△BCD是等腰直角三角形.
    ∴BD=CD,故①正确;
    在Rt△DFB和Rt△DAC中,
    ∵∠DBF=90°﹣∠BFD,∠DCA=90°﹣∠EFC,且∠BFD=∠EFC,
    ∴∠DBF=∠DCA.
    又∵∠BDF=∠CDA=90°,BD=CD,
    ∴△DFB≌△DAC.
    ∴BF=AC,故②正确;
    在Rt△BEA和Rt△BEC中
    ∵BE平分∠ABC,
    ∴∠ABE=∠CBE.
    又∵BE=BE,∠BEA=∠BEC=90°,
    ∴Rt△BEA≌Rt△BEC.
    ∴CE=AC=BF,故③正确;
    ∵CE=AC=BF,BH=BC,
    在△BCF中,∠CBE=∠ABC=22.5°,∠DCB=∠ABC=45°,
    ∴∠BFC=112.5°,
    ∴BF<BC,
    ∴CE<BH,故④错误;
    故选:C.
    【点睛】
    本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、SSA、HL.在复杂的图形中有45°的角,有垂直,往往要用到等腰直角三角形,要注意掌握并应用此点.
    7、D
    【分析】
    根据AD∥BC,∠C=30°,利用内错角相等得出∠FDC=∠C=30°,可判断①正确;根据邻补角性质可求∠ADC=180°-∠FDC=180°-30°=150°,根据∠ADB:∠BDC=1:2,得出方程3∠ADB=150°,解方程可判断②正确;根据∠EAB=72°,可求邻补角∠DAN=180°-∠EAB=180°-72°=108°,利用三角形内角和可求∠ABD=180°-∠NAD-∠ADB=180°-108°-50°=22°可判断③正确,利用AD∥BC,同位角相等的∠CBN=∠DAN=108°可判断④正确即可.
    【详解】
    解:∵AD∥BC,∠C=30°,
    ∴∠FDC=∠C=30°,故①正确;
    ∴∠ADC=180°-∠FDC=180°-30°=150°,
    ∵∠ADB:∠BDC=1:2,
    ∴∠BDC=2∠ADB,
    ∵∠ADC=∠ADB+∠BDC=∠ADB+2∠ADB=3∠ADB=150°,
    解得∠ADB=50°,故②正确
    ∵∠EAB=72°,
    ∴∠DAN=180°-∠EAB=180°-72°=108°,
    ∴∠ABD=180°-∠NAD-∠ADB=180°-108°-50°=22°,故③正确
    ∵AD∥BC,
    ∴∠CBN=∠DAN=108°,故④正确
    其中正确说法的个数是4个.
    故选择D.
    【点睛】
    本题考查平行线性质,角的倍分,邻补角性质,三角形内角和,一元一次方程,掌握平行线性质,邻补角性质,三角形内角和,一元一次方程地解题关键.
    8、C
    【分析】
    根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边.即可求解.
    【详解】
    解:设第三边长为xcm,根据三角形的三边关系可得:
    3-2<x<3+2,
    解得:1<x<5,
    只有C选项在范围内.
    故选:C.
    【点睛】
    本题考查了三角形的三边关系,关键是掌握第三边的范围是:大于已知的两边的差,而小于两边的和.
    9、C
    【分析】
    根据三角形的三边关系可得,再解不等式可得答案.
    【详解】
    解:设三角形的第三边为,由题意可得:

    即,
    故选:C.
    【点睛】
    本题主要考查了三角形的三边关系,解题的关键是掌握三角形两边之和大于第三边;三角形的两边差小于第三边.
    10、D
    【分析】
    根据等腰三角形的等边对等角的性质及三线合一的性质判断.
    【详解】
    解:∵AB=AC,点D是BC边中点,
    ∴B=C,AD⊥BC,BAD=CAD,
    故选:D.
    【点睛】
    此题考查了等腰三角形的性质:等边对等角,三线合一,熟记等腰三角形的性质是解题的关键.
    二、填空题
    1、①②
    【分析】
    由BD⊥BC及BD平分∠GBE,可判断①正确;由CB平分∠ACF、AE∥CF及①的结论可判断②正确;由前两个的结论可对③作出判断;由AE∥CF及AC∥BG、三角形外角的性质可求得∠BDF,从而可对④作出判断.
    【详解】
    ∵BD平分∠GBE
    ∴∠EBD=∠GBD=∠GBE
    ∵BD⊥BC
    ∴∠GBD+∠GBC=∠CBD=90°
    ∴∠DBE+∠ABC=90°
    ∴∠GBC=∠ABC
    ∴BC平分∠ABG
    故①正确
    ∵CB平分∠ACF
    ∴∠ACB=∠GCB
    ∵AE∥CF
    ∴∠ABC=∠GCB
    ∴∠ACB=∠GCB=∠ABC=∠GBC
    ∴AC∥BG
    故②正确
    ∵∠DBE+∠ABC=90°,∠ACB=∠GCB=∠ABC=∠GBC
    ∴与∠DBE互余的角共有4个
    故③错误
    ∵AC∥BG,∠A=α
    ∴∠GBE=α

    ∵AE∥CF
    ∴∠BGD=180°-∠GBE=180°−α
    ∴∠BDF=∠GBD+∠BGD=
    故④错误
    即正确的结论有①②
    故答案为:①②
    【点睛】
    本题考查了平行线的判定与性质,互余概念,垂直的定义,角平分线的性质等知识,掌握这些知识并正确运用是关键.
    2、
    【分析】
    按照在x轴的上下方,分成两类情况讨论,如解析中的图像所示,分别利用边和角证明和成立,然后根据对应边相等,即可求出两种情况对应的点B的坐标.
    【详解】
    解:如下图所示:
    由,可知:,.
    当B点在x轴下方时,过点B1向x轴作垂线,垂足为E.




    在与中:




    点坐标为
    当B点在x轴上方时,过点B2向x轴作垂线,垂足为D.
    由题意可知:


    在与中




    点坐标为
    故答案为:或.
    【点睛】
    本题主要是考查了全等三角形的判定和性质以及坐标点的求解,熟练利用全等三角形证明边相等,进而利用边长求解点的坐标,这是解决该题的关键.
    3、80
    【分析】
    先求解 再求解 再利用三角形的外角的性质可得答案.
    【详解】
    解: ,,






    CG平分,


    故答案为:
    【点睛】
    本题考查的是角平分线的定义,平行线的性质,三角形的内角和定理,三角形的外角的性质,熟练的运用平行线的性质探究角之间的关系是解本题的关键.
    4、20°度
    【分析】
    根据角平分线的性质得到,再利用三角形外角的性质计算.
    【详解】
    解:∵与的平分线相交于点D,
    ∴,
    ∵∠ACE=∠A+∠ABC,∠DCE=∠D+∠DBC,
    ∴∠D=∠DCE-∠DBC=,
    故答案为:20°.
    【点睛】
    此题考查了三角形的外角性质及角平分线的性质,熟记三角形外角的性质定理是解题的关键.
    5、角边角或
    【分析】
    根据全等三角形的判定定理得出即可.
    【详解】
    解答:解:两角和它们的夹边分别相等的两个三角形全等,简写成角边角或ASA,
    故答案为:角边角或ASA.
    【点睛】
    本题考查了全等三角形的判定定理,掌握全等三角形的判定定理是解题的关键.
    三、解答题
    1、
    (1)证明见解析;
    (2)∠CDE=20°.
    【分析】
    (1)由“SAS”可证△ABC≌△DBE;
    (2)由全等三角形的性质可得∠C=∠E,由三角形的外角性质可求解.
    (1)
    证明:∵∠ABD=∠CBE,
    ∴∠ABD+∠DBC=∠CBE+∠DBC,
    即:∠ABC=∠DBE,
    在△ABC和△DBE中,

    ∴△ABC≌△DBE(SAS);
    (2)
    解:由(1)可知:△ABC≌△DBE,
    ∴∠C=∠E,
    ∵∠DFB=∠C+∠CDE,
    ∠DFB=∠E+∠CBE,
    ∴∠CDE=∠CBE,
    ∵∠ABD=∠CBE=20°,
    ∴∠CDE=20°.
    【点睛】
    本题考查了全等三角形的判定和性质,三角形的外角性质,证明三角形全等是解题的关键.
    2、(1)△DEF是等边三角形,理由见解析(2)等边△ABC的周长为
    【分析】
    (1)利用△DEF是等边三角形的性质以及三点的运动情况,求证和,进而证明,最后即可说明△DEF是等边三角形.
    (2)利用题(1)的条件即∠DEC=150°,得出是含角的直角三角形,求出,最后求解出等边△ABC的长,最后即可求出等边△ABC的周长.
    【详解】
    (1)解:△DEF是等边三角形,
    证明:由点D、E、F的运动情况可知:,
    △ABC是等边三角形,
    ,,
    ,

    在与中,



    同理可证,进而有,

    故△DEF是等边三角形.
    (2)解:由(1)可知△DEF是等边三角形,且,
    ,,,


    在中,,



    等边△ABC的周长为.
    【点睛】
    本题主要是考查了全等三角形的性质及判定、等边三角形的判定及性质和含角直角三角形的性质,熟练利用等边三角形的性质,找到相等条件,进而证明全等三角形,综合利用全等三角形以及含角直角三角形的性质,求出对应边长,是解决该题的关键.
    3、(1)见解析;(2)见解析;(3)见解析
    【分析】
    (1)延长DE交AB延长线于F,由∠B=∠C=90°,推出AB∥CD,则∠CDE=∠F,再由DE平分∠ADC,即可推出∠ADF=∠F,得到AD=AF,即△ADF是等腰三角形,然后证明△CDE≌△BFE得到DE=FE,即E是DF的中点,即可证明AE平分∠BAD;
    (2)由(1)即可用三线合一定理证明;
    (3)由△CDE≌△BFE,得到CD=BF,则AD=AF=AB+BF=AB+CD.
    【详解】
    解:(1)如图所示,延长DE交AB延长线于F,
    ∵∠B=∠C=90°,
    ∴AB∥CD,
    ∴∠CDE=∠F,
    ∵DE平分∠ADC,
    ∴∠CDE=∠ADE,
    ∴∠ADF=∠F,
    ∴AD=AF,
    ∴△ADF是等腰三角形,
    ∵E是BC的中点,
    ∴CE=BE,
    ∴△CDE≌△BFE(AAS),
    ∴DE=FE,
    ∴E是DF的中点,
    ∴AE平分∠BAD;
    (2)由(1)得△ADF是等腰三角形,AD=AF,E是DF的中点,
    ∴AE⊥DE;
    (3)∵△CDE≌△BFE,
    ∴CD=BF,
    ∴AD=AF=AB+BF=AB+CD.
    【点睛】
    本题主要考查了平行线的性质与判定,全等三角形的性质与判定,等腰三角形的性质与判定,熟知相关知识是解题的关键.
    4、见解析
    【分析】
    根据平行线的性质得出∠B=∠E,进而利用SAS证明,利用全等三角形的性质解答即可.
    【详解】
    证明:,

    即.


    在和中,


    【点睛】
    本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,本题中求证是解题的关键.
    5、证明见解析
    【分析】
    过点D作,交AB于点M,过点D做,交AC于点N,根据角平分线性质,得;根据全等三角形的性质,通过证明,通过证明,得,结合等腰三角形的性质,即可完成证明.
    【详解】
    如下图,过点D作,交AB于点M,过点D做,交AC于点N


    直角和直角中



    ∵点D为BC的中点,

    直角和直角中



    ∵,
    ∴,即是等腰三角形.
    【点睛】
    本题考查了角平分线、三角形中线、全等三角形、等腰三角形的知识;解题的关键是熟练掌握角平分线、三角形中线,全等三角形的性质,从而完成求解.
    6、(1)90,40 ;(2)∠ABP+∠ACP+∠A=90°;(3)∠A+∠ACP-∠ABP=90°.
    【分析】
    (1)由三角形内角和为180°计算和中的角的关系即可.
    (2)由(1)所得即可得出∠ABP、∠ACP、∠A的关系为∠ABP+∠ACP+∠A=90°.
    (3)由三角形外角的性质即可推出∠A+∠ACP-∠ABP=90°.
    【详解】
    (1)在中
    ∵∠MPN=90°
    ∴∠PBC+∠PCB=180°-∠MPN=180°-90°=90°
    在中
    ∵∠A+∠ABC+∠ACB=180°
    又∵∠ABC=∠PBC+∠ABP,∠ACB=∠ACP+∠BCP
    ∴∠A+∠PBC+∠ABP +∠ACP+∠BCP =180°
    ∵∠PBC+∠PCB=90°,∠A=50°
    ∴∠ABP +∠ACP=180°-90°-50°=40°
    (2)由(1)问可知∠A+∠PBC+∠ABP +∠ACP+∠BCP =180°
    又∵∠PBC+∠PCB=90°
    ∴∠A+∠ABP +∠ACP=180°-(∠PBC+∠PCB)=180°-90°=90°
    (3)如图所示,设PN与AB交于点H
    ∵∠A+∠ACP=∠AHP
    又∵∠ABP+∠MPN =∠AHP
    ∴∠A+∠ACP=∠ABP+∠MPN
    又∵∠MPN =90°
    ∴∠A+∠ACP =90°+∠ABP
    ∴∠A+∠ACP-∠ABP=90°.
    【点睛】
    本题考查了三角形的性质以及三角尺的角度计算问题,三角板的角度分别为90°,45°,45°;90°,60°,30°两种直角三角尺,三角形内角和是180°,三角形的一个外角等于与它不相邻的两个内角的和.
    7、(1)证明见解析;(2)证明见解析;(3)或
    【分析】
    (1)证明△AFD≌△EAC,根据全等三角形的性质得到DF=AC,等量代换证明结论;
    (2)作FD⊥AC于D,证明△FDG≌△BCG,得到DG=CG,求出CE,CB的长,得到答案;
    (3)过F作FD⊥AG的延长线交于点D,根据全等三角形的性质得到CG=GD,AD=CE=7,代入计算即可.
    【详解】
    (1)证明:∵FD⊥AC,
    ∴∠FDA=90°,
    ∴∠DFA+∠DAF=90°,
    同理,∠CAE+∠DAF=90°,
    ∴∠DFA=∠CAE,
    在△AFD和△EAC中,

    ∴△AFD≌△EAC(AAS),
    ∴DF=AC,
    ∵AC=BC,
    ∴FD=BC;
    (2)作FD⊥AC于D,
    由(1)得,FD=AC=BC,AD=CE,
    在△FDG和△BCG中,

    ∴△FDG≌△BCG(AAS),
    ∴DG=CG=1,
    ∴AD=2,
    ∴CE=2,
    ∵BC=AC=AG+CG=4,
    ∴E点为BC中点;
    (3)当点E在CB的延长线上时,过F作FD⊥AG的延长线交于点D,
    BC=AC=4,CE=CB+BE=7,
    由(1)(2)知:△ADF≌△ECA,△GDF≌△GCB,
    ∴CG=GD,AD=CE=7,
    ∴CG=DG=1.5,
    ∴AG=CG+AC=5.5,
    ∴,
    同理,当点E在线段BC上时,AG= AC -CG+=2.5,
    ∴,
    故答案为:或.
    【点睛】
    本题考查的是全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理是解题的关键.
    8、(1);(2)①与是偏等积三角形,理由见详解;②修建小路的总造价为元
    【分析】
    (1)当时,则,证,再证与不全等,即可得出结论;
    (2)①过作于,过作于,证,得,则,再证与不全等,即可得出结论;②过点作,交的延长线于,证得,得到,再证,得,由余角的性质可证,然后由三角形面积和偏等积三角形的定义得,,求出,即可求解.
    【详解】
    解:(1)当时,与是偏等积三角形,理由如下:
    设点到的距离为,则,,

    ,,

    、,
    与不全等,
    与是偏等积三角形,
    故答案为:;
    (3)①与是偏等积三角形,理由如下:
    过作于,过作于,如图3所示:
    则,
    、是等腰直角三角形,
    ,,,



    在和中,



    ,,

    ,,

    ,,
    与不全等,
    与是偏等积三角形;
    ②如图4,过点作,交的延长线于,
    则,
    点为的中点,

    在和中,










    在和中,







    由①得:与是偏等积三角形,
    ,,

    修建小路的总造价为:(元.
    【点睛】
    本题是四边形综合题目,考查了新定义“偏等积三角形”的定义、全等三角形的判定与性质、等腰直角三角形的性质、三角形面积等知识;本题综合性强,熟练掌握“偏等积三角形”的定义,证明和是解题的关键,属于中考常考题型.
    9、(Ⅰ)见解析;(Ⅱ)
    【分析】
    (Ⅰ)由CD是的平分线得出,由得出
    从而得出,由平行线的判断即可得证;
    (Ⅱ)由三角形内角和求出,由角平分线得出,由三角形内角和求出即可得出答案.
    【详解】
    (Ⅰ)∵CD是的平分线,
    ∴,
    ∵,
    ∴,
    ∴,
    ∴;
    (Ⅱ)∵,,
    ∴,
    ∴,
    ∴.
    【点睛】
    本题考查平行线的判定以及三角形内角和定理,掌握相关知识是解题的关键
    10、不合格,理由见解析
    【分析】
    延长BD与AC相交于点E.利用三角形的外角性质,可得,,即可求解.
    【详解】
    解:如图,延长BD与AC相交于点E.
    ∵是的一个外角,,,
    ∴,
    同理可得
    ∵李师傅量得,不是115°,
    ∴这个零件不合格.
    【点睛】
    本题主要考查了三角形的外角性质,熟练掌握三角形的一个外角等于与它不相邻的两个内角的和是解题的关键.

    相关试卷

    沪教版 (五四制)七年级下册第十四章 三角形综合与测试一课一练:

    这是一份沪教版 (五四制)七年级下册第十四章 三角形综合与测试一课一练,共32页。试卷主要包含了如图,点D等内容,欢迎下载使用。

    沪教版 (五四制)七年级下册第十四章 三角形综合与测试课后作业题:

    这是一份沪教版 (五四制)七年级下册第十四章 三角形综合与测试课后作业题,共30页。试卷主要包含了如图,为估计池塘岸边A,尺规作图等内容,欢迎下载使用。

    初中数学沪教版 (五四制)七年级下册第十四章 三角形综合与测试课时练习:

    这是一份初中数学沪教版 (五四制)七年级下册第十四章 三角形综合与测试课时练习,共37页。试卷主要包含了如图,下列三角形与下图全等的三角形是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map