年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    2022年沪教版七年级数学第二学期第十四章三角形章节测试试题(含详解)

    2022年沪教版七年级数学第二学期第十四章三角形章节测试试题(含详解)第1页
    2022年沪教版七年级数学第二学期第十四章三角形章节测试试题(含详解)第2页
    2022年沪教版七年级数学第二学期第十四章三角形章节测试试题(含详解)第3页
    还剩30页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学沪教版 (五四制)七年级下册第十四章 三角形综合与测试达标测试

    展开

    这是一份初中数学沪教版 (五四制)七年级下册第十四章 三角形综合与测试达标测试,共33页。试卷主要包含了定理等内容,欢迎下载使用。
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、等腰三角形的一个顶角是80°,则它的底角是( ).
    A.40°B.50°C.60°D.70°
    2、一个三角形三个内角的度数分别是x,y,z.若,则这个三角形是( )
    A.等腰三角形B.等边三角形C.等腰直角三角形D.不存在
    3、满足下列条件的两个三角形不一定全等的是( )
    A.周长相等的两个三角形B.有一腰和底边对应相等的两个等腰三角形
    C.三边都对应相等的两个三角形D.两条直角边对应相等的两个直角三角形
    4、如图,工人师傅在安装木制门框时,为防止变形,常常钉上两条斜拉的木条,这样做的数学依据是( )
    A.两点确定一条直线
    B.两点之间,线段最短
    C.三角形具有稳定性
    D.三角形的任意两边之和大于第三边
    5、定理:三角形的一个外角等于与它不相邻的两个内角的和.已知:如图,∠ACD是△ABC的外角.求证:∠ACD=∠A+∠B.
    下列说法正确的是( )
    A.证法1用特殊到一般法证明了该定理
    B.证法1只要测量够100个三角形进行验证,就能证明该定理
    C.证法2还需证明其他形状的三角形,该定理的证明才完整
    D.证法2用严谨的推理证明了该定理
    6、如图,已知为的外角,,,那么的度数是( )
    A.30°B.40°C.50°D.60°
    7、如图,∠A=α,∠DBC=3∠DBA,∠DCB=3∠DCA,则∠BDC的大小为( )
    A.B.C.D.
    8、如图,等边中,D为AC中点,点P、Q分别为AB、AD上的点,,,在BD上有一动点E,则的最小值为( )
    A.7B.8C.10D.12
    9、如图,ABC中,∠ABC=45°,CD⊥AB于D,BE平分∠ABC,且BE⊥AC于E,与CD相交于点F,DH⊥BC于H,交BE于G,下列结论中正确的是( )
    ①BCD为等腰三角形;②BF=AC;③CE=BF;④BH=CE.
    A.①②B.①③C.①②③D.①②③④
    10、如图,点F,C在BE上,AC=DF,BF=EC,AB=DE,AC与DF相交于点G,则与2∠DFE相等的是( )
    A.∠A+∠DB.3∠BC.180°﹣∠FGCD.∠ACE+∠B
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、如图,点,在直线上,且,且,过,,分别作,,,若,,,则的面积是______.
    2、一个三角形的其中两个内角为,,则这个第三个内角的度数为______.
    3、如图,等腰△ABC中,AB=AC,A=40,点D在边AC上,ADB=100,则DBC的度数为____________ °.
    4、等腰,,底角为70°,点在边上,将分成两个三角形,当这两个三角形有一个是以为腰的等腰三角形时,则的度数是______.
    5、如图,在△AOB和△COD中,OA=OB,OC=OD,OA<OC,∠AOB=∠COD=50°,连接AC、BD交于点M,连接OM.下列结论:①AC=BD,②∠AMB=50°;③OM平分∠AOD;④MO平分∠AMD.其中正确的结论是 _____.(填序号)
    三、解答题(10小题,每小题5分,共计50分)
    1、如图,在中,是角平分线,,.
    (1)求的度数;
    (2)若,求的度数.
    2、在四边形ABCD中,,点E在直线AB上,且.
    (1)如图1,若,,,求AB的长;
    (2)如图2,若DE交BC于点F,,求证:.
    3、如图,点C是线段AB上一点,与都是等边三角形,连接AE,BF.
    (1)求证:;
    (2)若点M,N分别是AE,BF的中点,连接CM,MN,NC.
    ①依题意补全图形;
    ②判断的形状,并证明你的结论.
    4、如图,点B,F,C,E在一条直线上,AB=DE,∠B=∠E,BF=CE.求证:AC=DF.
    5、如图,和是顶角相等的等腰三角形,BC,DE分别是这两个等腰三角形的底边.求证.
    6、人教版初中数学教科书八年级上册第36、37页告诉我们作一个角等于已知角的方法:
    已知:∠AOB.
    求作:∠A′O′B′,使∠A′O′B′=∠AOB.
    作图:
    (1)以O为圆心,任意长为半径画弧,分别交OA、OB于点C、D;
    (2)画一条射线O′A′,以点O′为圆心,OC长为半径画弧,交O′A′于点C′;
    (3)以点C′为圆心,CD长为半径画弧,与第2步中所画的弧相交于点D′;
    (4)过点D′画射线O′B′,则∠A′O′B′=∠AOB.
    请你根据以上材料完成下列问题:
    (1)完成下面证明过程(将正确答案写在相应的横线上).
    证明:由作图可知,在△O′C′D′和△OCD中,

    ∴△O′C′D′≌ ,
    ∴∠A′O′B'=∠AOB.
    (2)这种作一个角等于已知角的方法依据是 .(填序号)
    ①AAS;②ASA;③SSS;④SAS
    7、如图,为等边三角形,D是BC中点,,CE是的外角的平分线.
    求证:.
    8、如图,在△ABC中, AB=AC,AD是△ABC的中线,BE平分∠ABC交AD于点E,连接EC.求证:CE平分∠ACB.
    9、如图,在中,、分别是上的高和中线,,,求的长.
    10、如图,Rt△ACB中,∠ACB=90°,AC=BC,E点为射线CB上一动点,连结AE,作AF⊥AE且AF=AE.
    (1)如图1,过F点作FD⊥AC交AC于D点,求证:FD=BC;
    (2)如图2,连结BF交AC于G点,若AG=3,CG=1,求证:E点为BC中点.
    (3)当E点在射线CB上,连结BF与直线AC交子G点,若BC=4,BE=3,则 .(直接写出结果)
    -参考答案-
    一、单选题
    1、B
    【分析】
    依据三角形的内角和是180°以及等腰三角形的性质即可解答.
    【详解】
    解:(180°-80°)÷2
    =100°÷2
    =50°;
    答:底角为50°.
    故选:B.
    【点睛】
    本题主要考查三角形的内角和定理及等腰三角形的两个底角相等的特点.
    2、C
    【分析】
    根据绝对值及平方的非负性可得,,再由三角形内角和定理将两个式子代入求解可得,,即可确定三角形的形状.
    【详解】
    解:,
    ∴且,
    ∴,,
    ∴,
    ∵,
    ∴,
    解得:,,
    ∴三角形为等腰直角三角形,
    故选:C.
    【点睛】
    题目主要考查绝对值及平方的非负性,三角形内角和定理,等腰三角形的判定等,理解题意,列出式子求解是解题关键.
    3、A
    【分析】
    根据全等三角形的判定方法求解即可.判定三角形全等的方法有:SSS,SAS对各选项进行一一判断即可.
    【详解】
    解:A、周长相等的两个三角形不一定全等,符合题意;
    B、有一腰和底边对应相等的两个等腰三角形根据三边对应相等判定定理可判定全等,不符合题意;
    C、三边都对应相等的两个三角形根据三边对应相等判定定理可判定全等,不符合题意;
    D、两条直角边对应相等的两个直角三角形根据SAS判定定理可判定全等,不符合题意.
    故选:A.
    【点睛】
    此题考查了全等三角形的判定方法,解题的关键是熟练掌握全等三角形的判定方法.判定三角形全等的方法有:SSS,SAS,AAS,ASA,HL(直角三角形).
    4、C
    【分析】
    根据三角形具有稳定性进行求解即可.
    【详解】
    解:工人师傅在安装木制门框时,为防止变形,常常钉上两条斜拉的木条,这样做的数学依据是三角形具有稳定性,
    故选C.
    【点睛】
    本题主要考查了三角形的稳定性,熟知三角形具有稳定性是解题的关键.
    5、D
    【分析】
    利用测量的方法只能是验证,用定理,定义,性质结合严密的逻辑推理推导新的结论才是证明,再逐一分析各选项即可得到答案.
    【详解】
    解:证法一只是利用特殊值验证三角形的一个外角等于与它不相邻的两个内角的和,
    证法2才是用严谨的推理证明了该定理,
    故A不符合题意,C不符合题意,D符合题意,
    证法1测量够100个三角形进行验证,也只是验证,不能证明该定理,故B不符合题意;
    故选D
    【点睛】
    本题考查的是三角形的外角的性质的验证与证明,理解验证与证明的含义及证明的方法是解本题的关键.
    6、B
    【分析】
    根据三角形的外角性质解答即可.
    【详解】
    解:∵∠ACD=60°,∠B=20°,
    ∴∠A=∠ACD−∠B=60°−20°=40°,
    故选:B.
    【点睛】
    此题考查三角形的外角性质,关键是根据三角形外角性质解答.
    7、A
    【分析】
    根据题意设,根据三角形内角和公式定理,进而表示出,进而根据三角形内角和定理根据即可求解
    【详解】
    解:∵∠A=α,∠DBC=3∠DBA,∠DCB=3∠DCA,设,


    故选A
    【点睛】
    本题考查了三角形内角和定理,掌握三角形内角和定理是解题的关键.
    8、C
    【分析】
    作点关于的对称点,连接交于,连接,此时的值最小,最小值,据此求解即可.
    【详解】
    解:如图,
    是等边三角形,

    ∵D为AC中点,
    ∴,,,

    作点关于的对称点,连接交于,连接,此时的值最小.最小值,
    ,,




    是等边三角形,

    的最小值为.
    故选:C.
    【点睛】
    本题考查等边三角形的性质和判定,轴对称最短问题等知识,解题的关键是学会利用轴对称解决最短问题,属于中考常考题型.
    9、C
    【分析】
    根据∠ABC=45°,CD⊥AB可得出BD=CD;利用AAS判定Rt△DFB≌Rt△DAC,从而得出BF=AC;再利用AAS判定Rt△BEA≌Rt△BEC,即可得到CE=BF;由CE=BF,BH=BC,在三角形BCF中,比较BF、BC的长度即可得到CE<BH.
    【详解】
    解:∵CD⊥AB,∠ABC=45°,
    ∴△BCD是等腰直角三角形.
    ∴BD=CD,故①正确;
    在Rt△DFB和Rt△DAC中,
    ∵∠DBF=90°﹣∠BFD,∠DCA=90°﹣∠EFC,且∠BFD=∠EFC,
    ∴∠DBF=∠DCA.
    又∵∠BDF=∠CDA=90°,BD=CD,
    ∴△DFB≌△DAC.
    ∴BF=AC,故②正确;
    在Rt△BEA和Rt△BEC中
    ∵BE平分∠ABC,
    ∴∠ABE=∠CBE.
    又∵BE=BE,∠BEA=∠BEC=90°,
    ∴Rt△BEA≌Rt△BEC.
    ∴CE=AC=BF,故③正确;
    ∵CE=AC=BF,BH=BC,
    在△BCF中,∠CBE=∠ABC=22.5°,∠DCB=∠ABC=45°,
    ∴∠BFC=112.5°,
    ∴BF<BC,
    ∴CE<BH,故④错误;
    故选:C.
    【点睛】
    本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、SSA、HL.在复杂的图形中有45°的角,有垂直,往往要用到等腰直角三角形,要注意掌握并应用此点.
    10、C
    【详解】
    由题意根据等式的性质得出BC=EF,进而利用SSS证明△ABC与△DEF全等,利用全等三角形的性质得出∠ACB=∠DFE,最后利用三角形内角和进行分析解答.
    【分析】
    解:∵BF=EC,
    ∴BF+FC=EC+FC,
    ∴BC=EF,
    在△ABC与△DEF中,

    ∴△ABC≌△DEF(SSS),
    ∴∠ACB=∠DFE,
    ∴2∠DFE=180°﹣∠FGC,
    故选:C.
    【点睛】
    本题考查全等三角形的判定与性质,其中全等三角形的判定方法有:SSS;SAS;ASA;AAS;以及HL(直角三角形的判定方法).
    二、填空题
    1、15
    【分析】
    根据AAS证明△EFA≌△AGB,△BGC≌△CHD,再根据全等三角形的性质以及三角形的面积公式求解即可.
    【详解】
    解:(1)∵EF⊥FG,BG⊥FG,
    ∴∠EFA=∠AGB=90°,
    ∴∠AEF+∠EAF=90°,
    又∵AE⊥AB,即∠EAB=90°,
    ∴∠BAG+∠EAF=90°,
    ∴∠AEF=∠BAG,
    在△AEC和△CDB中,

    ∴△EFA≌△AGB(AAS);
    同理可证△BGC≌△CHD(AAS),
    ∴AG=EF=6,CG=DH=4,
    ∴S△ABC=ACBG=(AG+GC)BG=(6+4)3=15.
    故答案为:15.
    【点睛】
    本题考查了三角形全等的性质和判定,解题的关键是灵活运用所学知识解决问题.
    2、60°
    【分析】
    依题意,利用三角形内角和为:,即可;
    【详解】
    由题得:一个三角形的内角和为:;又已知两个其中的内角为:,;
    ∴ 第三个角为:;
    故填:
    【点睛】
    本题主要考查三角形的内角和,关键在于熟练并运用基本的计算;
    3、30
    【分析】
    先根据等腰三角形的性质和三角形内角和定理求出,再根据三角形外角的性质求解即可.
    【详解】
    解:∵AB=AC,A=40,
    ∴,
    ∵∠ADB=∠DBC+∠C=100°,
    ∴∠DBC=30°,
    故答案为:30.
    【点睛】
    本题主要考查了三角形内角和定理,三角形外角的性质,等腰三角形的性质,熟知相关知识是解题的关键.
    4、100°或110°
    【分析】
    画出图形,分两种情况考虑:AD=BD时,则∠ABD=∠A,由三角形内角和可求得∠ADB的度数;BD=BC时,则∠BDC=∠C=70°,从而可求得∠ADB的度数.
    【详解】
    ∵AB=AC,底角为70°
    ∴∠ABC=∠C=70°,∠A=180°−(∠ABC+∠C)=40°
    当AD=BD时,如图1,则∠ABD=∠A=40°
    ∴∠ADB=180°−(∠A+∠ABD)=180°−80°=100°
    当BD=BC时,如图2,则∠BDC=∠C=70°
    ∴∠ADB=180°−∠BDC=180°−70°=110°
    综上所述,∠ADB的度数为100°或110°
    【点睛】
    本题考查了等腰三角形的性质、三角形内角和定理等知识,涉及分类讨论,关键是等腰三角形的性质,另外要注意分类讨论.
    5、①②④
    【分析】
    由证明得出,,①正确;
    由全等三角形的性质得出,由三角形的外角性质得:,得出,②正确;
    作于,于,如图所示:则,利用全等三角形对应边上的高相等,得出,由角平分线的判定方法得出平分,④正确;
    假设平分,则,由全等三角形的判定定理可得,得,而,所以,而,故③错误;即可得出结论.
    【详解】
    解:,

    即,
    在和中,


    ,,故①正确;

    由三角形的外角性质得:

    ,故②正确;
    作于,于,如图所示,
    则,


    平分,故④正确;
    假设平分,则,
    在与中,





    而,故③错误;
    所以其中正确的结论是①②④.
    故答案为:①②④.
    【点睛】
    本题考查了全等三角形的判定与性质、三角形的外角性质、角平分线的判定等知识;证明三角形全等是解题的关键.
    三、解答题
    1、
    (1);
    (2).
    【分析】
    (1)根据三角形内角和定理可求出,然后利用角平分线进行计算即可得;
    (2)根据垂直得出,然后根据三角形内角和定理即可得.
    (1)
    解:∵,,
    ∴,
    ∵AD是角平分线,
    ∴,
    ∴;
    (2)
    ∵,
    ∴,
    ∴,
    ∴.
    【点睛】
    题目主要考查三角形内角和定理,角平分线的计算等,熟练运用三角形内角和定理是解题关键.
    2、(1)5;(2)证明见解析
    【分析】
    (1)推出∠ADE=∠BEC,根据AAS证△AED≌△CEB,推出AE=BC,BE=AD,代入求出即可;
    (2)推出∠A=∠EBC,∠AED=∠BCE,根据AAS证△AED≌△BCE,推出AD=BE,AE=BC,即可得出结论.
    【详解】
    (1)解:∵∠DEC=∠A=90°,
    ∴∠ADE+∠AED=90°,∠AED+∠BEC=90°,
    ∴∠ADE=∠BEC,
    ∵,∠A=90°,
    ∴∠B+∠A=180°,
    ∴∠B=∠A=90°,
    在△AED和△CEB中

    ∴△AED≌△BCE(AAS),
    ∴AE=BC=3,BE=AD=2,
    ∴AB=AE+BE=2+3=5.
    (2)证明:∵,
    ∴∠A=∠EBC,
    ∵∠DFC=∠AEC,
    ∠DFC=∠BCE+∠DEC,∠AEC=∠AED+∠DEC,
    ∴∠AED=∠BCE,
    在△AED和△BCE中

    ∴△AED≌△BCE(AAS),
    ∴AD=BE,AE=BC,
    ∵BC=AE=AB+BE=AB+AD,
    即AB+AD=BC.
    【点睛】
    本题考查了三角形的外角的性质,全等三角形的性质和判定,平行线的性质等知识点的运用,掌握“利用证明两个三角形全等”是解本题的关键.
    3、
    (1)证明见解析;
    (2)①补全图形见解析;②是等边三角形,证明见解析.
    【分析】
    (1)由等边三角形的性质可知,,.结合题意易得出.即可利用“SAS”证明,即得出;
    (2)①根据题意补全图形即可;
    ②由全等三角形的性质可知,.再由题意点M,N分别是AE,BF的中点,即得出.即可利用“SAS”证明,得出结论,.最后根据,即得出,即可判定是等边三角形.
    (1)
    ∵与都是等边三角形,
    ∴,,,
    ∴,即,
    在和中,
    ∴,
    ∴,
    ∴.
    (2)
    ①画图如下:
    ②是等边三角形.
    理由如下:∵,
    ∴,.
    ∵点M,N分别是AE,BF的中点,
    ∴,
    在和中,
    ∵,
    ∴,
    ∴,,
    ∴,即,
    ∴是等边三角形.
    【点睛】
    本题考查等边三角形的判定和性质,全等三角形的判定和性质,线段的中点.利用数形结合的思想是解答本题的关键.
    4、见解析
    【分析】
    先由BF=CE说明BC= EF.然后运用SAS证明△ABC≌△DEF,最后运用全等三角形的性质即可证明.
    【详解】
    证明:∵BF= CE,
    ∴BC= EF.
    在△ABC和△DEF中,
    ∴△ABC≌△DEF(SAS).
    ∴AC=DF.
    【点睛】
    本题主要考查了全等三角形的判定与性质,正确证明△ABC≌△DEF是解答本题的关键.
    5、见解析
    【分析】
    由和是顶角相等的等腰三角形,得出知、、,证即可得证.
    【详解】
    解:和是顶角相等的等腰三角形,得出,
    ,,,
    在和中,



    【点睛】
    本题主要考查全等三角形的判定与性质,解题的关键是熟练掌握等腰三角形的性质与全等三角形的判定和性质.
    6、
    (1)CD,O′D′,△OCD,
    (2)③
    【分析】
    (1)根据SSS证明△D′O′C′≌△DOC,可得结论;
    (2)根据SSS证明三角形全等.
    (1)
    证明:由作图可知,在△D′O′C′和△DOC中,

    ∴△O′C′D′≌△OCD(SSS),
    ∴∠A′O′B′=∠AOB.
    故答案为:CD,O′D′,△OCD,
    (2)
    解:上述证明过程中利用三角形全等的方法依据是SSS,
    故答案为:③
    【点睛】
    本题考查三角形综合题,考查了三角形全等的判定和性质,解题的关键是读懂图象信息,灵活运用所学知识解决问题.
    7、证明见解析.
    【分析】
    过D作DG∥AC交AB于G,由等边三角形的性质和平行线的性质得到∠BDG=∠BGD=60°,于是得到△BDG是等边三角形,再证明△AGD≌△DCE即可得到结论.
    【详解】
    证明:过D作DG∥AC交AB于G,
    ∵△ABC是等边三角形,
    ∴AB=AC,∠B=∠ACB=∠BAC=60°,
    又∵DG∥AC,
    ∴∠BDG=∠BGD=60°,
    ∴△BDG是等边三角形,∠AGD=180°−∠BGD=120°,
    ∴DG=BD,
    ∵点D为BC的中点,
    ∴BD=CD,
    ∴DG=CD,
    ∵EC是△ABC外角的平分线,
    ∴∠ACE=(180°−∠ACB)=60°,
    ∴∠BCE=∠ACB+∠ACE=120°=∠AGD,
    ∵AB=AC,点D为BC的中点,
    ∴∠ADB=∠ADC=90°,
    又∵∠BDG=60°,∠ADE=60°,
    ∴∠ADG=∠EDC=30°,
    在△AGD和△ECD中,

    ∴△AGD≌△ECD(ASA).
    ∴AD=DE.
    【点睛】
    本题是三角形综合题,主要考查了平行线的性质,全等三角形的性质与判定,等边三角形的判定与性质,熟练掌握全等三角形的判定与性质是解题的关键.
    8、见解析
    【分析】
    根据等腰三角形的性质,可得∠ADB=∠ADC=90°,∠ABC=∠ACB,BD=CD,从而得到△BDE≌△CDE,进而得到∠DCE=∠DBE,再由BE平分∠ABC,可得 ,进而得到,即可求证.
    【详解】
    解:∵AB=AC,AD是△ABC的中线,
    ∴∠ADB=∠ADC=90°,∠ABC=∠ACB,BD=CD,
    ∵DE=DE,
    ∴△BDE≌△CDE,
    ∴∠DCE=∠DBE,
    ∵BE平分∠ABC,
    ∴ ,
    ∴,
    ∴,
    ∴CE平分∠ACB.
    【点睛】
    本题主要考查了等腰三角形的性质,全等三角形的判定和性质,熟练掌握等腰三角形的两底角相等,等腰三角形“三线合一”是解题的关键.
    9、6cm
    【分析】
    先根据中线的定义结合已知条件求得AB,然后再运用三角形的面积公式求解即可.
    【详解】
    解:∵是边上的中线,
    ∴是的中点,
    ∴,
    ∵,
    ∴,
    ∴=.
    【点睛】
    本题主要考查了三角形的中线的定义以及三角形的面积公式,掌握三角形中线的定义成为解答本题的关键.
    10、(1)证明见解析;(2)证明见解析;(3)或
    【分析】
    (1)证明△AFD≌△EAC,根据全等三角形的性质得到DF=AC,等量代换证明结论;
    (2)作FD⊥AC于D,证明△FDG≌△BCG,得到DG=CG,求出CE,CB的长,得到答案;
    (3)过F作FD⊥AG的延长线交于点D,根据全等三角形的性质得到CG=GD,AD=CE=7,代入计算即可.
    【详解】
    (1)证明:∵FD⊥AC,
    ∴∠FDA=90°,
    ∴∠DFA+∠DAF=90°,
    同理,∠CAE+∠DAF=90°,
    ∴∠DFA=∠CAE,
    在△AFD和△EAC中,

    ∴△AFD≌△EAC(AAS),
    ∴DF=AC,
    ∵AC=BC,
    ∴FD=BC;
    (2)作FD⊥AC于D,
    由(1)得,FD=AC=BC,AD=CE,
    在△FDG和△BCG中,

    ∴△FDG≌△BCG(AAS),
    ∴DG=CG=1,
    ∴AD=2,
    ∴CE=2,
    ∵BC=AC=AG+CG=4,
    ∴E点为BC中点;
    (3)当点E在CB的延长线上时,过F作FD⊥AG的延长线交于点D,
    BC=AC=4,CE=CB+BE=7,
    由(1)(2)知:△ADF≌△ECA,△GDF≌△GCB,
    ∴CG=GD,AD=CE=7,
    ∴CG=DG=1.5,
    ∴AG=CG+AC=5.5,
    ∴,
    同理,当点E在线段BC上时,AG= AC -CG+=2.5,
    ∴,
    故答案为:或.
    【点睛】
    本题考查的是全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理是解题的关键.
    证法1:如图,
    ∵∠A=70°,∠B=63°,
    且∠ACD=133°(量角器测量所得)
    又∵133°=70°+63°(计算所得)
    ∴∠ACD=∠A+∠B(等量代换).
    证法2:如图,
    ∵∠A+∠B+∠ACB=180°(三角形内角和定理),
    又∵∠ACD+∠ACB=180°(平角定义),
    ∴∠ACD+∠ACB=∠A+∠B+∠ACB(等量代换).
    ∴∠ACD=∠A+∠B(等式性质).

    相关试卷

    数学沪教版 (五四制)第十四章 三角形综合与测试课时练习:

    这是一份数学沪教版 (五四制)第十四章 三角形综合与测试课时练习,共35页。试卷主要包含了如图,ABC≌DEF,点B等内容,欢迎下载使用。

    初中数学沪教版 (五四制)七年级下册第十四章 三角形综合与测试练习:

    这是一份初中数学沪教版 (五四制)七年级下册第十四章 三角形综合与测试练习,共33页。

    沪教版 (五四制)七年级下册第十四章 三角形综合与测试课后测评:

    这是一份沪教版 (五四制)七年级下册第十四章 三角形综合与测试课后测评,共30页。试卷主要包含了三角形的外角和是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map