年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    2022年精品解析沪教版七年级数学第二学期第十四章三角形达标测试试卷(精选含详解)

    2022年精品解析沪教版七年级数学第二学期第十四章三角形达标测试试卷(精选含详解)第1页
    2022年精品解析沪教版七年级数学第二学期第十四章三角形达标测试试卷(精选含详解)第2页
    2022年精品解析沪教版七年级数学第二学期第十四章三角形达标测试试卷(精选含详解)第3页
    还剩28页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    数学第十四章 三角形综合与测试课后复习题

    展开

    这是一份数学第十四章 三角形综合与测试课后复习题,共31页。试卷主要包含了下列说法错误的是等内容,欢迎下载使用。
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、如图,在ABC中,AB=AC,D是BC的中点,∠B=35°,则∠BAD=( )
    A.110°B.70°C.55°D.35°
    2、三个等边三角形的摆放位置如图所示,若,则的度数为
    A.B.C.D.
    3、如图,ABC≌DEF,点B、E、C、F在同一直线上,若BC=7,EC=4,则CF的长是( )
    A.2B.3C.4D.7
    4、将三根木条钉成一个三角形木架,这个三角形木架具有稳定性.解释这个现象的数学原理是( )
    A.SSSB.SASC.ASAD.AAS
    5、如图,△ ABC≌△CDA,∠BAC=80°,∠ABC=65°,则∠CAD的度数为( )
    A.35°B.65°C.55°D.40°
    6、下列说法错误的是( )
    A.任意一个直角三角形都可以被分割成两个等腰三角形
    B.任意一个等腰三角形都可以被分割成两个等腰三角形
    C.任意一个直角三角形都可以被分割成两个直角三角形
    D.任意一个等腰三角形都可以被分割成两个直角三角形
    7、在△ABC中,∠A=∠B=∠C,则∠C=( )
    A.70°B.80°C.100°D.120°
    8、下列长度的三条线段能组成三角形的是( )
    A.3,4,7B.3,4,8C.3,4,5D.3,3,7
    9、如图,在中,,,,将绕点顺时针旋转得到,当点的对应点恰好落在边上时,的长为( )
    A.3B.4C.5D.6
    10、如图,在△ABC和△DEF中,∠A=∠D,AF=DC,添加下列条件中的一个仍无法证明△ABC≌△DEF的是( )
    A.BC=EFB.AB=DEC.∠B=∠ED.∠ACB=∠DFE
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、如图,在中,,,E为BC延长线上一点,与的平分线相交于点D,则∠D的度数为______.
    2、如图,点E,F分别为线段BC,DB上的动点,BE=DF.要使AE+AF最小值,若用作图方式确定E,F,则步骤是 _____.
    3、如图,△ABC中,AB平分∠DAC,AB⊥BC,垂足为B,若∠ADC与∠ACB互补,BC=5,则CD的长为_________.
    4、在等腰△ABC中,∠A=40°,则∠B=_____°.
    5、如图,点C是线段AB的中点,.请你只添加一个条件,使得≌.
    (1)你添加的条件是______;(要求:不再添加辅助线,只需填一个答案即可)
    (2)依据所添条件,判定与全等的理由是______.
    三、解答题(10小题,每小题5分,共计50分)
    1、一个零件形状如图所示,按规定应等于75°,和应分别是18°和22°,某质检员测得,就断定这个零件不合格,请你运用三角形的有关知识说明零件不合格的理由.
    2、如图,和是顶角相等的等腰三角形,BC,DE分别是这两个等腰三角形的底边.求证.
    3、在复习课上,老师布置了一道思考题:如图所示,点M,N分别在等边的边上,且,,交于点Q.求证:.同学们利用有关知识完成了解答后,老师又提出了下列问题:
    (1)若将题中“”与“”的位置交换,得到的是否仍是真命题?请你给出答案并说明理由.
    (2)若将题中的点M,N分别移动到的延长线上,是否仍能得到?请你画出图形,给出答案并说明理由.
    4、命题:如图,已知,共线,(1),那么.
    (1)从①和②两个条件中,选择一个填入横线,使得上述命题为真命题,你选择的条件为_______(填序号);
    (2)根据你选择的条件,判定的方法是________;
    (3)根据你选择的条件,完成的证明.
    5、阅读以下材料,并按要求完成相应的任务:
    任务:
    如图3,在四边形中,,,,以为顶点的,、与、边分别交于、两点.请参照阅读材料中的解题方法,你认为结论是否依然成立,若成立,请写出证明过程;若不成立,请说明理由.
    6、如图,点A,B,C,D在一条直线上,,,.求证:.
    7、已知,∠A=∠D,BC平分∠ABD,求证:AC=DC.
    8、如图,,,E为BC中点,DE平分.
    (1)求证:平分;
    (2)求证:;
    (3)求证:.
    9、如图,Rt△ACB中,∠ACB=90°,AC=BC,E点为射线CB上一动点,连结AE,作AF⊥AE且AF=AE.
    (1)如图1,过F点作FD⊥AC交AC于D点,求证:FD=BC;
    (2)如图2,连结BF交AC于G点,若AG=3,CG=1,求证:E点为BC中点.
    (3)当E点在射线CB上,连结BF与直线AC交子G点,若BC=4,BE=3,则 .(直接写出结果)
    10、已知:如图,在ABC中,AB=AC,点D、E分别在边BC,AC上,AD=AE.
    (1)若∠BAD=30°,则∠EDC= °;若∠EDC=20°,则∠BAD= °.
    (2)设∠BAD=x,∠EDC=y,写出y与x之间的关系式,并给出证明.
    -参考答案-
    一、单选题
    1、C
    【分析】
    根据等腰三角形三线合一的性质可得AD⊥BC,然后利用直角三角形两锐角互余的性质解答.
    【详解】
    解:∵AB=AC,D是BC的中点,
    ∴AD⊥BC,
    ∵∠B=35°,
    ∴∠BAD=90°−35°=55°.
    故选:C.
    【点睛】
    本题主要考查了等腰三角形三线合一的性质,直角三角形两锐角互余的性质,是基础题,熟记性质是解题的关键.
    2、A
    【分析】
    利用三个平角的和减去中间三角形的内角和,再减去三个的角即可.
    【详解】
    解:,,




    故选:.
    【点睛】
    本题主要考查了三角形的内角和定理,灵活运用三角形内角和定理成为解答本题的关键.
    3、B
    【分析】
    根据全等三角形的性质可得,根据即可求得答案.
    【详解】
    解:ABC≌DEF,
    点B、E、C、F在同一直线上,BC=7,EC=4,
    故选B
    【点睛】
    本题考查了全等三角形的性质,掌握全等三角形的性质是解题的关键.
    4、A
    【分析】
    根据三根木条即为三角形的三边长,利用全等三角形判定定理确定唯一三角形即可得.
    【详解】
    解:三根木条即为三角形的三边长,
    即为利用确定三角形,
    故选:A.
    【点睛】
    题目主要考查利用全等三角形判定确定唯一三角形,熟练掌握全等三角形的判定是解题关键.
    5、A
    【分析】
    先根据三角形内角和定理求出∠ACB=35°,再根据全等三角形性质即可求出∠CAD=35°.
    【详解】
    解:∵∠BAC=80°,∠ABC=65°,
    ∴∠ACB=180°-∠BAC-∠ABC=35°,
    ∵△ABC≌△CDA,
    ∴∠CAD=∠ACB=35°.
    故选:A
    【点睛】
    本题考查了三角形的内角和定理,全等三角形的性质,熟知两个定理是解题关键.
    6、B
    【分析】
    根据等腰三角形和直角三角形的性质判断各选项即可得出答案.
    【详解】
    解:、任意一个直角三角形一定能分成两个等腰三角形,本选项正确,不符合题意;
    、任意一个等腰三角形不一定能分成两个等腰三角形,本选项错误,符合题意;
    、任意一个直角三角形都可以被分割成两个直角三角形,本选项正确,不符合题意;
    、任意一个等腰三角形都可以被分割成两个直角三角形,本选项正确,不符合题意;
    故选:B.
    【点睛】
    本题考查了等腰三角形和直角三角形的知识,解题的关键是能判断等腰三角形及直角三角形,可动手操作进行判断.
    7、D
    【分析】
    根据三角形的内角和,①,进而根据已知条件,将代入①即可求得
    【详解】
    解:∵在△ABC中,,∠A=∠B=∠C,

    解得
    故选D
    【点睛】
    本题考查了三角形内角和定理,掌握三角形内角和定理是解题的关键.
    8、C
    【分析】
    根据组成三角形的三边关系依次判断即可.
    【详解】
    A、 3,4,7中3+4=7,故不能组成三角形,与题意不符,选项错误.
    B、 3,4,8中3+4<8,故不能组成三角形,与题意不符,选项错误.
    C、 3,4,5中任意两边之和都大于第三边,任意两边之差都小于第三边,故能组成三角形,符合题意,选项正确.
    D、 3,3,7中3+3<7,故不能组成三角形,与题意不符,选项错误.
    故选:C.
    【点睛】
    本题考查了三角形的三边关系,在一个三角形中,任意两边之和大于第三边,任意两边之差小于第三边.
    9、A
    【分析】
    先根据旋转的性质可得,再根据等边三角形的判定与性质可得,然后根据线段的和差即可得.
    【详解】
    由旋转的性质得:,

    是等边三角形,



    故选:A.
    【点睛】
    本题考查了旋转的性质、等边三角形的判定与性质等知识点,熟练掌握旋转的性质是解题关键.
    10、A
    【分析】
    根据AF=DC求出AC=DF,再根据全等三角形的判定定理逐个判断即可.
    【详解】
    解:∵AF=DC,
    ∴AF+FC=DC+FC,
    即AC=DF,
    A、BC=EF,AC=DF,∠A=∠D,不符合全等三角形的判定定理,不能推出△ABC≌△DEF,故本选项符合题意;
    B、AB=DE,∠A=∠D,AC=DF,符合全等三角形的判定定理SAS,能推出△ABC≌△DEF,故本选项不符合题意;
    C.∠B=∠E,∠A=∠D,AC=DF,符合全等三角形的判定定理AAS,能推出△ABC≌△DEF,故本选项不符合题意;
    D.∠ACB=∠DFE,AC=DF,∠A=∠D,符合全等三角形的判定定理ASA,能推出△ABC≌△DEF,故本选项不符合题意;
    故选:A.
    【点睛】
    本题考查了全等三角形的判定定理,能熟记全等三角形的判定定理是解此题的关键,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,两直角三角形全等还有HL.
    二、填空题
    1、20°度
    【分析】
    根据角平分线的性质得到,再利用三角形外角的性质计算.
    【详解】
    解:∵与的平分线相交于点D,
    ∴,
    ∵∠ACE=∠A+∠ABC,∠DCE=∠D+∠DBC,
    ∴∠D=∠DCE-∠DBC=,
    故答案为:20°.
    【点睛】
    此题考查了三角形的外角性质及角平分线的性质,熟记三角形外角的性质定理是解题的关键.
    2、①连接,作;②以点为圆心、长为半径画弧,交于点;③连接交于点;④以点为圆心、长为半径画弧,交于点
    【分析】
    按照①连接,作;②以点为圆心、长为半径画弧,交于点;③连接交于点;④以点为圆心、长为半径画弧,交于点的步骤作图即可得.
    【详解】
    解:步骤是①连接,作;
    ②以点为圆心、长为半径画弧,交于点;
    ③连接交于点;
    ④以点为圆心、长为半径画弧,交于点;
    如图,点即为所求.
    故答案为:①连接,作;②以点为圆心、长为半径画弧,交于点;③连接交于点;④以点为圆心、长为半径画弧,交于点.
    【点睛】
    本题考查了作一个角等于已知角、两点之间线段最短、作线段、全等三角形的判定与性质等知识点,熟练掌握尺规作图的方法是解题关键.
    3、10
    【分析】
    构造,再证得,求得EB=BC,再通过等量代换、等角的补角相等求得∠E=∠CDE,则CE=2BC=10.
    【详解】
    解:延长AD.和CB交于点E.
    ∵AB平分∠DAC
    ∴∠EAB=∠CAB
    又∵
    ∴∠ABE=∠ABC
    又∵AB=AB

    ∴BC=EB=5,∠E=∠ACB,
    又∵
    ∴∠ACB=∠CDE
    ∴∠E=∠CDE
    ∴.CD=CE
    又∵CE=2BC=10
    ∴CD=10
    故答案为:10.
    【点睛】
    本题考查了全等三角形的性质和判定,等角的补角相等,能根据全等三角形的性质找到角与角之间的关系是解答此题的关键.
    4、40°或70°或100°
    【分析】
    本题要分两种情况讨论:当∠A=40°为顶角;当∠A=40°为底角时,则∠B为底角时或顶角.然后求出∠B.
    【详解】
    分两种情况讨论:
    当∠A=40°为顶角时,;
    当∠A=40°为底角时,∠B为底角时∠B=∠A=40°;∠B为顶角时∠B=180°−∠A−∠C=180°−40°−40°=100°.
    故答案为:40°或70°或100°.
    【点睛】
    本题考查等腰三角形的性质,解题的关键是掌握等腰三角形的性质,分情况讨论问题.
    5、AD=CE(或∠D=∠E或∠ACD=∠B)(答案不唯一) SAS
    【分析】
    (1)由已知条件可得两个三角形有一组对应边相等,一组对应角相等,根据三角形全等的判定方法添加条件即可;
    (2)根据添加的条件,写出判断的理由即可.
    【详解】
    解:(1)添加的条件是:AD=CE(或∠D=∠E或∠ACD=∠B)
    故答案为:AD=CE(或∠D=∠E或∠ACD=∠B)
    (2)若添加:AD=CE
    ∵点C是线段AB的中点,
    ∴AC=BC


    ∴≌(SAS)
    故答案为:SAS
    【点睛】
    本题主要考查了添加条件判断三角形全等,熟练掌握全等三角形的判断方法是解答本题的关键.
    三、解答题
    1、不合格,理由见解析
    【分析】
    延长BD与AC相交于点E.利用三角形的外角性质,可得,,即可求解.
    【详解】
    解:如图,延长BD与AC相交于点E.
    ∵是的一个外角,,,
    ∴,
    同理可得
    ∵李师傅量得,不是115°,
    ∴这个零件不合格.
    【点睛】
    本题主要考查了三角形的外角性质,熟练掌握三角形的一个外角等于与它不相邻的两个内角的和是解题的关键.
    2、见解析
    【分析】
    由和是顶角相等的等腰三角形,得出知、、,证即可得证.
    【详解】
    解:和是顶角相等的等腰三角形,得出,
    ,,,
    在和中,



    【点睛】
    本题主要考查全等三角形的判定与性质,解题的关键是熟练掌握等腰三角形的性质与全等三角形的判定和性质.
    3、
    (1)仍是真命题,证明见解析
    (2)仍能得到,作图和证明见解析
    【分析】
    (1)由角边角得出和全等,对应边相等即可.
    (2)由(1)问可知BM=CN,故可由边角边得出和全等,对应角相等,即可得出.
    (1)




    在和中有


    故结论仍为真命题.
    (2)
    ∵BM=CN
    ∴CM=AN
    ∵AB=AC,,
    在和中有



    故仍能得到,如图所示
    【点睛】
    本题考查了全等三角形的判定和性质,从判定两个三角形全等的方法可知,要判定两个三角形全等,需要知道这两个三角形分别有三个元素(其中至少一个元素是边)对应相等,这样就可以利用题目中的已知边角迅速、准确地确定要补充的边角,有目的地完善三角形全等的条件,从而得到判定两个三角形全等的思路.
    4、
    (1)①
    (2)SAS
    (3)见解析
    【分析】
    (1)根据全等三角形的判定方法分析得出答案;
    (2)根据(1)直接填写即可;
    (3)利用SAS进行证明.
    (1)
    解:∵,
    ∴∠A=∠F,
    ∵AC=EF,
    ∴当时,可根据SAS证明;
    当时,不能证明,
    故答案为:①;
    (2)
    解:当时,可根据SAS证明,
    故答案为:SAS;
    (3)
    证明:在△ABC和△FDE中,

    ∴.
    【点睛】
    此题考查了添加条件证明两个三角形全等,正确掌握全等三角形的判定定理是解题的关键.
    5、成立,证明见解析
    【分析】
    根据阅读材料将△ADF旋转120°再证全等即可求得EF= BE+DF .
    【详解】
    解:成立.
    证明:将绕点顺时针旋转,得到,
    ,,,,,
    ,、、三点共线,

    ,,,


    【点睛】
    本题考查旋转中的三角形全等,读懂材料并运用所学的全等知识是本题关键.
    6、见解析
    【分析】
    根据平行线的性质得出,运用“角角边”证明△AEB≌△CFD即可.
    【详解】
    证明:∵,
    ∴,
    在△AEB和△CFD中,
    ∴△AEB≌△CFD,
    ∴.
    【点睛】
    本题考查了全等三角形的判定与性质,解题关键是熟练运用全等三角形的判定定理进行证明.
    7、见解析
    【分析】
    证明△BAC≌△BDC即可得出结论.
    【详解】
    解:∵BC平分∠ABD,
    ∴∠ABC=∠DBC,
    在△BAC和△BDC中,
    ∴△BAC≌△BDC,
    ∴AC=DC.
    【点睛】
    本题考查角平分线的意义及全等三角形的判定与性质,解题关键是掌握角平分线的性质及全等三角形的判定与性质.
    8、(1)见解析;(2)见解析;(3)见解析
    【分析】
    (1)延长DE交AB延长线于F,由∠B=∠C=90°,推出AB∥CD,则∠CDE=∠F,再由DE平分∠ADC,即可推出∠ADF=∠F,得到AD=AF,即△ADF是等腰三角形,然后证明△CDE≌△BFE得到DE=FE,即E是DF的中点,即可证明AE平分∠BAD;
    (2)由(1)即可用三线合一定理证明;
    (3)由△CDE≌△BFE,得到CD=BF,则AD=AF=AB+BF=AB+CD.
    【详解】
    解:(1)如图所示,延长DE交AB延长线于F,
    ∵∠B=∠C=90°,
    ∴AB∥CD,
    ∴∠CDE=∠F,
    ∵DE平分∠ADC,
    ∴∠CDE=∠ADE,
    ∴∠ADF=∠F,
    ∴AD=AF,
    ∴△ADF是等腰三角形,
    ∵E是BC的中点,
    ∴CE=BE,
    ∴△CDE≌△BFE(AAS),
    ∴DE=FE,
    ∴E是DF的中点,
    ∴AE平分∠BAD;
    (2)由(1)得△ADF是等腰三角形,AD=AF,E是DF的中点,
    ∴AE⊥DE;
    (3)∵△CDE≌△BFE,
    ∴CD=BF,
    ∴AD=AF=AB+BF=AB+CD.
    【点睛】
    本题主要考查了平行线的性质与判定,全等三角形的性质与判定,等腰三角形的性质与判定,熟知相关知识是解题的关键.
    9、(1)证明见解析;(2)证明见解析;(3)或
    【分析】
    (1)证明△AFD≌△EAC,根据全等三角形的性质得到DF=AC,等量代换证明结论;
    (2)作FD⊥AC于D,证明△FDG≌△BCG,得到DG=CG,求出CE,CB的长,得到答案;
    (3)过F作FD⊥AG的延长线交于点D,根据全等三角形的性质得到CG=GD,AD=CE=7,代入计算即可.
    【详解】
    (1)证明:∵FD⊥AC,
    ∴∠FDA=90°,
    ∴∠DFA+∠DAF=90°,
    同理,∠CAE+∠DAF=90°,
    ∴∠DFA=∠CAE,
    在△AFD和△EAC中,

    ∴△AFD≌△EAC(AAS),
    ∴DF=AC,
    ∵AC=BC,
    ∴FD=BC;
    (2)作FD⊥AC于D,
    由(1)得,FD=AC=BC,AD=CE,
    在△FDG和△BCG中,

    ∴△FDG≌△BCG(AAS),
    ∴DG=CG=1,
    ∴AD=2,
    ∴CE=2,
    ∵BC=AC=AG+CG=4,
    ∴E点为BC中点;
    (3)当点E在CB的延长线上时,过F作FD⊥AG的延长线交于点D,
    BC=AC=4,CE=CB+BE=7,
    由(1)(2)知:△ADF≌△ECA,△GDF≌△GCB,
    ∴CG=GD,AD=CE=7,
    ∴CG=DG=1.5,
    ∴AG=CG+AC=5.5,
    ∴,
    同理,当点E在线段BC上时,AG= AC -CG+=2.5,
    ∴,
    故答案为:或.
    【点睛】
    本题考查的是全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理是解题的关键.
    10、(1)15,40;(2)y=x,见解析
    【分析】
    (1)设∠EDC=m,则∠B=∠C=n,根据∠ADE=∠AED=m+n,∠ADC=∠B+∠BAD即可列出方程,从而求解.
    (2)设∠BAD=x,∠EDC=y,根据等腰三角形的性质可得∠B=∠C,∠ADE=∠AED=∠C+∠EDC=∠B+y,由∠ADC=∠B+∠BAD=∠ADE+∠EDC即可得∠B+x=∠B+y+y,从而求解.
    【详解】
    解:(1)设∠EDC=m,∠B=∠C=n,
    ∵∠AED=∠EDC+∠C=m+n,
    又∵AD=AE,
    ∴∠ADE=∠AED=m+n,
    则∠ADC=∠ADE+∠EDC=2m+n,
    又∵∠ADC=∠B+∠BAD,
    ∴∠BAD=2m,
    ∴2m+n=n+30,解得m=15°,
    ∴∠EDC的度数是15°;
    若∠EDC=20°,则∠BAD=2m=2×20°=40°.
    故答案是:15;40;
    (2)y与x之间的关系式为y=x,
    证明:设∠BAD=x,∠EDC=y,
    ∵AB=AC,AD=AE,
    ∴∠B=∠C,∠ADE=∠AED,
    ∵∠AED=∠C+∠EDC=∠B+y,
    ∴∠ADC=∠B+∠BAD=∠ADE+∠EDC,
    ∴∠B+x=∠B+y+y,
    ∴2y=x,
    ∴y=x.
    【点睛】
    本题主要考查了等腰三角形的性质、三角形外角的性质以及一元一次方程的应用,灵活运用等腰三角形的性质成为解答本题的关键.
    从正方形的一个顶点引出夹角为的两条射线,并连接它们与该顶点的两对边的交点构成的基本平面几何模型称为半角模型.半角模型可证出多个几何结论,例如:
    如下图1,在正方形中,以为顶点的,、与、边分别交于、两点.易证得.
    大致证明思路:如图2,将绕点顺时针旋转,得到,由可得、、三点共线,,进而可证明,故.

    相关试卷

    初中数学沪教版 (五四制)七年级下册第十四章 三角形综合与测试课后作业题:

    这是一份初中数学沪教版 (五四制)七年级下册第十四章 三角形综合与测试课后作业题,共30页。试卷主要包含了下列四个命题是真命题的有,下列三个说法等内容,欢迎下载使用。

    初中数学沪教版 (五四制)七年级下册第十四章 三角形综合与测试同步练习题:

    这是一份初中数学沪教版 (五四制)七年级下册第十四章 三角形综合与测试同步练习题,共34页。试卷主要包含了已知长方形纸片ABCD,点E等内容,欢迎下载使用。

    数学七年级下册第十四章 三角形综合与测试课堂检测:

    这是一份数学七年级下册第十四章 三角形综合与测试课堂检测,共33页。试卷主要包含了如图,在中,,定理等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map