终身会员
搜索
    上传资料 赚现金

    2022年精品解析沪教版七年级数学第二学期第十四章三角形定向测试练习题(无超纲)

    立即下载
    加入资料篮
    2022年精品解析沪教版七年级数学第二学期第十四章三角形定向测试练习题(无超纲)第1页
    2022年精品解析沪教版七年级数学第二学期第十四章三角形定向测试练习题(无超纲)第2页
    2022年精品解析沪教版七年级数学第二学期第十四章三角形定向测试练习题(无超纲)第3页
    还剩27页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    沪教版 (五四制)七年级下册第十四章 三角形综合与测试练习题

    展开

    这是一份沪教版 (五四制)七年级下册第十四章 三角形综合与测试练习题,共30页。试卷主要包含了如图,点A等内容,欢迎下载使用。
    沪教版七年级数学第二学期第十四章三角形定向测试
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、下列三个说法:
    ①有一个内角是30°,腰长是6的两个等腰三角形全等;
    ②有一个内角是120°,底边长是3的两个等腰三角形全等;
    ③有两条边长分别为5,12的两个直角三角形全等.
    其中正确的个数有( ).
    A.3 B.2 C.1 D.0
    2、尺规作图:作角等于已知角.示意图如图所示,则说明的依据是( )


    A.SSS B.SAS C.ASA D.AAS
    3、下列叙述正确的是( )
    A.三角形的外角大于它的内角 B.三角形的外角都比锐角大
    C.三角形的内角没有小于60°的 D.三角形中可以有三个内角都是锐角
    4、如图,,点E在线段AB上,,则的度数为(  )

    A.20° B.25° C.30° D.40°
    5、在△ABC中,∠A=∠B=∠C,则∠C=(  )
    A.70° B.80° C.100° D.120°
    6、一副三角板如图放置,点A在DF的延长线上,∠D=∠BAC=90°,∠E=30°,∠C=45°,若BC//DA,则∠ABF的度数为(  )

    A.15° B.20° C.25° D.30°
    7、如图,△ ABC≌△CDA,∠BAC=80°,∠ABC=65°,则∠CAD的度数为( )

    A.35° B.65° C.55° D.40°
    8、有两边相等的三角形的两边长为,,则它的周长为( )
    A. B. C. D.或
    9、如图,点A、B、C、D在一条直线上,点E、F在AD两侧,,,添加下列条件不能判定的是( )

    A. B. C. D.
    10、若一个三角形的三个外角之比为3:4:5,则该三角形为(  )
    A.直角三角形 B.等腰三角形 C.等边三角形 D.等腰直角三角形
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、如图,BD,CE是等边三角形ABC的中线,BD,CE交于点F,则______°.

    2、如图,______.

    3、如图,AD⊥BC,∠1=∠B,∠C=65°,∠BAC=__________

    4、如图,正三角形ABC中,D是AB的中点,于点E,过点E作与BC交于点F.若,则的周长为______.

    5、如图,点E,F分别为线段BC,DB上的动点,BE=DF.要使AE+AF最小值,若用作图方式确定E,F,则步骤是 _____.

    三、解答题(10小题,每小题5分,共计50分)
    1、如图,在中,,AD是角平分线,E是AB边上一点,连接ED,CB是的平分线,ED的延长线与CF交于点F.

    (1)求证:;
    (2)若,,则______度.
    2、如图,△ABC中,AB=AC,D为BC边的中点,AF⊥AD,垂足为A.求证:∠1=∠2

    3、命题:如图,已知,共线,(1),那么.

    (1)从①和②两个条件中,选择一个填入横线,使得上述命题为真命题,你选择的条件为_______(填序号);
    (2)根据你选择的条件,判定的方法是________;
    (3)根据你选择的条件,完成的证明.
    4、如图,AB=AD,AC=AE,BC=DE,点E在BC上.

    (1)求证:∠EAC=∠BAD;
    (2)若∠EAC=42°,求∠DEB的度数.
    5、如图,点D在AC上,BC,DE交于点F,,,.

    (1)求证:;
    (2)若,求∠CDE的度数.
    6、如图,在等边中,D为BC边上一点,连接AD,将沿AD翻折得到,连接BE并延长交AD的延长线于点F,连接CF.

    (1)若,求的度数;
    (2)若,求的大小;
    (3)猜想CF,BF,AF之间的数量关系,并证明.
    7、如图,在四边形ABCD中,E是CB上一点,分别延长AE,DC相交于点F,,.

    (1)求证:;
    (2)若,求BE的长.
    8、如图,在等边三角形ABC中,点D,E分别在边BC,AC上,且DE∥AB,过点E作EF⊥DE,交BC的延长线于点F.
    (1)求证:CE=CF;
    (2)若CD=2,求DF的长.

    9、如图,在△ABC中, AB=AC,AD是△ABC的中线,BE平分∠ABC交AD于点E,连接EC.求证:CE平分∠ACB.

    10、如图,点A,B,C,D在一条直线上,,,.

    (1)求证:.
    (2)若,,求∠F的度数.

    -参考答案-
    一、单选题
    1、C
    【分析】
    根据三角形全等的判定方法,等腰三角形的性质和直角三角形的性质判断即可.
    【详解】
    解:①当一个是底角是30°,一个是顶角是30°时,两三角形就不全等,故本选项错误;
    ②有一个内角是120°,底边长是3的两个等腰三角形全等,本选项正确;
    ③当一条直角边为12,一条斜边为12时,两个直角三角形不全等,故本选项错误;正确的只有1个,
    故选:C.
    【点睛】
    本题考查了全等三角形的判定定理,等腰三角形的性质和直角三角形的性质,熟练掌握全等三角形的判定定理是解题的关键.
    2、A
    【分析】
    利用基本作图得到OD=OC=OD′=OC′,CD=C′D′,则根据全等三角形的判定方法可根据“SSS”可判断△OCD≌△O′C′D′,然后根据全等三角形的性质得到∠A′OB′=∠AOB.
    【详解】
    解:由作法可得OD=OC=OD′=OC′,CD=C′D′,
    所以根据“SSS”可判断△OCD≌△O′C′D′,
    所以∠A′OB′=∠AOB.
    故选:A.
    【点睛】
    本题考查了作图﹣基本作图和全等三角形的判定与性质,解题关键是熟练掌握基本作图和全等三角形的判定定理.
    3、D
    【分析】
    结合直角三角形,钝角三角形,锐角三角形的内角与外角的含义与大小逐一分析即可.
    【详解】
    解:三角形的外角不一定大于它的内角,锐角三角形的任何一个外角都大于内角,故A不符合题意;
    三角形的外角可以是锐角,不一定比锐角大,故B不符合题意;
    三角形的内角可以小于60°,一个三角形的三个角可以为: 故C不符合题意;
    三角形中可以有三个内角都是锐角,这是个锐角三角形,故D符合题意;
    故选D
    【点睛】
    本题考查的是三角形的的内角与外角的含义与大小,掌握“直角三角形,钝角三角形,锐角三角形的内角与外角”是解本题的关键.
    4、C
    【分析】
    根据全等三角形的性质可证得BC=CE,∠ACB=∠DCE即∠ACD=∠BCE,根据等腰三角形的性质和三角形的内角和定理求解∠B=∠BEC和∠BCE即可.
    【详解】
    解:∵,
    ∴BC=CE,∠ACB=∠DCE,
    ∴∠B=∠BEC,∠ACD=∠BCE,
    ∵,
    ∴∠ACD=∠BCE=180°-2×75°=30°,
    故选:C.
    【点睛】
    本题考查全等三角形的性质、等腰三角形的性质、三角形的内角和定理,熟练掌握全等三角形的性质和等腰三角形的性质是解答的关键.
    5、D
    【分析】
    根据三角形的内角和,①,进而根据已知条件,将代入①即可求得
    【详解】
    解:∵在△ABC中,,∠A=∠B=∠C,

    解得
    故选D
    【点睛】
    本题考查了三角形内角和定理,掌握三角形内角和定理是解题的关键.
    6、A
    【分析】
    先求出∠EFD=60°,∠ABC=45°,由BC∥AD,得到∠EFD=∠FBC=60°,则∠ABF=∠FBC-∠ABC=15°.
    【详解】
    解:∵∠D=∠BAC=90°,∠E=30°,∠C=45°,
    ∴∠EFD=60°,∠ABC=45°,
    ∵BC∥AD,
    ∴∠EFD=∠FBC=60°,
    ∴∠ABF=∠FBC-∠ABC=15°,
    故选A.

    【点睛】
    本题主要考查了直角三角形两锐角互余,平行线的性质,熟知直角三角形两锐角互余是解题的关键.
    7、A
    【分析】
    先根据三角形内角和定理求出∠ACB=35°,再根据全等三角形性质即可求出∠CAD=35°.
    【详解】
    解:∵∠BAC=80°,∠ABC=65°,
    ∴∠ACB=180°-∠BAC-∠ABC=35°,
    ∵△ABC≌△CDA,
    ∴∠CAD=∠ACB=35°.
    故选:A
    【点睛】
    本题考查了三角形的内角和定理,全等三角形的性质,熟知两个定理是解题关键.
    8、D
    【分析】
    有两边相等的三角形,是等腰三角形,两边分别为和,但没有明确哪是底边,哪是腰,所以有两种情况,需要分类讨论.
    【详解】
    解:当4为底时,其它两边都为5,
    4、5、5可以构成三角形,周长为;
    当4为腰时,其它两边为4和5,
    4、4、5可以构成三角形,周长为.
    综上所述,该等腰三角形的周长是或.
    故选:D.
    【点睛】
    本题考查了等腰三角形的性质和三角形的三边关系,解题的关键是对于底和腰不等的等腰三角形,若条件中没有明确哪边是底哪边是腰时,应在符合三角形三边关系的前提下分类讨论.
    9、A
    【分析】
    根据题意,可得,结合选项根据三角形全等的性质与判定逐项分析即可.
    【详解】
    解:

    A. ,,不能根据SSA证明三角形全等,故该选项符合题意;
    B.


    ,

    故能判定,不符合题意;
    C. ,,
    ,故能判定,不符合题意;
    D.


    ,故能判定,不符合题意;
    故选A
    【点睛】
    本题考查了平行线的性质,三角形全等的性质与判定,掌握三角形全等的性质与判定是解题的关键.
    10、A
    【分析】
    根据三角形外角和为360°计算,求出内角的度数,判断即可.
    【详解】
    解:设三角形的三个外角的度数分别为3x、4x、5x,
    则3x+4x+5x=360°,
    解得,x=30°,
    ∴三角形的三个外角的度数分别为90°、120°、150°,
    对应的三个内角的度数分别为90°、60°、30°,
    ∴此三角形为直角三角形,
    故选:A.
    【点睛】
    本题考查的是三角形的外角和,掌握三角形外角和为360°是解题的关键.
    二、填空题
    1、120
    【分析】
    等边三角形中线与角平分线合一,有,,由可求得结果.
    【详解】
    解:∵是等边三角形

    ∵BD,CE是等边三角形ABC的中线

    又∵

    故答案为:.
    【点睛】
    本题考查了等边三角形的性质,角度的计算.解题的关键在于熟练利用等边三角形三线合一的性质.
    2、180度
    【分析】
    如图,连接 记的交点为 先证明再利用三角形的内角和定理可得答案.
    【详解】
    解:如图,连接 记的交点为





    故答案为:
    【点睛】
    本题考查的是三角形的内角和定理,作出合适的辅助线构建三角形是解本题的关键.
    3、70°
    【分析】
    先根据AD⊥BC可知∠ADB=∠ADC=90°,再根据直角三角形的性质求出∠1与∠DAC的度数,由∠BAC=∠1+∠DAC即可得出结论.
    【详解】
    ∵AD⊥BC,
    ∴∠ADB=∠ADC=90°,
    ∴∠DAC=90°﹣65°=25°,∠1=∠B=45°,
    ∴∠BAC=∠1+∠DAC=45°+25°=70°.
    【点睛】
    本题考查的是三角形内角和定理,熟知三角形的内角和等于180°是解答此题的关键.
    4、18
    【分析】
    利用正三角形ABC以及平行关系,求出是等边三角形,在中,利用含角的直角三角形的性质,求出的长,进而得到长,最后即可求出的周长.
    【详解】
    解:是等边三角形,
    ,,


    为等边三角形,

    由于D是AB的中点,故,


    在中,,



    故答案为:18.
    【点睛】
    本题主要是考查了等边三角形的判定及性质、含角的直角三角形的性质,熟练地综合应用等边三角形和含角的直角三角形的性质求解边长,是解决该题的关键.
    5、①连接,作;②以点为圆心、长为半径画弧,交于点;③连接交于点;④以点为圆心、长为半径画弧,交于点
    【分析】
    按照①连接,作;②以点为圆心、长为半径画弧,交于点;③连接交于点;④以点为圆心、长为半径画弧,交于点的步骤作图即可得.
    【详解】
    解:步骤是①连接,作;
    ②以点为圆心、长为半径画弧,交于点;
    ③连接交于点;
    ④以点为圆心、长为半径画弧,交于点;
    如图,点即为所求.
    故答案为:①连接,作;②以点为圆心、长为半径画弧,交于点;③连接交于点;④以点为圆心、长为半径画弧,交于点.

    【点睛】
    本题考查了作一个角等于已知角、两点之间线段最短、作线段、全等三角形的判定与性质等知识点,熟练掌握尺规作图的方法是解题关键.
    三、解答题
    1、(1)见解析,(2)46
    【分析】
    (1)根据等腰三角形的性质和角平分线得到∠B=∠ACB=∠BCF,由AD是角平分线,得到BD=CD,证△BDE≌△CDF即可;
    (2)根据全等三角形的性质得到DE=DF=DA,根据求得∠DAB,进而求出∠B的度数即可.
    【详解】
    (1)证明:∵,
    ∴∠B=∠ACB,
    ∵CB是的平分线,
    ∴∠ACB=∠BCF,
    ∴∠B=∠BCF,
    ∵AD是角平分线,AB=AC,
    ∴BD=CD,
    ∵∠BDE=∠CDF,
    ∴△BDE≌△CDF(AAS);
    ∴;
    (2)∵△BDE≌△CDF;
    ∴ED=FD,
    ∵,
    ∴ED=AD,
    ∵,
    ∴,
    ∴,
    ∴∠B=∠ACB=∠BCF=23°,
    ∴,
    故答案为:46.
    【点睛】
    本题考查了等腰三角形的性质和全等三角形的判定与性质,解题关键是熟练运用相关知识进行推理证明和计算.
    2、见详解.
    【分析】
    根据等腰三角形三合一性质以及等边对等角性质得出AD⊥BC,∠B=∠C,根据AF⊥AD,利用在同一平面内垂直同一直线的两直线平行得出AF∥BC,利用平行线性质得出∠1=∠B,∠2=∠C即可.
    【详解】
    证明:∵△ABC中,AB=AC,D为BC边的中点,
    ∴AD⊥BC,∠B=∠C,
    ∵AF⊥AD,
    ∴AF∥BC,
    ∴∠1=∠B,∠2=∠C,
    ∴∠1=∠2.
    【点睛】
    本题考查等腰三角形性质,平行线的判定与性质,掌握等腰三角形性质,平行线的判定与性质是解题关键.
    3、
    (1)①
    (2)SAS
    (3)见解析
    【分析】
    (1)根据全等三角形的判定方法分析得出答案;
    (2)根据(1)直接填写即可;
    (3)利用SAS进行证明.
    (1)
    解:∵,
    ∴∠A=∠F,
    ∵AC=EF,
    ∴当时,可根据SAS证明;
    当时,不能证明,
    故答案为:①;
    (2)
    解:当时,可根据SAS证明,
    故答案为:SAS;
    (3)
    证明:在△ABC和△FDE中,

    ∴.
    【点睛】
    此题考查了添加条件证明两个三角形全等,正确掌握全等三角形的判定定理是解题的关键.
    4、(1)见解析;(2)42°
    【分析】
    (1)利用边边边证得△ABC≌△ADE,可得∠BAC=∠DAE,即可求证;
    (2)根据等腰三角形的性质,可得∠AEC=∠C=69°,再由△ABC≌△ADE,可得∠AED=∠C=69°, 即可求解.
    【详解】
    (1)证明:∵AB=AD,AC=AE,BC=DE,
    ∴△ABC≌△ADE.
    ∴∠BAC=∠DAE.
    ∴∠BAC-∠BAE=∠DAE-∠BAE.
    即∠EAC=∠BAD;
    (2)解:∵AC=AE,∠EAC=42°,
    ∴∠AEC=∠C= ×(180°-∠EAC)= ×(180°-42°)=69°.
    ∵△ABC≌△ADE,
    ∴∠AED=∠C=69°,
    ∴∠DEB=180°-∠AED-∠C=180°-69°-69°=42°.
    【点睛】
    本题主要考查了全等三角形的判定和性质,等腰三角形的性质,熟练掌握全等三角形的判定和性质定理,等腰三角形的性质定理是解题的关键.
    5、
    (1)证明见解析;
    (2)∠CDE=20°.
    【分析】
    (1)由“SAS”可证△ABC≌△DBE;
    (2)由全等三角形的性质可得∠C=∠E,由三角形的外角性质可求解.
    (1)
    证明:∵∠ABD=∠CBE,
    ∴∠ABD+∠DBC=∠CBE+∠DBC,
    即:∠ABC=∠DBE,
    在△ABC和△DBE中,

    ∴△ABC≌△DBE(SAS);
    (2)
    解:由(1)可知:△ABC≌△DBE,
    ∴∠C=∠E,
    ∵∠DFB=∠C+∠CDE,
    ∠DFB=∠E+∠CBE,
    ∴∠CDE=∠CBE,
    ∵∠ABD=∠CBE=20°,
    ∴∠CDE=20°.
    【点睛】
    本题考查了全等三角形的判定和性质,三角形的外角性质,证明三角形全等是解题的关键.
    6、(1)20°;(2);(3)AF= CF+BF,理由见解析
    【分析】
    (1)由△ABC是等边三角形,得到AB=AC,∠BAC=∠ABC=60°,由折叠的性质可知,∠EAD=∠CAD=20°,AC=AE,则∠BAE=∠BAC-∠EAD-∠CAD=20°,AB=AE,,∠CBF=∠ABE-∠ABC=20°;
    (2)同(1)求解即可;
    (3)如图所示,将△ABF绕点A逆时针旋转60°得到△ACG,先证明△AEF≌△ACF得到∠AFE=∠AFC,然后证明∠AFE=∠AFC=60°,得到∠BFC=120°,即可证明F、C、G三点共线,得到△AFG是等边三角形,则AF=GF=CF+CG=CF+BF.
    【详解】
    解:(1)∵△ABC是等边三角形,
    ∴AB=AC,∠BAC=∠ABC=60°,
    由折叠的性质可知,∠EAD=∠CAD=20°,AC=AE,
    ∴∠BAE=∠BAC-∠EAD-∠CAD=20°,AB=AE,
    ∴,
    ∴∠CBF=∠ABE-∠ABC=20°;
    (2)∵△ABC是等边三角形,
    ∴AB=AC,∠BAC=∠ABC=60°,
    由折叠的性质可知,,AC=AE,
    ∴ ,AB=AE,
    ∴,
    ∴;
    (3)AF= CF+BF,理由如下:
    如图所示,将△ABF绕点A逆时针旋转60°得到△ACG,
    ∴AF=AG,∠FAG=60°,∠ACG=∠ABF,BF=CG
    在△AEF和△ACF中,

    ∴△AEF≌△ACF(SAS),
    ∴∠AFE=∠AFC,
    ∵∠CBF+∠BCF+∠BFD+∠CFD=180°,∠CAF+∠CFA+∠ACD+∠CFD=180°,
    ∴∠BFD=∠ACD=60°,
    ∴∠AFE=∠AFC=60°,
    ∴∠BFC=120°,
    ∴∠BAC+∠BFC=180°,
    ∴∠ABF+∠ACF=180°,
    ∴∠ACG+∠ACF=180°,
    ∴F、C、G三点共线,
    ∴△AFG是等边三角形,
    ∴AF=GF=CF+CG=CF+BF.

    【点睛】
    本题主要考查了等边三角形的性质与判定,旋转的性质,折叠的性质,全等三角形的性质与判定,三角形内角和定理,熟知相关知识是解题的关键.
    7、
    (1)见解析
    (2)
    【分析】
    (1)利用是的外角,以及证明即可.
    (2)证明≌,可知,从而得出答案.
    (1)
    证明:∵是的外角,
    ∴.
    又∵,∴.
    (2)
    解:在和中,

    ∴≌.
    ∴.
    ∵,
    ∴.
    【点睛】
    本题考查了三角形的外角以及三角形全等的性质和判定,掌握三角形全等的性质和判定是解题的关键.
    8、
    (1)证明见解析;
    (2)4
    【分析】
    (1)根据等边三角形的性质和平行线的性质可证得∠EDC=∠ECD=∠DEC=60°,再根据直角定义和三角形的外角性质证得∠F=∠FEC=30°,利用等角对等边即可证得结论;
    (2)由等角对等边可知CE=DC=2,结合(1)中结论即可求解.
    (1)
    证明:∵△ABC是等边三角形,
    ∴∠A=∠B=∠ACB=60°.
    ∵DE∥AB,
    ∴∠B=∠EDC=60°,∠A=∠CED=60°,
    ∴∠EDC=∠ECD=∠DEC=60°,
    ∵EF⊥ED,
    ∴∠DEF=90°,
    ∴∠F=30°
    ∵∠F+∠FEC=∠ECD=60°,
    ∴∠F=∠FEC=30°,
    ∴CE=CF.
    (2)
    解:由(1)可知∠EDC=∠ECD=∠DEC=60°,
    ∴CE=DC=2.
    又∵CE=CF,
    ∴CF=2.
    ∴DF=DC+CF=2+2=4.
    【点睛】
    本题考查等边三角形的性质、等腰三角形的判定、平行线的性质、三角形的外角性质、线段的和与差,熟练掌握相关知识的联系与运用是解答的关键.
    9、见解析
    【分析】
    根据等腰三角形的性质,可得∠ADB=∠ADC=90°,∠ABC=∠ACB,BD=CD,从而得到△BDE≌△CDE,进而得到∠DCE=∠DBE,再由BE平分∠ABC,可得 ,进而得到,即可求证.
    【详解】
    解:∵AB=AC,AD是△ABC的中线,
    ∴∠ADB=∠ADC=90°,∠ABC=∠ACB,BD=CD,
    ∵DE=DE,
    ∴△BDE≌△CDE,
    ∴∠DCE=∠DBE,
    ∵BE平分∠ABC,
    ∴ ,
    ∴,
    ∴,
    ∴CE平分∠ACB.
    【点睛】
    本题主要考查了等腰三角形的性质,全等三角形的判定和性质,熟练掌握等腰三角形的两底角相等,等腰三角形“三线合一”是解题的关键.
    10、(1)见解析;(2)
    【分析】
    (1)根据平行线的性质可得,根据线段的和差关系可得,进而根据即证明;
    (2)根据三角形内角和定理以及补角的意义求得∠E,进而根据(1)的结论即可求得∠F.
    【详解】
    (1)证明:




    又,

    (2)解:,,




    【点睛】
    本题考查了平行线的性质,三角形内角和定理,三角形全等的性质与判定,掌握全等三角形的性质与判定是解题的关键.

    相关试卷

    数学七年级下册第十四章 三角形综合与测试课时练习:

    这是一份数学七年级下册第十四章 三角形综合与测试课时练习,共36页。试卷主要包含了已知长方形纸片ABCD,点E等内容,欢迎下载使用。

    初中数学沪教版 (五四制)七年级下册第十四章 三角形综合与测试练习题:

    这是一份初中数学沪教版 (五四制)七年级下册第十四章 三角形综合与测试练习题,共31页。试卷主要包含了定理等内容,欢迎下载使用。

    初中第十四章 三角形综合与测试课后复习题:

    这是一份初中第十四章 三角形综合与测试课后复习题,共32页。试卷主要包含了已知长方形纸片ABCD,点E,有下列说法等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map