沪教版 (五四制)七年级下册第十四章 三角形综合与测试当堂检测题
展开
这是一份沪教版 (五四制)七年级下册第十四章 三角形综合与测试当堂检测题,共32页。试卷主要包含了下列四个命题是真命题的有,如图,如图,为估计池塘岸边A,三角形的外角和是等内容,欢迎下载使用。
沪教版七年级数学第二学期第十四章三角形难点解析
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,等边中,D为AC中点,点P、Q分别为AB、AD上的点,,,在BD上有一动点E,则的最小值为( )
A.7 B.8 C.10 D.12
2、如图,在Rt△ABC中,∠ACB=90°,∠BAC=40°,直线a∥b,若BC在直线b上,则∠1的度数为( )
A.40° B.45° C.50° D.60°
3、如图,点F,C在BE上,AC=DF,BF=EC,AB=DE,AC与DF相交于点G,则与2∠DFE相等的是( )
A.∠A+∠D B.3∠B C.180°﹣∠FGC D.∠ACE+∠B
4、下列四个命题是真命题的有( )
①同位角相等;
②相等的角是对顶角;
③直角三角形两个锐角互余;
④三个内角相等的三角形是等边三角形.
A.1个 B.2个 C.3个 D.4个
5、在△ABC中,∠A=50°,∠B、∠C的平分线交于O点,则∠BOC等于( )
A.65° B.80° C.115° D.50°
6、如图:将一张长为40cm的长方形纸条按如图所示折叠,若AB=3BC,则纸条的宽为( )
A.12 B.14 C.16 D.18
7、如图,为估计池塘岸边A、B两点的距离,小方在池塘的一侧选取一点O,OA=15米,OB=10米,A、B间的距离不可能是( )
A.5米 B.10米 C.15米 D.20米
8、如图,AD是的角平分线,,垂足为F.若,,则的度数为( )
A.35° B.40° C.45° D.50°
9、三角形的外角和是( )
A.60° B.90° C.180° D.360°
10、下列各条件中,不能作出唯一的的是( )
A.,, B.,,
C.,, D.,,
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、已知直角三角形△ABC的三条边长分别为3,4,5,在△ABC所在平面内画一条直线,将△ABC分割成两个三角形,使其中的一个是等腰三角形,则这样的直线最多可画___条.
2、在平面直角坐标系中,,,,,则点的坐标为__________.
3、在新年联欢会上,老师设计了“你说我画”的游戏.游戏规则如下:甲同学需要根据乙同学提供的三个条件画出形状和大小都确定的三角形.已知乙同学说出的前两个条件是“,”.现仅存下列三个条件:①;②;③.为了甲同学画出形状和大小都确定的,乙同学可以选择的条件有: ______.(填写序号,写出所有正确答案)
4、如图,,点G分别为AD与CF的中点,若,则AC=______.
5、若等腰三角形两底角平分线相交所形成的钝角是128°,则这个等腰三角形的顶角的度数是_____.
三、解答题(10小题,每小题5分,共计50分)
1、如图,在△ABC中,∠BAC=90°,AB=AC,射线AE交BC于点P,∠BAE=15°;过点C作CD⊥AE于点D,连接BE,过点E作EF∥BC交DC的延长线于点F.
(1)求∠F的度数;
(2)若∠ABE=75°,求证:BE∥CF.
2、如图,等边△ABC中,点D在BC上,CE=CD,∠BCE=60°,连接AD、BE.
(1)如图1,求证:AD=BE;
(2)如图2,延长AD交BE于点F,连接DE、CF,在不添加任何辅助线和其它字母的情况下,请直接写出等于120°的角.
3、已知,如图,AB=AD,∠B=∠D,∠1=∠2=60°.
(1)求证:△ADE≌△ABC;
(2)求证:AE=CE.
4、一个零件形状如图所示,按规定应等于75°,和应分别是18°和22°,某质检员测得,就断定这个零件不合格,请你运用三角形的有关知识说明零件不合格的理由.
5、如图,Rt△ACB中,∠ACB=90°,AC=BC,E点为射线CB上一动点,连结AE,作AF⊥AE且AF=AE.
(1)如图1,过F点作FD⊥AC交AC于D点,求证:FD=BC;
(2)如图2,连结BF交AC于G点,若AG=3,CG=1,求证:E点为BC中点.
(3)当E点在射线CB上,连结BF与直线AC交子G点,若BC=4,BE=3,则 .(直接写出结果)
6、如图,在△ABC中,AD⊥BE,∠DAC=10°,AE是∠BAC的外角∠MAC的平分线,BF平分∠ABC交AE于点F,求∠AFB的度数.
7、阅读以下材料,并按要求完成相应的任务:
从正方形的一个顶点引出夹角为的两条射线,并连接它们与该顶点的两对边的交点构成的基本平面几何模型称为半角模型.半角模型可证出多个几何结论,例如:
如下图1,在正方形中,以为顶点的,、与、边分别交于、两点.易证得.
大致证明思路:如图2,将绕点顺时针旋转,得到,由可得、、三点共线,,进而可证明,故.
任务:
如图3,在四边形中,,,,以为顶点的,、与、边分别交于、两点.请参照阅读材料中的解题方法,你认为结论是否依然成立,若成立,请写出证明过程;若不成立,请说明理由.
8、阅读填空,将三角尺(△MPN,∠MPN=90°)放置在△ABC上(点P在△ABC内),如图①所示,三角尺的两边PM、PN恰好经过点B和点C,我们来研究∠ABP与∠ACP是否存在某种数量关系.
(1)特例探索:
若∠A=50°,则∠PBC+∠PCB= 度,∠ABP+∠ACP= 度.
(2)类比探索:
∠ABP、∠ACP、∠A的关系是 .
(3)变式探索:
如图②所示,改变三角尺的位置,使点P在△ABC外,三角尺的两边PM、PN仍恰好经过点B和点C,则∠ABP、∠ACP、∠A的关系是 .
9、已知:如图,,,求证:
10、如图,在△ABC中,CE平分∠ACB交AB于点E,AD是△ABC边BC上的高,AD与CE相交于点F,且∠ACB=80°,求∠AFE的度数.
-参考答案-
一、单选题
1、C
【分析】
作点关于的对称点,连接交于,连接,此时的值最小,最小值,据此求解即可.
【详解】
解:如图,
是等边三角形,
,
∵D为AC中点,
∴,,,
,
作点关于的对称点,连接交于,连接,此时的值最小.最小值,
,,
,
,
,
,
是等边三角形,
,
的最小值为.
故选:C.
【点睛】
本题考查等边三角形的性质和判定,轴对称最短问题等知识,解题的关键是学会利用轴对称解决最短问题,属于中考常考题型.
2、C
【分析】
根据三角形内角和定理确定,然后利用平行线的性质求解即可.
【详解】
解:∵,,
∴,
∵,
∴,
故选:C.
【点睛】
题目主要考查平行线的性质,三角形内角和定理等,熟练掌握运用平行线的性质是解题关键.
3、C
【详解】
由题意根据等式的性质得出BC=EF,进而利用SSS证明△ABC与△DEF全等,利用全等三角形的性质得出∠ACB=∠DFE,最后利用三角形内角和进行分析解答.
【分析】
解:∵BF=EC,
∴BF+FC=EC+FC,
∴BC=EF,
在△ABC与△DEF中,
,
∴△ABC≌△DEF(SSS),
∴∠ACB=∠DFE,
∴2∠DFE=180°﹣∠FGC,
故选:C.
【点睛】
本题考查全等三角形的判定与性质,其中全等三角形的判定方法有:SSS;SAS;ASA;AAS;以及HL(直角三角形的判定方法).
4、B
【分析】
利用平行线的性质、对顶角的定义、直角三角形的性质及等边三角形的性质分别判断后即可确定正确的选项.
【详解】
①两直线平行,同位角相等,故错误,是假命题;
②相等的角是对顶角,错误,是假命题;
③直角三角形两个锐角互余,正确,是真命题;
④三个内角相等的三角形是等边三角形,正确,是真命题,
综上所述真命题有2个,
故选:B.
【点睛】
本题考查了命题真假的判断,要说明一个命题是正确的,需要根据命题的题设和已学的有关公理、定理进行说明、推理、证明,正确的命题叫做真命题,错误的命题叫做假命题.
5、C
【分析】
根据题意画出图形,求出∠ABC+∠ACB =130°,根据角平分线的定义得到∠CBD=∠ABC,∠ECB=∠ACB,再根据三角形内角和定理和角的代换即可求解.
【详解】
解:如图,∵∠A=50°,
∴∠ABC+∠ACB=180°-∠A=130°,
∵BD、CE分别是∠ABC、∠ACB的平分线,
∴∠CBD=∠ABC,∠ECB=∠ACB,
∴∠BOC=180°-∠CBD-∠ECB=180°-(∠CBD+∠ECB)=180°- (∠ABC+∠ACB)=180°- ×130°=115°.
故选:C
【点睛】
本题考查了三角形内角和定理,角平分线的定义,熟知三角形内角和定理,并能根据角平分线的定义进行角的代换是解题关键.
6、B
【分析】
如图,延长NO交AD的延长线于点P,设BC=x,则AB=3x,利用折叠的性质和等腰直角三角形的性质可表示出纸条的宽MO,NO的长,从而可表示出纸条的长2PN的长,然后根据长方形纸条的长为40,可得到关于x的方程,解方程求出x的值,即可求出纸条的宽.
【详解】
解:如图,延长NO交AD的延长线于点P,
设BC=x,则AB=3x,
∵折叠,
∴AB=BM=CO=CD=PO=3x,
∴纸条的宽为:MO=NO=3x+3x+x=7x,
∴纸条的长为:2PN=2(7x+3x)=20x=40
解得:x=2,
∴纸条的宽NO=7×2=14.
故答案为:B.
【点睛】
此题考查了折叠的性质,等腰直角三角形的性质,一元一次方程应用题,解题的关键是正确分析题目中的等量关系列出方程求解.
7、A
【分析】
根据三角形的三边关系得出5<AB<25,根据AB的范围判断即可.
【详解】
解:连接AB,
根据三角形的三边关系定理得:
15﹣10<AB<15+10,
即:5<AB<25,
∴A、B间的距离在5和25之间,
∴A、B间的距离不可能是5米;
故选:A.
【点睛】
本题主要考查对三角形的三边关系定理的理解和掌握,能正确运用三角形的三边关系定理是解此题的关键.
8、B
【分析】
根据三角形的内角和求出∠ACB=90°,利用三角形全等,求出DC=DE,再利用外角求出答案.
【详解】
解:∵∠CAB=40°,∠B=50°,
∴∠ACB=180°−40°−50°=90°,
∵CE⊥AD,
∴∠AFC=∠AFE=90°,
∵AD是△ABC的角平分线,
∴∠CAD=∠EAD=×40°=20°,
又∵AF=AF,
∴△ACF≌△AEF(ASA)
∴AC=AE,
∵AD=AD,∠CAD=∠EAD,
∴△ACD≌△AED (SAS),
∴DC=DE,
∴∠DCE=∠DEC,
∵∠ACE=90°−20°=70°,
∴∠DCE=∠DEC=∠ACB−∠ACE=90°−70°=20°,
∴∠BDE=∠DCE+∠DEC=20°+20°=40°,
故选:B.
【点睛】
考查角平分线、全等三角形的判定和性质、三角形的内角和等知识,根据三角形的内角和求出相应各个角的度数是解决问题的关键.
9、D
【分析】
根据三角形的内角和定理、邻补角的性质即可得.
【详解】
解:如图,,
,
又,
,
即三角形的外角和是,
故选:D.
【点睛】
本题考查了三角形的内角和定理、邻补角的性质,熟练掌握三角形的内角和定理是解题关键.
10、B
【分析】
根据三角形全等的判定及三角形三边关系即可得出结果.
【详解】
解:A、,不能组成三角形;
B、根据不可以确定选项中条件能作出唯一三角形;
C、根据可以确定选项中条件能作出唯一三角形;
D、根据可以确定选项中条件能作出唯一三角形;
故答案为:B.
【点睛】
本题考查确定唯一三角形所需要的条件及三角形三边关系,解题关键在于对全等判定条件的理解.
二、填空题
1、6
【分析】
根据等腰三角形的性质分别利用AB,AC为底以及为腰得出符合题意的图形即可.
【详解】
解:如图所示:
当BC2=CC2,AC1=AC,BC=BC3,BC=CC4,BC=CC5,C6A=C6B都能得到符合题意的等腰三角形.
故答案为:6.
【点睛】
此题主要考查了等腰三角形的判定以及应用设计与作图等知识,正确利用图形分类讨论得出是解题关键.
2、
【分析】
按照在x轴的上下方,分成两类情况讨论,如解析中的图像所示,分别利用边和角证明和成立,然后根据对应边相等,即可求出两种情况对应的点B的坐标.
【详解】
解:如下图所示:
由,可知:,.
当B点在x轴下方时,过点B1向x轴作垂线,垂足为E.
,
在与中:
,
点坐标为
当B点在x轴上方时,过点B2向x轴作垂线,垂足为D.
由题意可知:
在与中
,
点坐标为
故答案为:或.
【点睛】
本题主要是考查了全等三角形的判定和性质以及坐标点的求解,熟练利用全等三角形证明边相等,进而利用边长求解点的坐标,这是解决该题的关键.
3、②
【分析】
根据两边及其夹角对应相等的两个三角形全等,即可求解.
【详解】
解:①若选,是边边角,不能得到形状和大小都确定的;
②若选,是边角边,能得到形状和大小都确定的;
③若选,是边边角,不能得到形状和大小都确定的;
所以乙同学可以选择的条件有②.
故答案为:②
【点睛】
本题主要考查了全等三角形的判定,熟练掌握两边及其夹角对应相等的两个三角形全等是解题的关键.
4、4
【分析】
根据SAS证明,由全等三角形的性质得,,由,得,推出,都是等腰三角形,故得,设,则,,,列出等量关系式解出,即可得出.
【详解】
∵点G分别为AD与CF的中点,
∴,,,
∴,
∴,,
∵,,
∴,
∴,都是等腰三角形,
∴,
设,则,,,
∴,
解得:,
∴.
故答案为:4.
【点睛】
本题考查全等三角形的判定与性质,等腰三角形的判定与性质,根据题意找出关系式是解题的关键.
5、
【分析】
先根据角平分线的定义、三角形的内角和定理求出等腰三角形两底角的度数和,再根据三角形内角和求出顶角的度数即可.
【详解】
解:
∵∠BOC=128°,
∴∠OBC+∠OCB=180°﹣∠BOC=180°﹣128°=52°,
∵BO平分∠ABC,CO平分∠ACB,
∴∠ABC+∠ACB=2(∠OBC+∠OCB)=104°,
∴∠A=180°﹣(∠ABC+∠ACB)=180°﹣104°=76°.
故答案为:76°.
【点睛】
本题主要考查角平分线的定义和三角形内角和定理,牢记角平分线分得的两个角相等,三角形内角和是是解决本题的关键.
三、解答题
1、(1);(2)证明见详解.
.
【分析】
(1)根据三角形内角和及等腰三角形的性质可得,,由各角之间的关系及三角形内角和定理可得,,最后由平行线的性质即可得出;
(2)由题意及各角之间的关系可得,得出,利用平行线的判定定理即可证明.
【详解】
解:(1)∵,,,
∴,,
∵,
∴,,
∴,
∴,
∵,
∴,,
∴;
(2)∵,,
∴,
由(1)可得,
∴,
∴(内错角相等,两直线平行).
【点睛】
题目主要考查平行线的判定与性质,三角形内角和定理等,熟练掌握平行线的判定与性质是解题关键.
2、(1)见解析;(2)等于120°的角有∠BFC、∠BDE、∠DFE=120°.
【分析】
(1)利用SAS证明△ADC≌△BEC,即可证明AD=BE;
(2)证明△CDE为等边三角形,可求得∠BDE=120°;利用全等三角形的性质可求得∠BFD=∠BCA=60°,推出∠DFE=120°;同理可推出∠BFC=∠AFC+∠BFD=120°.
【详解】
(1)证明:等边△ABC中,CA=CB,∠ACB=60°,
∵CE=CD,∠BCE=60°,
∴△ADC≌△BEC(SAS),
∴AD=BE;
(2)等于120°的角有∠BFC、∠BDE、∠DFE=120°.
∵CE=CD,∠BCE=60°,
∴△CDE为等边三角形,
∴∠CDE=60°,
∴∠BDE=120°;
∵△ADC≌△BEC,
∴∠DAC=∠EBC,
又∠BDF=∠ADC,
∴∠BFD=∠BCA=60°,
∴∠DFE=120°;
同理可求得∠AFC=∠ABC=60°,
∴∠BFC=∠AFC+∠BFD=120°;
综上,等于120°的角有∠BFC、∠BDE、∠DFE=120°.
【点睛】
本题考查了全等三角形的判定和性质,等边三角形的判定和性质,熟记各图形的性质并准确识图是解题的关键.
3、(1)见解析;(2)见解析
【分析】
(1)根据∠1=∠2可推出∠DAE=∠BAC,然后结合全等三角形的判定定理进行证明;
(2)由全等三角形的性质可得AE=AC,结合∠2=60°可推出△AEC为等边三角形,据此证明.
【详解】
(1)证明:∵∠1=∠2
∴∠1+=∠2+
即∠DAE=∠BAC
在△ADE和△ABC中
∴△ADE≌△ABC(ASA)
(2)证明:∵△ADE≌△ABC
∴AE=AC
又∵∠2=60°
∴△AEC为等边三角形
∴AE=CE
【点睛】
此题考查了全等三角形的性质和判定,等边三角形的性质和判定,解题的关键是熟练掌握全等三角形的性质和判定方法,等边三角形的性质和判定方法.
4、不合格,理由见解析
【分析】
延长BD与AC相交于点E.利用三角形的外角性质,可得,,即可求解.
【详解】
解:如图,延长BD与AC相交于点E.
∵是的一个外角,,,
∴,
同理可得
∵李师傅量得,不是115°,
∴这个零件不合格.
【点睛】
本题主要考查了三角形的外角性质,熟练掌握三角形的一个外角等于与它不相邻的两个内角的和是解题的关键.
5、(1)证明见解析;(2)证明见解析;(3)或
【分析】
(1)证明△AFD≌△EAC,根据全等三角形的性质得到DF=AC,等量代换证明结论;
(2)作FD⊥AC于D,证明△FDG≌△BCG,得到DG=CG,求出CE,CB的长,得到答案;
(3)过F作FD⊥AG的延长线交于点D,根据全等三角形的性质得到CG=GD,AD=CE=7,代入计算即可.
【详解】
(1)证明:∵FD⊥AC,
∴∠FDA=90°,
∴∠DFA+∠DAF=90°,
同理,∠CAE+∠DAF=90°,
∴∠DFA=∠CAE,
在△AFD和△EAC中,
,
∴△AFD≌△EAC(AAS),
∴DF=AC,
∵AC=BC,
∴FD=BC;
(2)作FD⊥AC于D,
由(1)得,FD=AC=BC,AD=CE,
在△FDG和△BCG中,
,
∴△FDG≌△BCG(AAS),
∴DG=CG=1,
∴AD=2,
∴CE=2,
∵BC=AC=AG+CG=4,
∴E点为BC中点;
(3)当点E在CB的延长线上时,过F作FD⊥AG的延长线交于点D,
BC=AC=4,CE=CB+BE=7,
由(1)(2)知:△ADF≌△ECA,△GDF≌△GCB,
∴CG=GD,AD=CE=7,
∴CG=DG=1.5,
∴AG=CG+AC=5.5,
∴,
同理,当点E在线段BC上时,AG= AC -CG+=2.5,
∴,
故答案为:或.
【点睛】
本题考查的是全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理是解题的关键.
6、∠AFB=40°.
【分析】
由题意易得∠ADC=90°,∠ACB=80°,然后可得,进而根据三角形外角的性质可求解.
【详解】
解:∵AD⊥BE,
∴∠ADC=90°,
∵∠DAC=10°,
∴∠ACB=90°﹣∠DAC=90°﹣10°=80°,
∵AE是∠MAC的平分线,BF平分∠ABC,
∴,
又∵∠MAE=∠ABF+∠AFB,∠MAC=∠ABC+∠ACB,
∴∠AFB=∠MAE﹣∠ABF=.
【点睛】
本题主要考查三角形外角的性质及角平分线的定义,熟练掌握三角形外角的性质及角平分线的定义是解题的关键.
7、成立,证明见解析
【分析】
根据阅读材料将△ADF旋转120°再证全等即可求得EF= BE+DF .
【详解】
解:成立.
证明:将绕点顺时针旋转,得到,
,,,,,
,、、三点共线,
.
,,,
,
.
【点睛】
本题考查旋转中的三角形全等,读懂材料并运用所学的全等知识是本题关键.
8、(1)90,40 ;(2)∠ABP+∠ACP+∠A=90°;(3)∠A+∠ACP-∠ABP=90°.
【分析】
(1)由三角形内角和为180°计算和中的角的关系即可.
(2)由(1)所得即可得出∠ABP、∠ACP、∠A的关系为∠ABP+∠ACP+∠A=90°.
(3)由三角形外角的性质即可推出∠A+∠ACP-∠ABP=90°.
【详解】
(1)在中
∵∠MPN=90°
∴∠PBC+∠PCB=180°-∠MPN=180°-90°=90°
在中
∵∠A+∠ABC+∠ACB=180°
又∵∠ABC=∠PBC+∠ABP,∠ACB=∠ACP+∠BCP
∴∠A+∠PBC+∠ABP +∠ACP+∠BCP =180°
∵∠PBC+∠PCB=90°,∠A=50°
∴∠ABP +∠ACP=180°-90°-50°=40°
(2)由(1)问可知∠A+∠PBC+∠ABP +∠ACP+∠BCP =180°
又∵∠PBC+∠PCB=90°
∴∠A+∠ABP +∠ACP=180°-(∠PBC+∠PCB)=180°-90°=90°
(3)如图所示,设PN与AB交于点H
∵∠A+∠ACP=∠AHP
又∵∠ABP+∠MPN =∠AHP
∴∠A+∠ACP=∠ABP+∠MPN
又∵∠MPN =90°
∴∠A+∠ACP =90°+∠ABP
∴∠A+∠ACP-∠ABP=90°.
【点睛】
本题考查了三角形的性质以及三角尺的角度计算问题,三角板的角度分别为90°,45°,45°;90°,60°,30°两种直角三角尺,三角形内角和是180°,三角形的一个外角等于与它不相邻的两个内角的和.
9、证明见解析
【分析】
由,,结合公共边 从而可得结论.
【详解】
证明:在与中,
【点睛】
本题考查的是全等三角形的判定,掌握“利用边边边公理证明三角形全等”是解本题的关键.
10、∠AFE=50°.
【分析】
根据CE平分∠ACB,∠ACB=80°,得出∠ECB=,根据高线性质得出∠ADC=90°,根据三角形内角和得出∠DFC=180°-∠ADC-∠ECB=180°-90°-40°=50°,利用对顶角性质得出∠AFE=∠DFC=50°即可.
【详解】
解:∵CE平分∠ACB,∠ACB=80°,
∴∠ECB=,
∵AD是△ABC边BC上的高,AD⊥BC,
∴∠ADC=90°,
∴∠DFC=180°-∠ADC-∠ECB=180°-90°-40°=50°,
∴∠AFE=∠DFC=50°.
【点睛】
本题考查角平分线定义,垂线性质,三角形内角和,对顶角性质,掌握角平分线定义,垂线性质,三角形内角和,对顶角性质是解题关键.
相关试卷
这是一份数学七年级下册第十四章 三角形综合与测试课时练习,共36页。试卷主要包含了已知长方形纸片ABCD,点E等内容,欢迎下载使用。
这是一份初中数学沪教版 (五四制)七年级下册第十四章 三角形综合与测试同步练习题,共34页。试卷主要包含了有下列说法,下列说法不正确的是,下列说法错误的是等内容,欢迎下载使用。
这是一份沪教版 (五四制)七年级下册第十四章 三角形综合与测试一课一练,共38页。试卷主要包含了如图,点A等内容,欢迎下载使用。