终身会员
搜索
    上传资料 赚现金

    2022年强化训练沪教版七年级数学第二学期第十四章三角形同步测试试卷

    立即下载
    加入资料篮
    2022年强化训练沪教版七年级数学第二学期第十四章三角形同步测试试卷第1页
    2022年强化训练沪教版七年级数学第二学期第十四章三角形同步测试试卷第2页
    2022年强化训练沪教版七年级数学第二学期第十四章三角形同步测试试卷第3页
    还剩28页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    数学七年级下册第十四章 三角形综合与测试课后测评

    展开

    这是一份数学七年级下册第十四章 三角形综合与测试课后测评,共31页。试卷主要包含了下列说法不正确的是等内容,欢迎下载使用。
    沪教版七年级数学第二学期第十四章三角形同步测试
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、如图,点A、B、C、D在一条直线上,点E、F在AD两侧,,,添加下列条件不能判定的是( )

    A. B. C. D.
    2、三个等边三角形的摆放位置如图所示,若,则的度数为  

    A. B. C. D.
    3、若三条线段中a=3,b=5,c为奇数,那么以a、b、c为边组成的三角形共有( )
    A.1个 B.2个 C.3个 D.4个
    4、将三根木条钉成一个三角形木架,这个三角形木架具有稳定性.解释这个现象的数学原理是( )
    A.SSS B.SAS C.ASA D.AAS
    5、下列说法不正确的是( )
    A.有两边对应相等的两个直角三角形全等;
    B.等边三角形的底角与顶角相等;
    C.有一个角是的直角三角形是等腰直角三角形;
    D.如果点与点到直线的距离相等,那么点与点关于直线对称.
    6、如图,AD是的角平分线,,垂足为F.若,,则的度数为( )

    A.35° B.40° C.45° D.50°
    7、如图,是等边三角形,点在边上,,则的度数为( ).

    A.25° B.60° C.90° D.100°
    8、已知三角形的两边长分别为2cm和3cm,则第三边长可能是( )
    A.6cm B.5cm C.3cm D.1cm
    9、在△ABC中,∠A=50°,∠B、∠C的平分线交于O点,则∠BOC等于( )
    A.65° B.80° C.115° D.50°
    10、已知三条线段的长分别是4,4,m,若它们能构成三角形,则整数m的最大值是( )
    A.10 B.8 C.7 D.4
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、若等腰三角形两底角平分线相交所形成的钝角是128°,则这个等腰三角形的顶角的度数是_____.
    2、如图,PA=PB,请你添加一个适当的条件:___________,使得△PAD≌△PBC.

    3、如图,,的平分线交于点,是上的一点,的平分线交于点,且,下列结论:
    ①平分;
    ②;
    ③与互余的角有个;
    ④若,则.

    其中正确的是________.(请把正确结论的序号都填上)
    4、如图,△ABC中,AB=AC=DC,D在BC上,且AD=DB,则∠BAC=_____.

    5、已知△ABC的面积是12,AB=AC=5,AD是BC边上的中线,E,P分别是AC,AD上的动点,则CP+EP的最小值为_______.

    三、解答题(10小题,每小题5分,共计50分)
    1、如图,点D在AC上,BC,DE交于点F,,,.

    (1)求证:;
    (2)若,求∠CDE的度数.
    2、已知,∠A=∠D,BC平分∠ABD,求证:AC=DC.

    3、如图,已知点E、C在线段BF上,,,.求证:ΔABC≅ΔDEF.

    4、如图,在四边形ABCD中,E是CB上一点,分别延长AE,DC相交于点F,,.

    (1)求证:;
    (2)若,求BE的长.
    5、在等腰中,,点D是BC边上的一个动点(点D不与点B,C重合),连接AD,作等腰,使,,点D,E在直线AC两旁,连接CE.

    (1)如图1,当时,直接写出BC与CE的位置关系;
    (2)如图2,当时,过点A作于点F,请你在图2中补全图形,用等式表示线段BD,CD,之间的数量关系,并证明.
    6、人教版初中数学教科书八年级上册第36、37页告诉我们作一个角等于已知角的方法:
    已知:∠AOB.
    求作:∠A′O′B′,使∠A′O′B′=∠AOB.
    作图:
    (1)以O为圆心,任意长为半径画弧,分别交OA、OB于点C、D;
    (2)画一条射线O′A′,以点O′为圆心,OC长为半径画弧,交O′A′于点C′;
    (3)以点C′为圆心,CD长为半径画弧,与第2步中所画的弧相交于点D′;
    (4)过点D′画射线O′B′,则∠A′O′B′=∠AOB.

    请你根据以上材料完成下列问题:
    (1)完成下面证明过程(将正确答案写在相应的横线上).
    证明:由作图可知,在△O′C′D′和△OCD中,

    ∴△O′C′D′≌ ,
    ∴∠A′O′B'=∠AOB.
    (2)这种作一个角等于已知角的方法依据是 .(填序号)
    ①AAS;②ASA;③SSS;④SAS
    7、如图,在中,,,点D在边AC上,且线段BD绕着点B按逆时针方向旋转120°能与BE重合,点F是ED与AB的交点.

    (1)求证:;
    (2)若,求的度数.
    8、如图,灯塔B在灯塔A的正东方向,且.灯塔C在灯塔A的北偏东20°方向,灯塔C在灯塔B的北偏西50°方向.

    (1)求的度数;
    (2)一轮船从B地出发向北偏西50°方向匀速行驶,5h后到达C地,求轮船的速度.
    9、如图,在△ABC中,AB=AC,M,N分别是AB,AC边上的点,并且MN∥BC.
    (1)△AMN是否是等腰三角形?说明理由;
    (2)点P是MN上的一点,并且BP平分∠ABC,CP平分∠ACB.
    ①求证:△BPM是等腰三角形;
    ②若△ABC的周长为a,BC=b(a>2b),求△AMN的周长(用含a,b的式子表示).

    10、如图,AD是的高,CE是的角平分线.若,,求的度数.


    -参考答案-
    一、单选题
    1、A
    【分析】
    根据题意,可得,结合选项根据三角形全等的性质与判定逐项分析即可.
    【详解】
    解:

    A. ,,不能根据SSA证明三角形全等,故该选项符合题意;
    B.


    ,

    故能判定,不符合题意;
    C. ,,
    ,故能判定,不符合题意;
    D.


    ,故能判定,不符合题意;
    故选A
    【点睛】
    本题考查了平行线的性质,三角形全等的性质与判定,掌握三角形全等的性质与判定是解题的关键.
    2、A
    【分析】
    利用三个平角的和减去中间三角形的内角和,再减去三个的角即可.
    【详解】
    解:,,




    故选:.
    【点睛】
    本题主要考查了三角形的内角和定理,灵活运用三角形内角和定理成为解答本题的关键.
    3、C
    【分析】
    根据三角形的三边关系,得到合题意的边,进而求得三角形的个数.
    【详解】
    解:c的范围是:5﹣3<c<5+3,即2<c<8.
    ∵c是奇数,
    ∴c=3或5或7,有3个值.
    则对应的三角形有3个.
    故选:C.
    【点睛】
    本题主要考查了三角形三边关系,准确分析判断是解题的关键.
    4、A
    【分析】
    根据三根木条即为三角形的三边长,利用全等三角形判定定理确定唯一三角形即可得.
    【详解】
    解:三根木条即为三角形的三边长,
    即为利用确定三角形,
    故选:A.
    【点睛】
    题目主要考查利用全等三角形判定确定唯一三角形,熟练掌握全等三角形的判定是解题关键.
    5、D
    【分析】
    利用全等三角形的判定、等边三角形的判定及轴对称的性质分别判断后即可确定不正确的选项.
    【详解】
    解:A、有两边对应相等的两个直角三角形全等,正确;
    B、等边三角形的三个内角都是60°,所以等边三角形的底角与顶角相等,正确;
    C、有一个角是的直角三角形是等腰直角三角形,正确;
    D、当点与点在直线的同侧时,点与点关于直线不对称,错误,
    故选:D.
    【点睛】
    本题考查了命题与定理的知识,解题的关键是了解全等三角形的判定、等边三角形的判定及轴对称的性质等知识,属于基础定理,难度不大.
    6、B
    【分析】
    根据三角形的内角和求出∠ACB=90°,利用三角形全等,求出DC=DE,再利用外角求出答案.
    【详解】
    解:∵∠CAB=40°,∠B=50°,
    ∴∠ACB=180°−40°−50°=90°,
    ∵CE⊥AD,
    ∴∠AFC=∠AFE=90°,
    ∵AD是△ABC的角平分线,
    ∴∠CAD=∠EAD=×40°=20°,
    又∵AF=AF,
    ∴△ACF≌△AEF(ASA)
    ∴AC=AE,
    ∵AD=AD,∠CAD=∠EAD,
    ∴△ACD≌△AED (SAS),
    ∴DC=DE,
    ∴∠DCE=∠DEC,
    ∵∠ACE=90°−20°=70°,
    ∴∠DCE=∠DEC=∠ACB−∠ACE=90°−70°=20°,
    ∴∠BDE=∠DCE+∠DEC=20°+20°=40°,
    故选:B.
    【点睛】
    考查角平分线、全等三角形的判定和性质、三角形的内角和等知识,根据三角形的内角和求出相应各个角的度数是解决问题的关键.
    7、D
    【分析】
    由等边三角形的性质及三角形外角定理即可求得结果.
    【详解】
    ∵是等边三角形
    ∴∠C=60°
    ∴∠ADB=∠DBC+∠C=40°+60°=100°
    故选:D
    【点睛】
    本题考查了等边三角形的性质、三角形外角的性质,掌握这两个性质是关键.
    8、C
    【分析】
    根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边.即可求解.
    【详解】
    解:设第三边长为xcm,根据三角形的三边关系可得:
    3-2<x<3+2,
    解得:1<x<5,
    只有C选项在范围内.
    故选:C.
    【点睛】
    本题考查了三角形的三边关系,关键是掌握第三边的范围是:大于已知的两边的差,而小于两边的和.
    9、C
    【分析】
    根据题意画出图形,求出∠ABC+∠ACB =130°,根据角平分线的定义得到∠CBD=∠ABC,∠ECB=∠ACB,再根据三角形内角和定理和角的代换即可求解.
    【详解】
    解:如图,∵∠A=50°,
    ∴∠ABC+∠ACB=180°-∠A=130°,
    ∵BD、CE分别是∠ABC、∠ACB的平分线,
    ∴∠CBD=∠ABC,∠ECB=∠ACB,
    ∴∠BOC=180°-∠CBD-∠ECB=180°-(∠CBD+∠ECB)=180°- (∠ABC+∠ACB)=180°- ×130°=115°.

    故选:C
    【点睛】
    本题考查了三角形内角和定理,角平分线的定义,熟知三角形内角和定理,并能根据角平分线的定义进行角的代换是解题关键.
    10、C
    【分析】
    根据三角形三边关系列出不等式,根据不等式的解集求整数m的最大值.
    【详解】
    解:条线段的长分别是4,4,m,若它们能构成三角形,则
    ,即
    又为整数,则整数m的最大值是7
    故选C
    【点睛】
    本题考查了求不等式的整数解,三角形三边关系,根据三角形的三边关系列出不等式是解题的关键.
    二、填空题
    1、
    【分析】
    先根据角平分线的定义、三角形的内角和定理求出等腰三角形两底角的度数和,再根据三角形内角和求出顶角的度数即可.
    【详解】
    解:

    ∵∠BOC=128°,
    ∴∠OBC+∠OCB=180°﹣∠BOC=180°﹣128°=52°,
    ∵BO平分∠ABC,CO平分∠ACB,
    ∴∠ABC+∠ACB=2(∠OBC+∠OCB)=104°,
    ∴∠A=180°﹣(∠ABC+∠ACB)=180°﹣104°=76°.
    故答案为:76°.
    【点睛】
    本题主要考查角平分线的定义和三角形内角和定理,牢记角平分线分得的两个角相等,三角形内角和是是解决本题的关键.
    2、∠D=∠C或∠PAD=∠PBC或∠DBC=∠CAD或PD=PC 或AC=BD.
    【分析】
    已有∠P是公共角和边PA=PB,根据全等三角全等的条件,利用AAS需要添加∠D=∠C,根据ASA需要添加∠PAD=∠PBC或∠DBC=∠CAD,根据边角边需要添加 PD=PC 或PC=PD.填入一个即可.
    【详解】
    解:∵PA=PB,∠P是公共角,
    ∴根据AAS可以添加∠D=∠C,,
    在△PAD和△PBC中,
    ∵PA=PB,∠P是公共角,∠D=∠C,
    ∴△PAD≌△PBC(AAS).
    根据ASA可以添加∠PAD=∠PBC,
    在△PAD和△PBC中,
    ∵PA=PB,∠P是公共角,∠PAD=∠PBC,
    ∴△PAD≌△PBC(ASA).
    根据ASA可以添加∠DBC=∠CAD,
    ∴180°-∠DBC=180°-∠CAD,即∠PAD=∠PBC,
    在△PAD和△PBC中,
    ∵PA=PB,∠P是公共角,∠PAD=∠PBC,
    ∴△PAD≌△PBC(ASA).
    根据SAS可添加PD=PC
    在△PAD和△PBC中,
    ∵PA=PB,∠P是公共角,PD=PC,
    ∴△PAD≌△PBC(SAS).
    根据SAS可添加BD=AC,
    ∵PA=PB,BD=AC,
    ∴PA+AC=PB+BD即PC=PD,
    在△PAD和△PBC中,
    ∵PA=PB,∠P是公共角,PD=PC,
    ∴△PAD≌△PBC(SAS).
    故答案为:∠D=∠C或∠PAD=∠PBC或∠DBC=∠CAD或PD=PC 或AC=BD.
    【点睛】
    本题考查三角形全等添加条件,掌握三角形全等判定方法与定理是解题关键.
    3、①②
    【分析】
    由BD⊥BC及BD平分∠GBE,可判断①正确;由CB平分∠ACF、AE∥CF及①的结论可判断②正确;由前两个的结论可对③作出判断;由AE∥CF及AC∥BG、三角形外角的性质可求得∠BDF,从而可对④作出判断.
    【详解】
    ∵BD平分∠GBE
    ∴∠EBD=∠GBD=∠GBE
    ∵BD⊥BC
    ∴∠GBD+∠GBC=∠CBD=90°
    ∴∠DBE+∠ABC=90°
    ∴∠GBC=∠ABC
    ∴BC平分∠ABG
    故①正确
    ∵CB平分∠ACF
    ∴∠ACB=∠GCB
    ∵AE∥CF
    ∴∠ABC=∠GCB
    ∴∠ACB=∠GCB=∠ABC=∠GBC
    ∴AC∥BG
    故②正确
    ∵∠DBE+∠ABC=90°,∠ACB=∠GCB=∠ABC=∠GBC
    ∴与∠DBE互余的角共有4个
    故③错误
    ∵AC∥BG,∠A=α
    ∴∠GBE=α

    ∵AE∥CF
    ∴∠BGD=180°-∠GBE=180°−α
    ∴∠BDF=∠GBD+∠BGD=
    故④错误
    即正确的结论有①②
    故答案为:①②
    【点睛】
    本题考查了平行线的判定与性质,互余概念,垂直的定义,角平分线的性质等知识,掌握这些知识并正确运用是关键.
    4、108°108度
    【分析】
    先设∠B=x,由AB=AC可知,∠C=x,由AD=DB可知∠B=∠DAB=x,由三角形外角的性质可知∠ADC=∠B+∠DAB=2x,根据DC=CA可知∠ADC=∠CAD=2x,再在△ABC中,由三角形内角和定理即可得出关于x的一元一次方程,求出x的值,从而求解.
    【详解】
    设∠B=x,
    ∵AB=AC,
    ∴∠C=∠B=x,
    ∵AD=DB,
    ∴∠B=∠DAB=x,
    ∴∠ADC=∠B+∠DAB=2x,
    ∵DC=CA,
    ∴∠ADC=∠CAD=2x,
    在△ABC中,x+x+2x+x=180°,
    解得:x=36°.
    ∴∠BAC=108°.
    故答案为:108°.
    【点睛】
    此题主要考查等腰三角形的判定和性质、三角形的内角和定理,解题的关键是熟练进行逻辑推理
    5、
    【分析】
    作BM⊥AC于M,交AD于P,根据等腰三角形的性质得到AD⊥BC,求得点B,C关于AD为对称,得到BP=CP,根据垂线段最短得出CP+EE=BP+EP=BE≥BM,根据数据线的面积公式即可得到结论.
    【详解】
    解:作BM⊥AC于M,交AD于P,
    ∵△ABC是等腰三角形,AD是BC边上的中线,
    ∴AD⊥BC,
    ∴AD是BC的垂直平分线,
    ∴点B,C关于AD为对称,
    ∴BP=CP,
    根据垂线段最短得出:CP+EP=BP+EP=BE≥BM,
    ∵AC=BC=5,
    ∵S△ABC=BC•AD=AC•BM=12,
    ∴BM=AD=,
    即EP+CP的最小值为,
    故答案为:.

    【点睛】
    本题考查了等腰三角形的性质和轴对称等知识,熟练掌握等腰三角形和轴对称的性质是本题的关键.
    三、解答题
    1、
    (1)证明见解析;
    (2)∠CDE=20°.
    【分析】
    (1)由“SAS”可证△ABC≌△DBE;
    (2)由全等三角形的性质可得∠C=∠E,由三角形的外角性质可求解.
    (1)
    证明:∵∠ABD=∠CBE,
    ∴∠ABD+∠DBC=∠CBE+∠DBC,
    即:∠ABC=∠DBE,
    在△ABC和△DBE中,

    ∴△ABC≌△DBE(SAS);
    (2)
    解:由(1)可知:△ABC≌△DBE,
    ∴∠C=∠E,
    ∵∠DFB=∠C+∠CDE,
    ∠DFB=∠E+∠CBE,
    ∴∠CDE=∠CBE,
    ∵∠ABD=∠CBE=20°,
    ∴∠CDE=20°.
    【点睛】
    本题考查了全等三角形的判定和性质,三角形的外角性质,证明三角形全等是解题的关键.
    2、见解析
    【分析】
    证明△BAC≌△BDC即可得出结论.
    【详解】
    解:∵BC平分∠ABD,
    ∴∠ABC=∠DBC,
    在△BAC和△BDC中,
    ∴△BAC≌△BDC,
    ∴AC=DC.
    【点睛】
    本题考查角平分线的意义及全等三角形的判定与性质,解题关键是掌握角平分线的性质及全等三角形的判定与性质.
    3、见解析
    【分析】
    由平行线的性质可证明.再由,可推出.最后即可利用“ASA”直接证明.
    【详解】
    证明:


    ,即.
    ∴在和中,

    【点睛】
    本题考查三角形全等的判定,平行线的性质,线段的和与差.掌握三角形全等的判定条件是解答本题的关键.
    4、
    (1)见解析
    (2)
    【分析】
    (1)利用是的外角,以及证明即可.
    (2)证明≌,可知,从而得出答案.
    (1)
    证明:∵是的外角,
    ∴.
    又∵,∴.
    (2)
    解:在和中,

    ∴≌.
    ∴.
    ∵,
    ∴.
    【点睛】
    本题考查了三角形的外角以及三角形全等的性质和判定,掌握三角形全等的性质和判定是解题的关键.
    5、
    (1)
    (2)或,见解析
    【分析】
    (1)根据已知条件求出∠B=∠ACB=45°,证明△BAD≌△CAE,得到∠ACE=∠B=45°,求出∠BCE=∠ACB+∠ACE=90°,即可得到结论;
    (2)根据题意作图即可,证明≌.得到,,,推出.延长EF到点G,使,证明≌,推出.由此得到.同理可证.
    (1)
    解:,,
    ∴∠B=∠ACB=45°,
    ∵,
    ∴,即∠BAD=∠CAE,
    ∵,,
    ∴△BAD≌△CAE,
    ∴∠ACE=∠B=45°,
    ∴∠BCE=∠ACB+∠ACE=90°,
    ∴;
    (2)
    解:如图,补全图形;


    证明:∵,
    ∴.
    又∵,,
    ∴≌.
    ∴,,.
    ∵,
    ∴.
    ∴.
    延长EF到点G,使.
    ∵,
    ∴.
    ∴.
    ∵,
    ∴.
    ∴.
    ∵,
    ∴≌.
    ∴.
    ∵,
    ∴.
    如图,同理可证.

    【点睛】
    此题考查了全等三角形的判定及性质,等腰三角形的性质,熟记全等三角形的判定及性质是解题的关键.掌握分类思想解题是难点.
    6、
    (1)CD,O′D′,△OCD,
    (2)③
    【分析】
    (1)根据SSS证明△D′O′C′≌△DOC,可得结论;
    (2)根据SSS证明三角形全等.
    (1)
    证明:由作图可知,在△D′O′C′和△DOC中,

    ∴△O′C′D′≌△OCD(SSS),
    ∴∠A′O′B′=∠AOB.
    故答案为:CD,O′D′,△OCD,
    (2)
    解:上述证明过程中利用三角形全等的方法依据是SSS,
    故答案为:③
    【点睛】
    本题考查三角形综合题,考查了三角形全等的判定和性质,解题的关键是读懂图象信息,灵活运用所学知识解决问题.
    7、(1)见解析;(2)
    【分析】
    (1)由旋转的性质可得,,再证明,结合 从而可得结论;
    (2)由可得,再利用等腰三角形的性质求解,再利用三角形的内角和定理可得答案.
    【详解】
    证明:(1)∵线段BD绕着点B按逆时针方向旋转120°能与BE重合,
    ∴,,
    ∵,,
    ∴,
    ∴,
    ∴(SAS),
    ∴.
    (2)解:由(1)知
    ,,,
    ∴,
    ∴.
    【点睛】
    本题考查的是全等三角形的判定与性质,旋转的性质,等腰三角形的性质,掌握“旋转前后的对应边相等,对应角相等”是解本题的关键.
    8、(1)70°;(2)15km/h
    【分析】
    (1)根据题意得∠BAC=70°,∠ABC=40°,根据三角形的内角和定理即可求得∠ACB;
    (2)根据等腰三角形的判定可得BC=AB=75km,进而由速度=路程÷时间求解即可.
    【详解】
    解:(1)根据题意得∠BAC=70°,∠ABC=40°,
    ∴∠ACB=180°-∠BAC-∠ABC=180°-70°-40°=70°;
    (2)∵∠BAC=∠ACB=70°,
    ∴BC=AB=75km,
    ∴轮船的速度为75÷5=15(km/h).
    【点睛】
    本题考查方位角、等腰三角形的判定、三角形的内角和定理,理解方位角,熟练掌握等腰三角形的等角对等边是解答的关键.
    9、
    (1)△AMN是是等腰三角形;理由见解析;
    (2)①证明见解析;②a﹣b.
    【分析】
    (1)由等腰三角形的性质得到∠ABC=∠ACB,由平行线的性质得到∠AMN=∠ABC,∠ANM=∠ACB,于是得到∠AMN=∠ANM,根据等角对等边即可证得结论;
    (2)①由角平分线的定义得到∠PBM=∠PBC,由平行线的性质得到∠MPB=∠PBC,于是得到∠PBM=∠MPB,根据等角对等边即可证得结论;
    ②由①知MB=MP,同理可得:NC=NP,故△AMN的周长=AB+AC,再根据已知条件即可求出结果.
    (1)
    解:△AMN是是等腰三角形,
    理由如下:
    ∵AB=AC,
    ∴∠ABC=∠ACB,
    ∵MN∥BC,
    ∴∠AMN=∠ABC,∠ANM=∠ACB,
    ∴∠AMN=∠ANM,
    ∴AM=AN,
    ∴△AMN是等腰三角形;
    (2)
    ①证明:∵BP平分∠ABC,
    ∴∠PBM=∠PBC,
    ∵MN∥BC,
    ∴∠MPB=∠PBC
    ∴∠PBM=∠MPB,
    ∴MB=MP,
    ∴△BPM是等腰三角形;
    ②由①知MB=MP,
    同理可得:NC=NP,
    ∴△AMN的周长=AM+MP+NP+AN=AM+MB+NC+AN=AB+AC,
    ∵△ABC的周长为a,BC=b,
    ∴AB+AC+b=a,
    ∴AB+AC=a﹣b
    ∴△AMN的周长=a﹣b.
    【点睛】
    本题考查了等腰三角形的性质和判定,平行线的性质,列代数式,能够灵活应用这些性质是解决问题的关键.
    10、
    【分析】
    AD是的高,有;由知;CE是的角平分线可得;,;在中,.
    【详解】
    解:∵AD是的高



    ∵CE是的角平分线



    ∴在中,.
    【点睛】
    本题考查了角平分线.解题的关键在于正确表示各角度之间的数量关系.

    相关试卷

    初中数学沪教版 (五四制)七年级下册第十四章 三角形综合与测试课后作业题:

    这是一份初中数学沪教版 (五四制)七年级下册第十四章 三角形综合与测试课后作业题,共36页。试卷主要包含了如图,点A等内容,欢迎下载使用。

    沪教版 (五四制)七年级下册第十四章 三角形综合与测试当堂检测题:

    这是一份沪教版 (五四制)七年级下册第十四章 三角形综合与测试当堂检测题,共30页。试卷主要包含了如图,直线l1l2,被直线l3等内容,欢迎下载使用。

    初中数学沪教版 (五四制)七年级下册第十四章 三角形综合与测试课时作业:

    这是一份初中数学沪教版 (五四制)七年级下册第十四章 三角形综合与测试课时作业,共29页。试卷主要包含了如图,点A等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map