![2022年精品解析沪教版(上海)七年级数学第二学期第十三章相交线 平行线定向训练试卷第1页](http://img-preview.51jiaoxi.com/2/3/12709022/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年精品解析沪教版(上海)七年级数学第二学期第十三章相交线 平行线定向训练试卷第2页](http://img-preview.51jiaoxi.com/2/3/12709022/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年精品解析沪教版(上海)七年级数学第二学期第十三章相交线 平行线定向训练试卷第3页](http://img-preview.51jiaoxi.com/2/3/12709022/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试练习题
展开
这是一份沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试练习题,共32页。试卷主要包含了如图,能判定AB∥CD的条件是,在下列各题中,属于尺规作图的是等内容,欢迎下载使用。
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列说法:
(1)两条不相交的直线是平行线;
(2)过一点有且只有一条直线与已知直线平行;
(3)在同一平面内两条不相交的线段一定平行;
(4)过一点有且只有一条直线与已知直线垂直;
(5)两点之间,直线最短;
其中正确个数是( )
A.0个B.1个C.2个D.3个
2、如图,直线被所截,下列说法,正确的有( )
①与是同旁内角;
②与是内错角;
③与是同位角;
④与是内错角.
A.①③④B.③④C.①②④D.①②③④
3、如图,直线l1l2,直线l3与l1、l2分别相交于点A,C,BC⊥l3交l1于点B,若∠2=30°,则∠1的度数为( )
A.30°B.40°C.50°D.60°
4、如图,若要使与平行,则绕点至少旋转的度数是( )
A.B.C.D.
5、如果两个角的两边两两互相平行,且一个角的等于另一个角的,则这两个角的度数分别是( )
A.48°,72°B.72°,108°
C.48°,72°或72°,108°D.80°,120°
6、如图,能判定AB∥CD的条件是( )
A.∠2=∠BB.∠3=∠AC.∠1=∠AD.∠A=∠2
7、在下列各题中,属于尺规作图的是( )
A.用直尺画一工件边缘的垂线
B.用直尺和三角板画平行线
C.利用三角板画的角
D.用圆规在已知直线上截取一条线段等于已知线段
8、用等腰直角三角板画∠AOB=45°,将三角板沿OB方向平移到如图所示的虚线M处后绕点M逆时针旋转22°,则三角板的斜边与射线OA的夹角α为( )度.
A.25°B.45°C.30°D.22°
9、如图,直线a,b被直线c所截,下列条件不能判定直线a与b平行的是( )
A.∠1=∠3B.∠2+∠3=180°C.∠1=∠4D.∠1+∠4=180°
10、如图,将军要从村庄A去村外的河边饮马,有三条路AB、AC、AD可走,将军沿着AB路线到的河边,他这样做的道理是( )
A.两点之间,线段最短
B.两点之间,直线最短
C.两点确定一条直线
D.直线外一点与直线上各点连接的所有线段中,垂线段最短
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,直线AB、CD相交于点O,∠AOD+∠BOC=240°,则∠BOC的度数为__________°.
2、如图,把一张三角形纸片(△ABC)进行折叠,使点A落在BC上的点F处,折痕为DE,点D,点E分别在AB和AC上,DE∥BC,若∠B=70°,则∠BDF的度数为____.
3、如图,已知,CE平分,,则______°.
4、如图,四边形ABCD中,AD∥BC,直线l是它的对称轴,∠B=53°,则∠D的大小为______°.
5、已知直线AB、CD相交于点O,且A、B和C、D分别位于点O两侧,OE⊥AB,,则____________.
三、解答题(10小题,每小题5分,共计50分)
1、请把下列证明过程及理由补充完整(填在横线上):
2、阅读并完成下列推理过程,在括号内填写理由.
已知:如图,点,分别在线段、上,,平分,平分交于点、.
求证:.
证明:平分(已知),
.
平分(已知),
(角平分线的定义),
(已知),
.
.
.
3、已知:如图①,AB∥CD,点F在直线AB、CD之间,点E在直线AB上,点G在直线CD上,∠EFG=90°.
(1)如图①,若∠BEF=130°,则∠FGC= 度;
(2)小明同学发现:如图②,无论∠BEF度数如何变化,∠FEB﹣∠FGC的值始终为定值,并给出了一种证明该发现的辅助线作法:过点E作EM∥FG,交CD于点M.请你根据小明同学提供的辅助线方法,补全下面的证明过程;
(3)拓展应用:如图③,如果把题干中的“∠EFG=90°”条件改为“∠EFG=110°”,其它条件不变,则∠FEB﹣∠FGC= 度.
解:如图②,过点E作EM∥FG,交CD于点M.
∵AB∥CD(已知)
∴∠BEM=∠EMC( )
又∵EM∥FG
∴∠FGC=∠EMC( )
∠EFG+∠FEM=180°( )
即∠FGC=( )(等量代换)
∴∠FEB﹣∠FGC=∠FEB﹣∠BEM=( )
又∵∠EFG=90°
∴∠FEM=90°
∴∠FEB﹣∠FGC=
即:无论∠BEF度数如何变化,∠FEB﹣∠FGC的值始终为定值.
4、如图1,CE平分∠ACD,AE平分∠BAC,∠EAC+∠ACE=90°,
(1)请判断AB与CD的位置关系并说明理由;
(2)如图2,当∠E=90°且AB与CD的位置关系保持不变,移动直角顶点E,使∠MCE=∠ECD,当直角顶点E点移动时,问∠BAE与∠MCD是否存在确定的数量关系?并说明理由;
(3)如图3,P为线段AC上一定点,点Q为直线CD上一动点且AB与CD的位置关系保持不变,当点Q在射线CD上运动时(点C除外)∠CPQ+∠CQP与∠BAC有何数量关系?猜想结论并说明理由.
5、如图直线,直线与分别和交于点交直线b于点C.
(1)若,直接写出 ;
(2)若,则点B到直线的距离是 ;
(3)在图中直接画出并求出点A到直线的距离.
6、如图,已知∠A=120°,∠FEC=120°,∠1=∠2,试说明∠FDG=∠EFD.请补全证明过程,即在下列括号内填上结论或理由.
解:∵∠A=120°,∠FEC=120°(已知),
∴∠A= ( ).
∴AB∥ ( ).
又∵∠1=∠2(已知),
∴AB∥CD ( ).
∴EF∥ ( ).
∴∠FDG=∠EFD ( ).
7、如图,直线AB,CD,EF相交于点O,
(1)指出∠AOC,∠EOB的对顶角及∠AOC的邻补角.
(2)图中一共有几对对顶角?指出它们.
8、如图,点A、B、C在8×5网格的格点上,每小方格是边长为1个单位长度的正方形.请按要求画图,并回答问题:
(1)延长线段AB到点D,使BD=AB;
(2)过点C画CE⊥AB,垂足为E;
(3)点C到直线AB的距离是 个单位长度;
(4)通过测量 = ,并由此结论可猜想直线BC与AF的位置关系是 .
9、如图,∠AGB=∠EHF,∠C=∠D.
(1)求证:BD∥CE;
(2)求证:∠A=∠F.
10、按下面的要求画图,并回答问题:
(1)如图①,点M从点O出发向正东方向移动4个格,再向正北方向移动3个格.画出线段OM,此时M点在点O的北偏东 °方向上(精确到1°),O、M两点的距离是 cm.
(2)根据以下语句,在“图②”上边的空白处画出图形.
画4cm长的线段AB,点P是直纸AB外一点,过点P画直线AB的垂线PD,垂足为点D.你测得点P到AB的距离是 cm.
-参考答案-
一、单选题
1、B
【分析】
根据平面内相交线和平行线的基本性质逐项分析即可.
【详解】
解:(1)在同一平面内,两条不相交的直线是平行线,故原说法错误;
(2)过直线外一点有且只有一条直线与已知直线平行,故原说法错误;
(3)在同一平面内两条不相交的线段不一定平行,故原说法错误;
(4)过一点有且只有一条直线与已知直线垂直,故原说法正确;
(5)两点之间,线段最短,故原说法错误;
故选:B.
【点睛】
本题考查平面内两直线的关系,及其推论等,掌握基本概念和推论是解题关键.
2、D
【分析】
根据同位角、内错角、同旁内角的定义可直接得到答案.
【详解】
解:①与是同旁内角,说法正确;
②与是内错角,说法正确;
③与是同位角,说法正确;
④与是内错角,说法正确,
故选:D.
【点睛】
此题主要考查了三线八角,在复杂的图形中判别三类角时,应从角的两边入手,具有上述关系的角必有两边在同一直线上,此直线即为截线,而另外不在同一直线上的两边,它们所在的直线即为被截的线.同位角的边构成“F” 形,内错角的边构成“Z”形,同旁内角的边构成“U”形.
3、D
【分析】
根据平行线的性质和垂直的定义解答即可.
【详解】
解:∵BC⊥l3交l1于点B,
∴∠ACB=90°,
∵∠2=30°,
∴∠CAB=180°−90°−30°=60°,
∵l1l2,
∴∠1=∠CAB=60°.
故选:D.
【点睛】
此题考查平行线的性质,关键是根据平行线的性质解答.
4、A
【分析】
根据“两直线平行,内错角相等”进行计算.
【详解】
解:如图,
∵l1∥l2,
∴∠AOB=∠OBC=42°,
∴80°-42°=38°,
即l1绕点O至少旋转38度才能与l2平行.
故选:A.
【点睛】
考查了旋转的性质和平行线的性质,根据平行线的性质得到∠AOB=∠OBC=42°是解题的关键,难度不大.
5、B
【分析】
根据题意可得这两个角互补,设其中一个角为x,则另一个角为,由两个角之间的数量关系列出一元一次方程,求解即可得.
【详解】
解:∵两个角的两边两两互相平行,
∴这两个角可能相等或者两个角互补,
∵一个角的等于另一个角的,
∴这两个角互补,
设其中一个角为x,则另一个角为,
根据题意可得:,
解得:,,
故选:B.
【点睛】
题目主要考查平行线的性质、角的数量关系、一元一次方程等,理解题意,列出方程是解题关键.
6、D
【分析】
根据平行线的判定定理,找出正确选项即可.
【详解】
根据内错角相等,两直线平行,
∵∠A=∠2,
∴AB∥CD,
故选:D.
【点睛】
本题主要考查了平行线的判定,解答此类要判定两直线平行的题,可围绕截线找同位角、内错角和同旁内角,培养了学生“执果索因”的思维方式与能力.
7、D
【分析】
根据尺规作图的定义:用没有刻度的直尺和圆规作图,只使用圆规和直尺来解决平面几何作图,进行逐一判断即可.
【详解】
解:A、用直尺画一工件边缘的垂线,这里没有用到圆规,故此选项不符合题意;
B、用直尺和三角板画平行线,这里没有用到圆规,故此选项不符合题意;
C、利用三角板画45°的角,这里没有用到圆规,故此选项不符合题意;
D、用圆规在已知直线上截取一条线段等于已知线段,是尺规作图,故此选项符合题意;
故选D.
【点睛】
本题主要考查了尺规作图的定义,解题的关键在于熟知定义.
8、D
【分析】
由平移的性质知,AO∥SM,再由平行线的性质可得∠WMS=∠OWM,即可得答案.
【详解】
解:由平移的性质知,AO∥SM,
故∠WMS=∠OWM=22°;
故选D.
【点睛】
本题利用了两直线平行,内错角相等,及平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.
9、D
【分析】
同位角相等,两直线平行,同旁内角互补,两直线平行,根据平行线的判定方法逐一分析即可.
【详解】
解:(同位角相等,两直线平行),故A不符合题意;
∠2+∠3=180°,(同旁内角互补,两直线平行)故B不符合题意;
(同位角相等,两直线平行)故C不符合题意;
∠1+∠4=180°,不是同旁内角,也不能利用等量代换转换成同旁内角,
所以不能判定 故D符合题意;
故选D
【点睛】
本题考查的是平行线的判定,对顶角相等,掌握“平行线的判定方法”是解本题的关键.
10、D
【分析】
根据垂线段最短即可完成.
【详解】
根据直线外一点与直线上各点连接的所有线段中,垂线段最短,可知D正确
故选:D
【点睛】
本题考查了垂线的性质的简单应用,直线外一点与直线上各点连接的所有线段中,垂线段最短,掌握垂线段最短的性质并能运用于实际生活中是关键.
二、填空题
1、120
【分析】
由题意根据对顶角相等得出∠BOC=∠AOD进而结合∠AOD+∠BOC=240°即可求出∠BOC的度数.
【详解】
解:∵∠AOD+∠BOC=240°,∠BOC=∠AOD,
∴∠BOC=120°.
故答案为:120.
【点睛】
本题考查的是对顶角的性质,熟练掌握对顶角相等是解题的关键.
2、40°
【分析】
利用平行线的性质求出∠ADE=70°,再由折叠的性质推出∠ADE=∠EDF=70°即可解决问题.
【详解】
解:∵DE∥BC,
∴∠ADE=∠B=70°,
由折叠的性质可得∠ADE=∠EDF=70°,
∴∠BDF=180°﹣∠ADE-∠EDF=40°,
故答案为:40°.
【点睛】
本题综合考查了平行线以及折叠的性质,熟练掌握两性质定理是解答关键.
3、65
【分析】
由平行线的性质先求解再利用角平分线的定义可得答案.
【详解】
解: , ,
CE平分,
故答案为:
【点睛】
本题考查的是角平分线的定义,平行线的性质,掌握“两直线平行,同旁内角互补”是解本题的关键.
4、127
【分析】
根据轴对称性质得出∠C=∠B=53°,根据平行线性质得出∠C+∠D=180°即可.
【详解】
解:直线l是四边形ABCD的对称轴,∠B=53°,
∴∠C=∠B=53°,
∵AD∥BC,
∴∠C+∠D=180°,
∴∠D=180°-53°=127°.
故答案为:127.
【点睛】
本题考查轴对称性质,平行线性质,求一个角的的补角,掌握轴对称性质,平行线性质,求一个角的的补角.
5、130°或50°
【分析】
根据题意作出图形,根据垂直的定义,互余与互补的定义,分类讨论即可
【详解】
①如图,
,
,
②如图,
,
,
综上所述,或
故答案为:130°或50°
【点睛】
本题考查了相交线所成角,对顶角相等,垂直的定义,求一个角的余角,补角,分类讨论是解题的关键.
三、解答题
1、∠CAD;两直线平行,内错角相等;∠CAD;等量代换;等式的性质;∠CAD;等量代换;同位角相等,两直线平行
【分析】
根据AD∥BC,可得∠3=∠CAD,从而得到∠4=∠CAD,再由∠1=∠2,可得∠BAF=∠CAD.从而得到∠4=∠BAF.即可求证.
【详解】
证明:∵AD∥BC(已知),
∴∠3=∠CAD(两直线平行,内错角相等).
∵∠3=∠4(已知),
∴∠4=∠CAD(等量代换).
∵∠1=∠2(已知),
∴∠1+∠CAF=∠2+∠CAF(等式的性质).
即∠BAF=∠CAD.
∴∠4=∠BAF.(等量代换).
∴AB∥CD(同位角相等,两直线平行).
【点睛】
本题主要考查了平行线的性质和判定,熟练掌握平行线的性质和判定定理是解题的关键.
2、角平分线的定义;;两直线平行,同位角相等;等量代换;同位角相等,两直线平行.
【分析】
根据角平分线的定义和平行线的性质与判定即可证明.
【详解】
证明:平分(已知),
(角平分线的定义).
平分(已知),
(角平分线的定义),
(已知),
(两直线平行,同位角相等).
(等量代换).
(同位角相等,两直线平行).
故答案为:角平分线的定义;;两直线平行,同位角相等;等量代换;同位角相等,两直线平行.
【点睛】
本题主要考查了角平分线的定义,平行线的性质与判定,解题的关键在于能够熟练掌握相关知识进行求解.
3、(1)40°;(2)见解析;(3)70°
【分析】
(1)过点F作FN∥AB,由∠FEB=150°,可计算出∠EFN的度数,由∠EFG=90°,可计算出∠NFG的度数,由平行线的性质即可得出答案;
(2)根据题目补充理由和相关结论即可;
(3)类似(2)中的方法求解即可.
【详解】
解:(1)过点F作FN∥AB,
∵FN∥AB,∠FEB=130°,
∴∠EFN+∠FEB=180°,
∴∠EFN=180°﹣∠FEB=180°﹣130°=50°,
∵∠EFG=90°,
∴∠NFG=∠EFG﹣∠EFN=90°﹣50°=40°,
∵AB∥CD,
∴FN∥CD,
∴∠FGC=∠NFG=40°.
故答案为:40°;
(2)如图②,过点E作EM∥FG,交CD于点M.
∵AB∥CD(已知)
∴∠BEM=∠EMC(两直线平行,内错角相等)
又∵EM∥FG
∴∠FGC=∠EMC(两直线平行,同位角相等)
∠EFG+∠FEM=180°(两直线平行,同旁内角互补)
即∠FGC=(∠BEM)(等量代换)
∴∠FEB﹣∠FGC=∠FEB﹣∠BEM=(∠FEM)
又∵∠EFG=90°
∴∠FEM=90°
∴∠FEB﹣∠FGC=90°
故答案为:两直线平行,内错角相等,两直线平行,同位角相等,两直线平行,同旁内角互补,∠BEM,∠FEM,90°
(3)过点E作EH∥FG,交CD于点H.
∵AB∥CD
∴∠BEH=∠EHC
又∵EM∥FG
∴∠FGC=∠EHC
∠EFG+∠FEH=180°
即∠FGC=∠BEH
∴∠FEB﹣∠FGC=∠FEB﹣∠BEH=∠FEH
又∵∠EFG=110°
∴∠FEH=70°
∴∠FEB﹣∠FGC=70°
故答案为:70°.
【点睛】
本题主要考查了平行线的判定与性质,熟练掌握平行线的判定与性质进行求解是解决本题的关键.
4、(1)平行,理由见解析;(2)∠BAE+∠MCD=90°,理由见解析;(3)∠BAC=∠PQC+∠QPC,理由见解析.
【分析】
(1)先根据CE平分∠ACD,AE平分∠BAC可得∠BAC=2∠EAC,∠ACD=2∠ACE,再由∠EAC+∠ACE=90°可知∠BAC+∠ACD=180,根据平行线的判定定理即可得出结论;
(2)如图,过E作EF∥AB,由AB//CD可得EF∥AB∥CD,根据平行线的性质可得∠BAE=∠AEF,∠FEC=∠DCE,可得∠BAE+∠ECD=90°,再由∠MCE=∠ECD即可得出结论;
(3)如图,过点C作CM//PQ,可得∠PQC=∠MCN,∠QPC=∠PCM,根据AB∥CD可知∠BAC+∠ACD=180°,根据∠PCQ+∠PCM+∠MCN=180°,可得∠QPC+∠PQC+∠PCQ=180°,即可得出∠BAC=∠PQC+∠QPC.
【详解】
(1)∵CE平分∠ACD,AE平分∠BAC,
∴∠BAC=2∠EAC,∠ACD=2∠ACE,
∵∠EAC+∠ACE=90°,
∴∠BAC+∠ACD=180°,
∴AB∥CD
(2)∠BAE+∠MCD=90°;理由如下:
如图,过E作EF∥AB,
∵AB∥CD,
∴EF∥AB∥CD,
∴∠BAE=∠AEF,∠FEC=∠DCE,
∵∠AEC=∠AEF+∠FEC=90°,
∴∠BAE+∠ECD=90°,
∵∠MCE=∠ECD=∠MCD,
∴∠BAE+∠MCD=90°.
(3)如图,过点C作CM//PQ,
∴∠PQC=∠MCN,∠QPC=∠PCM,
∵AB∥CD,
∴∠BAC+∠ACD=180°,
∵∠PCQ+∠PCM+∠MCN=180°,
∴∠QPC+∠PQC+∠PCQ=180°,
∴∠BAC=∠PQC+∠QPC.
【点睛】
本题考查平行线的判定与性质及角平分线的定义,两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补;熟练掌握平行线的性质是解题关键.
5、(1);(2)4;(3)作图见详解;点A到直线BC的距离为.
【分析】
(1)根据平行线的性质:两直线平行,同旁内角互补及垂直的性质即可得;
(2)根据点到直线的距离可得点B到直线AC的距离为线段,由此即可得出结果;
(3)过点A作,点A到直线BC的距离为线段AD的长度,利用三角形等面积法即可得出.
【详解】
解:(1)∵,
∴,
∵,,
∴,
故答案为:;
(2)∵,
∴点B到直线AC的距离为线段,
故答案为:4;
(3)如图所示:过点A作,点A到直线BC的距离为线段AD的长度,
∵,
∴为直角三角形,
∴SΔABC=12×AC×AB=12×BC×AD,
即,
解得:,
∴点A到直线BC的距离为.
【点睛】
题目主要考查平行线的性质及点到直线的距离,熟练掌握等面积法求距离是解题关键.
6、∠FEC;等量代换;EF;同位角相等,两直线平行;内错角相等,两直线平行;CD;平行于同一条直线的两直线互相平行;两直线平行,内错角相等
【分析】
利用平行线的判定,由已知得AB∥EF、AB∥CD,可推出EF∥CD,利用平行线的性质得结论
【详解】
解:∵∠A=120°,∠FEC=120°(已知),
∴∠A=∠FEC(等量代换),
∴AB∥EF(同位角相等,两直线平行),
又∵∠1=∠2(已知),
∴AB∥CD(内错角相等,两直线平行),
∴EF∥CD(平行于同一条直线的两直线互相平行),
∴∠FDG=∠EFD(两直线平行,内错角相等),
故答案为:∠FEC;等量代换;EF;同位角相等,两直线平行;内错角相等,两直线平行;CD;平行于同一条直线的两直线互相平行;两直线平行,内错角相等.
【点睛】
本题考查了平行线的性质和判定,学会分析,正确的利用平行线的性质和判定是解决本题的关键.
7、(1)∠AOC的对顶角是∠BOD,∠EOB的对顶角是∠AOF,.∠AOC的邻补角是∠AOD,∠BOC;(2)共有6对对顶角,它们分别是∠AOC与∠BOD,∠AOE与∠BOF,∠AOF与∠BOE,∠AOD与∠BOC,∠EOD与∠COF,∠EOC与∠FOD
【分析】
根据对顶角的定义:两个角有一个公共点,并且一个角的两边分别是另一个角的两边的反向延长线,具有这种位置关系的两个角叫做对顶角;邻补角的定义:两个角有一条公共边,它们的另一边互为反向延长线,具有这种位置关系的两个角叫做邻补角,进行求解即可.
【详解】
解:(1)由题意得:∠AOC的对顶角是∠BOD,
∠EOB的对顶角是∠AOF.
∠AOC的邻补角是∠AOD,∠BOC.
(2)图中共有6对对顶角,它们分别是∠AOC与∠BOD,∠AOE与∠BOF,∠AOF与∠BOE,∠AOD与∠BOC,∠EOD与∠COF,∠EOC与∠FOD.
【点睛】
本题主要考查了对顶角和邻补角的定义,熟知定义是解题的关键.
8、(1)见解析;(2)见解析;(3)2;(4),平行
【分析】
(1)根据网格的特点和题意,延长到,使;
(2)根据网格是正方形,垂线的定义,画出,垂足为,点在线段的延长线上,
(3)点C到直线AB的距离即的长,网格的特点即可数出的长;
(4)根据同位角相等,两直线平行,或内错角相等,两直线平行即可得,即可知测量的角度
【详解】
解:(1)(2)如图所示,
(3)由网格可知
即点C到直线AB的距离是个单位长度
故答案为:2
(4)通过测量,可知
故答案为:,平行
【点睛】
本题考查了画线段,画垂线,平行线的性质与判定,点到直线的距离,掌握以上知识是解题的关键.
9、(1)证明见解析;(2)证明见解析.
【分析】
(1)由∠AGB=∠1,∠AGB=∠EHF,可得∠1=∠EHF,则BD∥CE;
(2)由BD∥CE,可得∠D=∠2,则∠2=∠C,推出AC∥DF,则∠A=∠F.
【详解】
证明:(1)∵∠AGB=∠1,∠AGB=∠EHF,
∴∠1=∠EHF,
∴BD∥CE;
(2)∵BD∥CE,
∴∠D=∠2,
∵∠D=∠C,
∴∠2=∠C,
∴AC∥DF,
∴∠A=∠F.
【点睛】
本题主要考查了平行线的性质与判定,对顶角相等,熟练掌握平行线的性质与判定条件是解题的关键.
10、(1)图见解析,53,5;(2)图见解析,3.
【分析】
(1)先根据点的移动得到点,再连接点可得线段,然后测量角的度数和线段的长度即可得;
(2)先画出线段,再根据垂线的尺规作图画出垂线,然后测量的长即可得.
【详解】
解:(1)如图,线段即为所求.
此时点在点的北偏东方向上,、两点的距离是,
故答案为:53,5;
(2)如图,线段和垂线即为所求.
测得点到的距离是,
故答案为:3.
【点睛】
本题考查了测量角的大小、线段的长度、作线段和垂线,熟练掌握尺规作图的方法是解题关键.
相关试卷
这是一份沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试同步达标检测题,共27页。试卷主要包含了如图所示,直线l1∥l2,点A,如图,直线AB,下列说法等内容,欢迎下载使用。
这是一份初中数学沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试课后复习题,共28页。试卷主要包含了如图,∠1与∠2是同位角的是,直线,在下列各题中,属于尺规作图的是等内容,欢迎下载使用。
这是一份初中数学沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试当堂达标检测题,共31页。试卷主要包含了如图,不能推出a∥b的条件是,如图所示,下列说法错误的是,下列语句中等内容,欢迎下载使用。