![2022年沪教版(上海)七年级数学第二学期第十三章相交线 平行线难点解析试卷(精选)第1页](http://img-preview.51jiaoxi.com/2/3/12709024/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年沪教版(上海)七年级数学第二学期第十三章相交线 平行线难点解析试卷(精选)第2页](http://img-preview.51jiaoxi.com/2/3/12709024/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年沪教版(上海)七年级数学第二学期第十三章相交线 平行线难点解析试卷(精选)第3页](http://img-preview.51jiaoxi.com/2/3/12709024/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
数学七年级下册第十三章 相交线 平行线综合与测试巩固练习
展开
这是一份数学七年级下册第十三章 相交线 平行线综合与测试巩固练习,共31页。试卷主要包含了下列说法中正确的是,如图,直线AB∥CD,直线AB,如图,直线AB,如图,∠1与∠2是同位角的是,如图,不能推出a∥b的条件是等内容,欢迎下载使用。
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,射线AB的方向是北偏东70°,射线AC的方向是南偏西30°,则∠BAC的度数是( )
A.100°B.140°C.160°D.105°
2、如图,直线AB经过点O,射线OA是北偏东40°方向,则射线OB的方位角是( )
A.南偏西50°B.南偏西40°C.北偏西50°D.北偏西40°
3、如图,下列条件中能判断直线的是( )
A.∠1=∠2B.∠1=∠5C.∠2=∠4D.∠3=∠5
4、如图,木工用图中的角尺画平行线的依据是( )
A.垂直于同一条直线的两条直线平行
B.平行于同一条直线的两条直线平行
C.同位角相等,两直线平行
D.经过直线外一点,有且只有一条直线与这条直线平行
5、下列说法中正确的是( )
A.锐角的2倍是钝角B.两点之间的所有连线中,线段最短
C.相等的角是对顶角D.若AC=BC,则点C是线段AB的中点
6、如图,直线AB∥CD,直线AB、CD被直线EF所截,交点分别为点M、点N,若∠AME=130°,则∠DNM的度数为( )
A.30°B.40°C.50°D.60°
7、如图,直线AB、CD相交于点O,EO⊥AB于点O,∠EOC=35°,则∠AOD的度数为( )
A.55°B.125°C.65°D.135°
8、如图,∠1与∠2是同位角的是( )
① ② ③ ④
A.①B.②C.③D.④
9、如图,不能推出a∥b的条件是( )
A.∠4=∠2B.∠3+∠4=180°C.∠1=∠3D.∠2+∠3=180°
10、如果同一平面内有三条直线,那么它们交点个数是( )个.
A.3个B.1或3个C.1或2或3个D.0或1或2或3个
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,直线a,b被直线c所截,a∥b,∠1=60°,则∠2的度数为________.
2、如图,OE是的平分线,交OA于点C,交OE于点D,,则的度数是______°.
3、如图,点O在直线AB上,OD⊥OE,垂足为O.OC是∠DOB的平分线,若∠AOD=70°,则∠COE=__________度.
4、下列命题:①等角的余角相等;②过一点有且只有一条直线与已知直线平行;③相等的角是对顶角;④同位角相等;⑤过直线外一点作这条直线的垂线段,则这条垂线段叫做这个点到这条直线的距离.叙述正确的序号是________.
5、在数学课上,王老师提出如下问题:
如图,需要在A,B两地和公路l之间修地下管道,请你设计一种最节省材料的修建方案.
小李同学的作法如下:
①连接AB;
②过点A作AC⊥直线l于点C;
则折线段B﹣A﹣C为所求.
王老师说:小李同学的方案是正确的.
请回答:该方案最节省材料的依据是垂线段最短和______.
三、解答题(10小题,每小题5分,共计50分)
1、已知AB∥CD,点E在AB上,点F在DC上,点G为射线EF上一点.
(基础问题)如图1,试说明:∠AGD=∠A+∠D.(完成图中的填空部分).
证明:过点G作直线MN∥AB,
又∵AB∥CD,
∴MN∥CD( )
∵MN∥AB,
∴∠A=( )( )
∵MN∥CD,
∴∠D= ( )
∴∠AGD=∠AGM+∠DGM=∠A+∠D.
(类比探究)如图2,当点G在线段EF延长线上时,直接写出∠AGD、∠A、∠D三者之间的数量关系.
(应用拓展)如图3,AH平分∠GAB,DH交AH于点H,且∠GDH=2∠HDC,∠HDC=22°,∠H=32°,直接写出∠DGA的度数.
2、补全下列推理过程:已知:如图,CE平分∠BCD,∠1=∠2=70°,∠3=40°,求证:AB∥CD.
证明:∵CE平分∠BCD(______)
∴∠1=_____(_______)
∵∠1=∠2=70°(已知)
∴∠1=∠2=∠4=70°(________)
∴AD∥BC(________)
∴∠D=180°-_______=180°-∠1-∠4=40°
∵∠3=40°(已知)
∴______=∠3
∴AB∥CD(_______)
3、感知与填空:如图①,直线AB∥CD.求证:∠B+∠D=∠BED.
证明:过点E作直线EF∥CD,
∠2=______,( )
AB∥CD(已知),EF∥CD
_____∥EF,( )
∠B=∠1,( )
∠1+∠2=∠BED,
∠B+∠D=∠BED,( )
方法与实践:如图②,直线AB∥CD.若∠D=53°,∠B=22°,则∠E=______度.
4、如图,直线CD与EF相交于点O,将一直角三角尺AOB的直角顶点与点O重合.
(1)如图1,若,试说明;
(2)如图2,若,OB平分.将三角尺以每秒5°的速度绕点O顺时针旋转,设运动时间为t秒.
①,当t为何值时,直线OE平分;
②当,三角尺AOB旋转到三角POQ(A、B分别对应P、Q)的位置,若OM平分,求的值.
5、如图,OA⊥OB于点O,∠AOD:∠BOD=7:2,点D、O、E在同一条直线上,OC平分∠BOE,求∠COD的度数.
6、如图,∠ENC+∠CMG=180°,AB∥CD.
(1)求证:∠2=∠3.
(2)若∠A=∠1+70°,∠ACB=42°,则∠B的大小为______.
7、如图,在8×6的正方形网格中,每个小正方形的顶点称为格点,点D是∠ABC的边BC上的一点,点M是∠ABC内部的一点,点A、B、C、D、M均在格点上,只用无刻度的直尺,在给定的网格中按要求画图,并回答问题:
(1)过点M画BC的平行线MN交AB于点N;
(2)过点D画BC的垂线DE,交AB于点E;
(3)点E到直线BC的距离是线段 的长度.
8、如果把图看成是直线AB,EF被直线CD所截,那么
(1)∠1与∠2是一对什么角?
(2)∠3与∠4呢?∠2与∠4呢?
9、填空,完成下列说理过程:如图,直线EF和CD相交于点O,∠AOB=90°,OC平分∠AOF,∠AOE=40°.求∠BOD的度数.
解:∵∠AOE=40°(已知)
∴∠AOF=180°﹣ (邻补角定义)
=180°﹣ °
= °
∵OC平分∠AOF(已知)
∴∠AOC∠AOF( )
∵∠AOB=90°(已知)
∴∠BOD=180°﹣∠AOB﹣∠AOC( )
=180°﹣90°﹣ °
= °
10、已知:如图,请分别依据所给出的条件,判定相应的哪两条直线平行?并写出推理的根据.
(1)如果∠2=∠3,那么____________.(____________,____________)
(2)如果∠2=∠5,那么____________.(____________,____________)
(3)如果∠2+∠1=180°,那么____________.(____________,____________)
(4)如果∠5=∠3,那么____________.(____________,____________)
-参考答案-
一、单选题
1、B
【分析】
根据方位角的含义先求解 再利用角的和差关系可得答案.
【详解】
解:如图,标注字母,
射线AB的方向是北偏东70°,射线AC的方向是南偏西30°,
而
故选B
【点睛】
本题考查的是角的和差关系,垂直的定义,方位角的含义,掌握“角的和差与方位角的含义”是解本题的关键.
2、B
【分析】
由对顶角可知∠1=40°,故可知射线OB的方位角;
【详解】
解:由对顶角可知,∠1=40°
所以射线OB的方位角是南偏西40°
故答案为B
【点睛】
本题考查了方向角.解题的关键是掌握方向角的定义,方向角的表示方法是北偏东或北偏西,南偏东或南偏西.
3、C
【分析】
利用平行线的判定方法判断即可得到结果.
【详解】
解:A、根据∠1=∠2不能判断直线l1∥l2,故本选项不符合题意.
B、根据∠1=∠5不能判断直线l1∥l2,故本选项不符合题意.
C、根据“内错角相等,两直线平行”知,由∠2=∠4能判断直线l1∥l2,故本选项符合题意.
D、根据∠3=∠5不能判断直线l1∥l2,故本选项不符合题意.
故选:C.
【点睛】
此题考查了平行线的判定,熟练掌握平行线的判定方法是解本题的关键.
4、C
【分析】
由于角尺是一个直角,木工画线实质是在画一系列的直角,且这些直角有一边在同一直线上,根据平行线的判定即可作出判断.
【详解】
由于木工画一条线实际上是在画一个直角,且这些直角的一边在同一直线上,且这些直角是同位角相等,因而这些直线平行.
故选:C
【点睛】
本题是平行线判定在实质中的应用,关键能够把实际问题转化为数学问题.
5、B
【分析】
根据锐角和钝角的概念、线段的性质、对顶角的定义以及中点的性质,即可得到正确结论.
【详解】
解:A.锐角的2倍不一定是钝角,例如:锐角20°的2倍是40°是锐角,故不符合题意;
B.两点之间的所有连线中,线段最短,正确;
C.相等的角不一定是对顶角,故不符合题意;
D.当点C在线段AB上,若AC=BC,则点C是线段AB的中点,故不符合题意;
故选:B.
【点睛】
本题考查了锐角和钝角的概念、线段的性质、对顶角的定义以及中点的性质,解题的关键是:熟练掌握这些性质.
6、C
【分析】
由对顶角得到∠BMN=130°,然后利用平行线的性质,即可得到答案.
【详解】
解:由题意,
∵∠BMN与∠AME是对顶角,
∴∠BMN=∠AME=130°,
∵AB∥CD,
∴∠BMN+∠DNM=180°,
∴∠DNM=50°;
故选:C.
【点睛】
本题考查了平行线的性质,对顶角相等,解题的关键是掌握所学的知识,正确得到∠BMN=130°.
7、B
【分析】
先根据余角的定义求得,进而根据邻补角的定义求得即可.
【详解】
EO⊥AB,∠EOC=35°,
,
.
故选:B.
【点睛】
本题考查了垂直的定义,求一个角的余角、补角,掌握求一个角的余角与补角是解题的关键.
8、B
【分析】
同位角就是两个角都在截线的同旁,又分别处在被截线的两条直线的同侧位置的角.
【详解】
根据同位角的定义可知②中的∠1与∠2是同位角;
故选B.
【点睛】
本题主要考查了同位角的判断,准确分析判断是解题的关键.
9、B
【分析】
根据平行线的判定方法,逐项判断即可.
【详解】
解:、和是一对内错角,当时,可判断,故不符合题意;
、和是邻补角,当时,不能判定,故符合题意;
、和是一对同位角,当时,可判断,故不合题意;
、和是一对同旁内角,当时,可判断,故不合题意;
故选B.
【点睛】
本题考查了平行线的判定.解题的关键是:正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键.
10、D
【分析】
根据三条直线是否有平行线分类讨论即可.
【详解】
解:当三条直线平行时,交点个数为0;
当三条直线相交于1点时,交点个数为1;
当三条直线中,有两条平行,另一条分别与他们相交时,交点个数为2;
当三条直线互相不平行时,且交点不重合时,交点个数为3;
所以,它们的交点个数有4种情形.
故选:D.
【点睛】
本题考查多条直线交点问题,解题关键是根据三条直线中是否有平行线和是否交于一点进行分类讨论.
二、填空题
1、120°
【分析】
要求∠2的度数,只需根据平行线的性质求得其对顶角的度数.
【详解】
解:∵a∥b,∠1=60°,
∴∠3=120°,
∴∠2=∠3=120°.
故答案为:120°
【点睛】
考查了平行线的性质,本题应用的知识点为:两直线平行,同旁内角互补的性质及对顶角相等的性质.
2、25
【分析】
先证明再证明从而可得答案.
【详解】
解: OE是的平分线,
∵,
故答案为:
【点睛】
本题考查的是角平分线的定义,平行线的性质,熟练的运用平行线的性质与角平分线的定义证明角的相等是解本题的关键.
3、35
【分析】
根据补角的性质,可得∠BOD=110°,再由OC是∠DOB的平分线,可得 ,又由OD⊥OE,可得到∠BOE=20°,即可求解.
【详解】
解:∵∠AOD=70°,∠AOD+∠BOD=180°,
∴∠BOD=110°,
∵OC是∠DOB的平分线,
∴ ,
∵OD⊥OE,
∴∠DOE=90°,
∴∠BOE=∠BOD-∠DOE=20°,
∴∠COE=∠BOC-∠BOE=35°.
故答案为:35
【点睛】
本题主要考查了补角的性质,角平分线的定义,角的和与差,熟练掌握补角的性质,角平分线的定义,角的和与差运算是解题的关键.
4、①
【分析】
根据相交线与平行线中的一些概念、性质判断,得出结论.
【详解】
①等角的余角相等,故正确;
②中,需要前提条件:过直线外一点,故错误;
③中,相等的角不一定是对顶角,故错误;
④中,仅当两直线平行时,同位角才相等,故错误;
⑤中应为垂线段的长度叫做这个点到这条直线的距离,故错误.
故答案为:①.
【点睛】
本题考查概念、性质的判定,注意,常考错误类型为某一个性质缺少前提条件的情况,因此我们需要格外注意每一个性质的前提条件.解题的关键是熟练掌握以上概念、性质的判定.
5、两点之间线段最短
【分析】
根据两点之间线段最短即可得到答案.
【详解】
解:由题意得可知:该方案最节省材料的依据是垂线段最短和两点之间线段最短,
故答案为:两点之间线段最短.
【点睛】
本题主要考查了垂线段最短和两点之间线段最短,熟知二者的定义是解题的关键.
三、解答题
1、基础问题:平行于同一条直线的两条直线平行;∠AGM;两直线平行,内错角相等;∠DGM,两直线平行,内错角相等;类比探究:∠AGD=∠A-∠D;应用拓展:42°.
【分析】
基础问题:由MN∥AB,可得∠A=∠AGM,由MN∥CD,可得∠D=∠DGM,则∠AGD=∠AGM+∠DGM=∠A+∠D;
类比探究:如图所示,过点G作直线MN∥AB,同理可得∠A=∠AGM,∠D=∠DGM,则∠AGD=∠AGM-∠DGM=∠A-∠D.
应用拓展:如图所示,过点G作直线MN∥AB,过点H作直线PQ∥AB,由MN∥AB,PQ∥AB,得到∠BAG=∠AGM,∠BAH=∠AHP,由MN∥CD,PQ∥CD,得到∠CDG=∠DGM,∠CDH=∠DHP,再由∠GDH=2∠HDC,∠HDC=22°,∠AHD=32°,可得∠GDH=44°,∠DHP=22°,则∠CDG=66°,∠AHP=54°,∠DGM=66°,∠BAH=54°,再由AH平分∠BAG,即可得到∠AGM=108°,则∠AGD=∠AGM-∠DGM=42°.
【详解】
解:基础问题:过点G作直线MN∥AB,
又∵AB∥CD,
∴MN∥CD(平行于同一条直线的两条直线平行),
∵MN∥AB,
∴∠A=∠AGM(两直线平行,内错角相等),
∵MN∥CD,
∴∠D=∠DGM(两直线平行,内错角相等),
∴∠AGD=∠AGM+∠DGM=∠A+∠D.
故答案为:平行于同一条直线的两条直线平行;∠AGM;两直线平行,内错角相等;∠DGM,两直线平行,内错角相等;
类比探究:如图所示,过点G作直线MN∥AB,
又∵AB∥CD,
∴MN∥CD,
∵MN∥AB,
∴∠A=∠AGM,
∵MN∥CD,
∴∠D=∠DGM,
∴∠AGD=∠AGM-∠DGM=∠A-∠D.
应用拓展:如图所示,过点G作直线MN∥AB,过点H作直线PQ∥AB,
又∵AB∥CD,
∴MN∥CD,PQ∥CD
∵MN∥AB,PQ∥AB,
∴∠BAG=∠AGM,∠BAH=∠AHP,
∵MN∥CD,PQ∥CD,
∴∠CDG=∠DGM,∠CDH=∠DHP,
∵∠GDH=2∠HDC,∠HDC=22°,∠AHD=32°,
∴∠GDH=44°,∠DHP=22°,
∴∠CDG=66°,∠AHP=54°,
∴∠DGM=66°,∠BAH=54°,
∵AH平分∠BAG,
∴∠BAG=2∠BAH=108°,
∴∠AGM=108°,
∴∠AGD=∠AGM-∠DGM=42°.
【点睛】
本题主要考查了平行线的性质,平行公理,解题的关键在于能够熟练掌握平行线的性质.
2、见解析
【分析】
由已知CE平分∠BCD可得∠1= ∠4,利用等式的性质得出∠1=∠2=∠4=70°,根据直线判定定理得出AD∥BC,利用平角定义求出∠D=180°-∠BCD即可.
【详解】
证明:∵CE平分∠BCD( 已知 ),
∴∠1= ∠4 ( 角平分线定义 ),
∵∠1=∠2=70°已知,
∴∠1=∠2=∠4=70°(等量代换),
∴AD∥BC(内错角相等,两直线平行),
∴∠D=180°-∠BCD=180°-∠1-∠4=40°,
∵∠3=40°已知,
∴ ∠D =∠3,
∴AB∥CD(内错角相等,两直线平行).
故答案为:已知;∠4 ,角平分线定义 ;等量代换;内错角相等,两直线平行;∠BCD;∠D;内错角相等,两直线平行.
【点睛】
本题考查平行线判定,角平分线定义,平角,掌握平行线判定方法,角平分线定义,平角是解题关键.
3、∠D;两直线平行,内错角相等;AB;两直线都和第三条直线平行,那么这两条直线也互相平行;两直线平行,内错角相等;等量代换;31.
【分析】
过点E作直线EF//CD,由两直线平行,内错角相等得出∠2=∠D;由两直线都和第三条直线平行,那么这两条直线也互相平行得出AB//EF;由两直线平行,内错角相等得出∠B=∠1;由∠1+∠2=∠BED,等量代换得出∠B+∠D=∠BED;方法与实践:如图②,由平行的性质可得∠BOD=∠D=53°,然后再根据三角形外角的性质解答即可
【详解】
解:过点E作直线EF∥CD,
∠2=∠D,(两直线平行,内错角相等)
AB∥CD(已知),EF∥CD
AB//EF,(两直线都和第三条直线平行,那么这两条直线也互相平行)
∠B=∠1,(两直线平行,内错角相等)
∠1+∠2=∠BED,
∠B+∠D=∠BED,(等量代换 )
方法与实践:如图②,
∵直线AB∥CD
∴∠BOD=∠D=53°
∵∠BOD=∠E+∠B
∴∠E=∠BOD-∠B=53°- 22°=31°.
故答案依次为:∠D;两直线平行,内错角相等;AB;两直线都和第三条直线平行,那么这两条直线也互相平行;两直线平行,内错角相等;等量代换;31.
【点睛】
本题主要考查了平行线的判定与性质、三角形内角和定理等知识点;熟练掌握平行线的性质是解答本题的关键.
4、(1)见解析;(2)①或;②
【分析】
(1)根据垂直的性质即可求解;
(2)①分当OE平分时,和OF平分时根据旋转的特点求出旋转的角度即可求解;
②根据,可知OP在内部,根据题意作图,分别表示出, ,故可求解.
【详解】
解:(1)∵,
∴,
∴.
(2)①∵OB平分,,
∴.
情况1:当OE平分时,
则旋转之后,
∴OB旋转的角度为,
∴,.
情况2:当OF平分时,同理可得,OB旋转的角度为,
∴,.
综上所述,或.
②∵,
∴OP在内部,如图所示,
由题意知,,
∴,∵OM平分,
∴,
∴,
∴.
【点睛】
此题主要考查角度的综合判断与求解,解题的关键是根熟知垂直的性质、角平分线的性质及角度的和差关系.
5、100°
【分析】
由垂直的定义结合两角的比值可求解∠BOD的度数,即可求得∠BOE的度数,再利用角平分线的定义可求得∠BOC的度数,进而可求解∠COD的度数.
【详解】
解:∵OA⊥OB,
∴∠AOB=90°,
∵∠AOD:∠BOD=7:2,
∴∠BOD=∠AOB=20°,
∴∠BOE=180°﹣∠BOD=160°.
∵OC平分∠BOE,
∴∠BOC=∠BOE=80°,
∴∠COD=∠BOC+∠BOD=80°+20°=100°.
【点睛】
本题考查了角度的计算,垂直的定义,角平分线的定义,结合垂直的定义和两角的比值求出∠BOD的度数是解题的关键.
6、(1)见解析;(2)34°
【分析】
(1)根据对顶角相等可得出∠ENC+∠FMN=180°,根据平行线的判定可得FG∥ED,由平行线的性质可得∠2=∠D,∠3=∠D,等量代换即可得出结论;
(2)由平行线的性质∠A+∠ACD=180°,结合已知可得∠1+70°+∠1+42°=180°,可求得∠1=34°,根据平行线的性质即可求解.
【详解】
(1)证明:∵∠ENC+∠CMG=180°,∠CMG=∠FMN,
∴∠ENC+∠FMN=180°,
∴FG∥ED,
∴∠2=∠D,
∵AB∥CD,
∴∠3=∠D,
∴∠2=∠3;
(2)解:∵AB∥CD,
∴∠A+∠ACD=180°,
∵∠A=∠1+70°,∠ACB=42°,
∴∠1+70°+∠1+42°=180°,
∴∠1=34°,
∵AB∥CD,
∴∠B=∠1=34°.
故答案为:34°.
【点睛】
本题主要考查了平行线的性质与判定定理,解答此题的关键是注意平行线的性质和判定定理的综合运用.
7、(1)见解析;(2)见解析;(3)DE
【分析】
(1)根据平行线的判定条件:同位角相同,两直线平行,进行作图即可;
(2)根据垂线的定义作图即可;
(3)根据点到直线的距离的定义求解即可.
【详解】
解:(1)如图所示,点N即为所求;
(2)如图所示,点E即为所求;
(3)由题意可知:点E到直线BC的距离是线段DE的长度,
故答案为:DE.
【点睛】
本题主要考查了点到直线的距离,平行线的判定,作垂线,画平行线,解题的关键在于能够熟练掌握相关知识进行求解.
8、(1)∠1与∠2是一对同位角;(2)∠3与∠4是一对内错角,∠2与∠4是一对同旁内角
【分析】
同位角:两条直线被第三条直线所截,在截线的同旁,被截两直线的同一侧的角,我们把这样的两个角称为同位角;内错角:两条直线被第三条直线所截,两个角分别在截线的两侧,且夹在两条被截直线之间,具有这样位置关系的一对角叫做内错角;同旁内角:两条直线被第三条直线所截,在截线同旁,且在被截直线之间的两角,叫做同旁内角;由以上概念进行判断即可.
【详解】
解:直线AB,EF被直线CD所截,
(1)∠1与∠2是一对同位角;
(2)∠3与∠4是一对内错角,∠2与∠4是一对同旁内角.
【点睛】
本题考查同位角、内错角以及同旁内角的识别,掌握这几种角的基本定义是解题关键.
9、角平分线的定义,平角的定义,
【分析】
先利用邻补角的含义求解 再利用角平分线的含义证明:∠AOC∠AOF,再利用平角的定义结合角的和差关系可得答案.
【详解】
解:∵∠AOE=40°(已知)
∴∠AOF=180°﹣(邻补角定义)
=180°﹣40°
=140°
∵OC平分∠AOF(已知)
∴∠AOC∠AOF(角平分线的定义)
∵∠AOB=90°(已知)
∴∠BOD=180°﹣∠AOB﹣∠AOC(平角的定义)
=180°﹣90°﹣70°
=20°
故答案为:角平分线的定义,平角的定义,
【点睛】
本题考查的是平角的定义,邻补角的含义,角平分线的定义,角的和差运算,掌握“几何图形中角的和差关系”是解本题的关键.
10、(1)EFDG,内错角相等,两直线平行;(2)ABEF,同位角相等,两直线平行;(3)ADBC,同旁内角互补,两直线平行;(4)ABDG,内错角相等,两直线平行;
【分析】
(1)根据两直线被第3条直线所截,确定∠2,∠3的位置为内错角,然后再判断直线平行即可;
(2)根据两直线被第3条直线所截,确定∠2,∠5的位置为同位角,然后再判断直线平行即可;
(3)根据两直线被第3条直线所截,确定∠2,∠1的位置为同旁内角,然后再判断直线平行即可;
(4)根据两直线被第3条直线所截,确定∠5,∠3的位置为内错角,然后再判断直线平行即可.
【详解】
(1)如果∠2=∠3,那么EF∥DC.(内错角相等,两直线平行);
(2)如果∠2=∠5,那么EF∥AB.(同位角相等,两直线平行);
(3)如果∠2+∠1=180°,那么AD∥BC.(同旁内角互补,两直线平行);
(4)如果∠5=∠3,那么AB∥CD.(内错角相等,两直线平行.
故答案为:(1)EFDG,内错角相等,两直线平行;(2)ABEF,同位角相等,两直线平行;(3)ADBC,同旁内角互补,两直线平行;(4)ABDG,内错角相等,两直线平行.
【点睛】
本题考查平行线的判定,角的位置关系识别,掌握三线八角的两角位置关系,直线平行的判定定理是解题关键.
相关试卷
这是一份沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试同步测试题,共27页。试卷主要包含了直线m外一点P它到直线的上点A,如图,直线a等内容,欢迎下载使用。
这是一份初中沪教版 (五四制)第十三章 相交线 平行线综合与测试精练,共30页。试卷主要包含了下列说法,如图木条a,下列说法中,正确的是,直线m外一点P它到直线的上点A等内容,欢迎下载使用。
这是一份初中数学沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试课后作业题,共28页。