年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    2022年精品解析沪教版(上海)七年级数学第二学期第十三章相交线 平行线定向测试试卷(精选含答案)

    2022年精品解析沪教版(上海)七年级数学第二学期第十三章相交线 平行线定向测试试卷(精选含答案)第1页
    2022年精品解析沪教版(上海)七年级数学第二学期第十三章相交线 平行线定向测试试卷(精选含答案)第2页
    2022年精品解析沪教版(上海)七年级数学第二学期第十三章相交线 平行线定向测试试卷(精选含答案)第3页
    还剩26页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试复习练习题

    展开

    这是一份初中数学沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试复习练习题,共29页。试卷主要包含了如图所示,直线l1∥l2,点A等内容,欢迎下载使用。
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、下列关于画图的语句正确的是( ).
    A.画直线
    B.画射线
    C.已知A、B、C三点,过这三点画一条直线
    D.过直线AB外一点画一直线与AB平行
    2、如图,平行线AB,CD被直线AE所截.若∠1=70°,则∠2的度数为( )
    A.80°B.90°C.100°D.110°
    3、如果两个角的两边两两互相平行,且一个角的等于另一个角的,则这两个角的度数分别是( )
    A.48°,72°B.72°,108°
    C.48°,72°或72°,108°D.80°,120°
    4、如图所示,直线l1∥l2,点A、B在直线l2上,点C、D在直线l1上,若△ABC的面积为S1,△ABD的面积为S2,则( )
    A.S1>S2B.S1=S2C.S1<S2D.不确定
    5、如图,AB∥CD,AE∥CF,∠A=41°,则∠C的度数为( )
    A.139°B.141°C.131°D.129°
    6、如图,将一张长方形纸带沿EF折叠,点C、D的对应点分别为C'、D'.若∠DEF=α,用含α的式子可以将∠C'FG表示为( )
    A.2αB.90°+αC.180°﹣αD.180°﹣2α
    7、如图,已知∠1 = 40°,∠2=40°,∠3 = 140°,则∠4的度数等于( )
    A.40°B.36°C.44°D.100°
    8、如图,直线AB经过点O,射线OA是北偏东40°方向,则射线OB的方位角是( )
    A.南偏西50°B.南偏西40°C.北偏西50°D.北偏西40°
    9、如图,直线AB与CD相交于点O,OE平分∠AOC,且∠BOE=140°,则∠BOC为( )
    A.140°B.100°C.80°D.40°
    10、如果同一平面内有三条直线,那么它们交点个数是( )个.
    A.3个B.1或3个C.1或2或3个D.0或1或2或3个
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、如图,直线a、b、c分别与直线d、e相交,与∠1构成同位角的角共有________个,和∠l构成内错角的角共有________个,与∠1构成同旁内角的角共有________个.
    2、如图,已知 AB∥CD∥EF,BC∥AD,AC 平分∠BAD,那么图中与∠AGE 相等的角(不包括∠AGE)有_____个.
    3、判断正误:
    (1)如果两个角有公共顶点且没有公共边,那么这两个角是对顶角( )
    (2)如果两个角相等,那么这两个角是对顶角( )
    (3)有一条公共边的两个角是邻补角( )
    (4)如果两个角是邻补角,那么它们一定互补( )
    (5)有一条公共边和公共顶点,且互为补角的两个角是邻补角( )
    4、如图,P是直线a外一点,点A,B,C,D为直线a上的点,PA=5,PB=4,PC=2,PD=7,根据所给数据写出点P到直线a的距离l的取值范围是______
    5、如图,已知AB⊥AC,AD⊥BC,则点A到BC的距离是线段____________的长度.
    三、解答题(10小题,每小题5分,共计50分)
    1、根据解答过程填空(写出推理理由或数学式):
    如图,已知∠DAF=∠F,∠B=∠D,试说明AB∥DC.
    证明:∵∠DAF=∠F(已知).
    ∴AD∥BF( ),
    ∴∠D=∠DCF( ).
    ∵∠B=∠D(已知),
    ∴( )=∠DCF(等量代换),
    ∴AB∥DC( ).
    2、已知,,三点在同一条直线上,平分,平分.
    (1)若,如图1,则 ;
    (2)若,如图2,求的度数;
    (3)若如图3,求的度数.
    3、如果把图看成是直线AB,EF被直线CD所截,那么
    (1)∠1与∠2是一对什么角?
    (2)∠3与∠4呢?∠2与∠4呢?
    4、已知:如图①,AB∥CD,点F在直线AB、CD之间,点E在直线AB上,点G在直线CD上,∠EFG=90°.
    (1)如图①,若∠BEF=130°,则∠FGC= 度;
    (2)小明同学发现:如图②,无论∠BEF度数如何变化,∠FEB﹣∠FGC的值始终为定值,并给出了一种证明该发现的辅助线作法:过点E作EM∥FG,交CD于点M.请你根据小明同学提供的辅助线方法,补全下面的证明过程;
    (3)拓展应用:如图③,如果把题干中的“∠EFG=90°”条件改为“∠EFG=110°”,其它条件不变,则∠FEB﹣∠FGC= 度.
    解:如图②,过点E作EM∥FG,交CD于点M.
    ∵AB∥CD(已知)
    ∴∠BEM=∠EMC( )
    又∵EM∥FG
    ∴∠FGC=∠EMC( )
    ∠EFG+∠FEM=180°( )
    即∠FGC=( )(等量代换)
    ∴∠FEB﹣∠FGC=∠FEB﹣∠BEM=( )
    又∵∠EFG=90°
    ∴∠FEM=90°
    ∴∠FEB﹣∠FGC=
    即:无论∠BEF度数如何变化,∠FEB﹣∠FGC的值始终为定值.
    5、如图,已知∠A=120°,∠FEC=120°,∠1=∠2,试说明∠FDG=∠EFD.请补全证明过程,即在下列括号内填上结论或理由.
    解:∵∠A=120°,∠FEC=120°(已知),
    ∴∠A= ( ).
    ∴AB∥ ( ).
    又∵∠1=∠2(已知),
    ∴AB∥CD ( ).
    ∴EF∥ ( ).
    ∴∠FDG=∠EFD ( ).
    6、如图,AB//CD,点C在点D的右侧,∠ABC,∠ADC的平分线交于点E(不与B,D点重合),∠ADC=70°.设∠BED=n°.
    (1)若点B在点A的左侧,求∠ABC的度数(用含n的代数式表示);
    (2)将(1)中的线段BC沿DC方向平移,当点B移动到点A右侧时,请画出图形并判断∠ABC的度数是否改变.若改变,请求出∠ABC的度数(用含n的代数式表示);若不变,请说明理由.
    7、如图,直线AB,CD相交于点O,OM⊥AB于点O,ON⊥CD于点O.
    (1)试说明∠1=∠2;
    (2)若∠BOC=4∠2,求∠AOC的大小.
    8、如图,方格纸中每个小正方形的边长都是1.
    (1)过点P分别画PM∥AC、PN∥AB,PM与AB相交于点M,PN与AC相交于点N.
    (2)求四边形PMAN的面积.
    9、如图,运动会上,小明自踏板M处跳到沙坑P处,甲、乙、丙三名同学分别测得PM=3.25米,PN=3.15米,PF=3.21米,则小明的成绩为 _____米.(填具体数值)
    10、作图并计算:如图,点O在直线上.
    (1)画出的平分线(不必写作法);
    (2)在(1)的前提下,若,求的度数.
    -参考答案-
    一、单选题
    1、D
    【分析】
    直接利用直线、射线的定义分析得出答案.
    【详解】
    解:A、画直线AB=8cm,直线没有长度,故此选项错误;
    B、画射线OA=8cm,射线没有长度,故此选项错误;
    C、已知A、B、C三点,过这三点画一条直线或2条、三条直线,故此选项错误;
    D、过直线AB外一点画一直线与AB平行,正确.
    故选:D.
    【点睛】
    此题主要考查了直线、射线的定义及画平行线,正确把握相关定义是解题关键.
    2、D
    【分析】
    直接利用对顶角以及平行线的性质分析得出答案.
    【详解】
    解:
    ∵∠1=70°,
    ∴∠1=∠3=70°,
    ∵ABDC,
    ∴∠2+∠3=180°,
    ∴∠2=180°−70°=110°.
    故答案为:D.
    【点睛】
    此题主要考查了平行线的性质以及对顶角,正确掌握平行线的性质是解题关键.
    3、B
    【分析】
    根据题意可得这两个角互补,设其中一个角为x,则另一个角为,由两个角之间的数量关系列出一元一次方程,求解即可得.
    【详解】
    解:∵两个角的两边两两互相平行,
    ∴这两个角可能相等或者两个角互补,
    ∵一个角的等于另一个角的,
    ∴这两个角互补,
    设其中一个角为x,则另一个角为,
    根据题意可得:,
    解得:,,
    故选:B.
    【点睛】
    题目主要考查平行线的性质、角的数量关系、一元一次方程等,理解题意,列出方程是解题关键.
    4、B
    【分析】
    由题意根据两平行线间的距离处处相等,可知△ABC和△ABD等底等高,结合三角形的面积公式从而进行分析即可.
    【详解】
    解:因为l1∥l2,所以C、D两点到l2的距离相等,即△ABC和△ABD的高相等.同时△ABC和△ABD有共同的底AB,所以它们的面积相等.
    故选:B.
    【点睛】
    本题考查平行线间的距离以及三角形的面积,解题时注意等高等底的两个三角形的面积相等.
    5、A
    【分析】
    如图,根据AECF,得到∠CGB=41°,根据ABCD,即可得到∠C=139°..
    【详解】
    解:如图,∵AECF,
    ∴∠A=∠CGB=41°,
    ∵ABCD,
    ∴∠C=180°-∠CGB=139°.
    故选:A
    【点睛】
    本题考查了平行线的性质,熟知平行线的性质是解题关键.
    6、D
    【分析】
    由平行线的性质得,,由折叠的性质得,计算即可得出答案.
    【详解】
    ∵四边形ABCD是矩形,
    ∴,
    ∴,,
    ∵长方形纸带沿EF折叠,
    ∴,
    ∴.
    故选:D.
    【点睛】
    本题考查平行线的性质与折叠的性质,掌握平行线的性质以及折叠的性质是解题的关键.
    7、A
    【分析】
    首先根据得到,然后根据两直线平行,同旁内角互补即可求出∠4的度数.
    【详解】
    ∵∠1=40°,∠2=40°,
    ∴∠1=∠2,
    ∴PQMN,
    ∴∠4=180°﹣∠3=40°,
    故选:A.
    【点睛】
    本题考查了平行线的判定和性质,熟练掌握平行线的判定和性质是解题的关键.平行线的性质:两直线平行,内错角相等;两直线平行,同位角相等;两直线平行,同旁内角互补.平行线的判定:内错角相等,两直线平行;同位角相等,两直线平行;同旁内角互补,两直线平行.
    8、B
    【分析】
    由对顶角可知∠1=40°,故可知射线OB的方位角;
    【详解】
    解:由对顶角可知,∠1=40°
    所以射线OB的方位角是南偏西40°
    故答案为B
    【点睛】
    本题考查了方向角.解题的关键是掌握方向角的定义,方向角的表示方法是北偏东或北偏西,南偏东或南偏西.
    9、B
    【分析】
    根据平角的意义求出∠AOE,再根据角平分线的定义得出∠AOE=∠COE,由角的和差关系可得答案.
    【详解】
    解:∵∠AOE+∠BOE=180°,
    ∴∠AOE=180°﹣∠BOE=180°﹣140°=40°,
    又∵OE平分∠AOC,
    ∴∠AOE=∠COE=40°,
    ∴∠BOC=∠BOE﹣∠COE
    =140°﹣40°
    =100°,
    故选:B.
    【点睛】
    本题考查了角平分线的定义,邻补角,掌握角平分线、邻补角的意义以及图形中角的和差关系是正确解答的关键.
    10、D
    【分析】
    根据三条直线是否有平行线分类讨论即可.
    【详解】
    解:当三条直线平行时,交点个数为0;
    当三条直线相交于1点时,交点个数为1;
    当三条直线中,有两条平行,另一条分别与他们相交时,交点个数为2;
    当三条直线互相不平行时,且交点不重合时,交点个数为3;
    所以,它们的交点个数有4种情形.
    故选:D.
    【点睛】
    本题考查多条直线交点问题,解题关键是根据三条直线中是否有平行线和是否交于一点进行分类讨论.
    二、填空题
    1、3 2 2
    【分析】
    根据同位角、内错角、同旁内角的定义判断即可;
    【详解】
    如图,与∠1是同位角的是:∠2, ∠3,∠4;与∠1是内错角的是:∠5, ∠6;与∠1是同旁内角的是:∠7,∠8.
    【点睛】
    本题主要考查了同位角、内错角、同旁内角的判断,准确分析是解题的关键.
    2、5
    【分析】
    由AB∥CD∥EF,可得∠AGE=∠GAB=∠DCA;由BC∥AD,可得∠GAE=∠GCF;又因为AC平分∠BAD,可得∠GAB=∠GAE;根据对顶角相等可得∠AGE=∠CGF.所以图中与∠AGE相等的角有5个.
    【详解】
    解:∵AB∥CD∥EF,
    ∴∠AGE=∠GAB=∠DCA;
    ∵BC∥AD,
    ∴∠GAE=∠GCF;
    又∵AC平分∠BAD,
    ∴∠GAB=∠GAE;
    ∵∠AGE=∠CGF.
    ∴∠AGE=∠GAB=∠DCA=∠CGF=∠GAE=∠GCF.
    ∴图中与∠AGE相等的角有5个
    故答案为:5.
    【点睛】
    本题考查对顶角、邻补角及角平分线的定义和平行线的性质,根据题意仔细观察图形并找出全部答案是解题关键.
    3、(1)×;(2)×;(3)×;(4)√;(5)×
    【分析】
    根据对顶角与邻补角的定义与性质分析判断即可求解.
    【详解】
    (1)如果两个角有公共顶点且没有公共边,那么这两个角是对顶角,错误;
    (2)如果两个角相等,那么这两个角不一定是对顶角,错误;
    (3)有一条公共边的两个角不一定是邻补角,错误;
    (4)如果两个角是邻补角,那么它们一定互补,正确;
    (5)有一条公共边和公共顶点,且互为补角的两个角不一定是邻补角,错误;
    故答案为:(1)×;(2)×;(3)×;(4)√;(5)×.
    【点睛】
    本题主要考查了对顶角的与邻补角的性质,是基础题,熟记概念与性质是解题的关键,如果一个角的两边分别是另一个角两边的反向延长线,且这两个角有公共顶点,那么这两个角是对顶角,两个角有一条公共边,它们的另一条边互为反向延长线,具有这种关系的两个角,叫做邻补角.
    4、0<l≤2
    【分析】
    根据直线外一点与直线上各点连线的所有线段中,垂线段最短解答即可.
    【详解】
    解:∵点P为直线外一点,点A、B、C、D直线a上不同的点,
    ∵直线外一点与直线上各点连线的所有线段中,垂线段最短
    ∴点P到直线a的距离l小于等于2,
    故答案为:0<l≤2.
    【点睛】
    本题考查点到直线的距离、垂线段最短,熟知直线外一点与直线上各点连线的所有线段中,垂线段最短是解答的关键.
    5、##
    【分析】
    根据定义分析即可,点到的距离,垂足在直线上,据此即可求得答案.
    【详解】
    点A到BC的距离是线段
    故答案为:
    【点睛】
    本题考查了垂线段的定义,理解定义是解题的关键.
    三、解答题
    1、内错角相等,两直线平行;两直线平行,内错角相等;∠B;同位角相等,两直线平行.
    【分析】
    根据平行线的性质与判定条件完成证明过程即可.
    【详解】
    证明:∵∠DAF=∠F(已知).
    ∴AD∥BF(内错角相等,两直线平行),
    ∴∠D=∠DCF(两直线平行,内错角相等).
    ∵∠B=∠D(已知),
    ∴∠B=∠DCF(等量代换),
    ∴AB∥DC(同位角相等,两直线平行).
    故答案为:内错角相等,两直线平行;两直线平行,内错角相等;∠B;同位角相等,两直线平行.
    【点睛】
    本题主要考查了平行线的性质与判定,熟知平行线的性质与判定条件是解题的关键.
    2、(1)90;(2)90°;(3)90°
    【分析】
    (1)由,,三点在同一条直线上,得出,则,由角平分线定义得出,,即可得出结果;
    (2)由,则,同(1)即可得出结果;
    (3)易证,同(1)得,,即可得出结果.
    【详解】
    解:(1),,三点在同一条直线上,



    平分,平分,
    ,,

    故答案为:90;
    (2),

    同(1)得:,,

    (3),

    同(1)得:,,

    【点睛】
    本题考查了角平分线定义、角的计算等知识;熟练掌握角平分线定义是解题的关键.
    3、(1)∠1与∠2是一对同位角;(2)∠3与∠4是一对内错角,∠2与∠4是一对同旁内角
    【分析】
    同位角:两条直线被第三条直线所截,在截线的同旁,被截两直线的同一侧的角,我们把这样的两个角称为同位角;内错角:两条直线被第三条直线所截,两个角分别在截线的两侧,且夹在两条被截直线之间,具有这样位置关系的一对角叫做内错角;同旁内角:两条直线被第三条直线所截,在截线同旁,且在被截直线之间的两角,叫做同旁内角;由以上概念进行判断即可.
    【详解】
    解:直线AB,EF被直线CD所截,
    (1)∠1与∠2是一对同位角;
    (2)∠3与∠4是一对内错角,∠2与∠4是一对同旁内角.
    【点睛】
    本题考查同位角、内错角以及同旁内角的识别,掌握这几种角的基本定义是解题关键.
    4、(1)40°;(2)见解析;(3)70°
    【分析】
    (1)过点F作FN∥AB,由∠FEB=150°,可计算出∠EFN的度数,由∠EFG=90°,可计算出∠NFG的度数,由平行线的性质即可得出答案;
    (2)根据题目补充理由和相关结论即可;
    (3)类似(2)中的方法求解即可.
    【详解】
    解:(1)过点F作FN∥AB,
    ∵FN∥AB,∠FEB=130°,
    ∴∠EFN+∠FEB=180°,
    ∴∠EFN=180°﹣∠FEB=180°﹣130°=50°,
    ∵∠EFG=90°,
    ∴∠NFG=∠EFG﹣∠EFN=90°﹣50°=40°,
    ∵AB∥CD,
    ∴FN∥CD,
    ∴∠FGC=∠NFG=40°.
    故答案为:40°;
    (2)如图②,过点E作EM∥FG,交CD于点M.
    ∵AB∥CD(已知)
    ∴∠BEM=∠EMC(两直线平行,内错角相等)
    又∵EM∥FG
    ∴∠FGC=∠EMC(两直线平行,同位角相等)
    ∠EFG+∠FEM=180°(两直线平行,同旁内角互补)
    即∠FGC=(∠BEM)(等量代换)
    ∴∠FEB﹣∠FGC=∠FEB﹣∠BEM=(∠FEM)
    又∵∠EFG=90°
    ∴∠FEM=90°
    ∴∠FEB﹣∠FGC=90°
    故答案为:两直线平行,内错角相等,两直线平行,同位角相等,两直线平行,同旁内角互补,∠BEM,∠FEM,90°
    (3)过点E作EH∥FG,交CD于点H.
    ∵AB∥CD
    ∴∠BEH=∠EHC
    又∵EM∥FG
    ∴∠FGC=∠EHC
    ∠EFG+∠FEH=180°
    即∠FGC=∠BEH
    ∴∠FEB﹣∠FGC=∠FEB﹣∠BEH=∠FEH
    又∵∠EFG=110°
    ∴∠FEH=70°
    ∴∠FEB﹣∠FGC=70°
    故答案为:70°.
    【点睛】
    本题主要考查了平行线的判定与性质,熟练掌握平行线的判定与性质进行求解是解决本题的关键.
    5、∠FEC;等量代换;EF;同位角相等,两直线平行;内错角相等,两直线平行;CD;平行于同一条直线的两直线互相平行;两直线平行,内错角相等
    【分析】
    利用平行线的判定,由已知得AB∥EF、AB∥CD,可推出EF∥CD,利用平行线的性质得结论
    【详解】
    解:∵∠A=120°,∠FEC=120°(已知),
    ∴∠A=∠FEC(等量代换),
    ∴AB∥EF(同位角相等,两直线平行),
    又∵∠1=∠2(已知),
    ∴AB∥CD(内错角相等,两直线平行),
    ∴EF∥CD(平行于同一条直线的两直线互相平行),
    ∴∠FDG=∠EFD(两直线平行,内错角相等),
    故答案为:∠FEC;等量代换;EF;同位角相等,两直线平行;内错角相等,两直线平行;CD;平行于同一条直线的两直线互相平行;两直线平行,内错角相等.
    【点睛】
    本题考查了平行线的性质和判定,学会分析,正确的利用平行线的性质和判定是解决本题的关键.
    6、(1);(2)∠ABC的度数改变,度数为.
    【分析】
    (1)过点E作,根据平行线性质推出∠ABE=∠BEF,∠CDE=∠DEF,根据角平分线定义得出,∠CDE=∠ADC=35°,求出∠BEF的度数,进而可求出∠ABC的度数;
    (2)过点E作,根据角平分线定义得出,∠CDE=∠ADC=35°,求出∠BEF的度数,进而可求出∠ABC的度数.
    【详解】
    (1)如图1,过点作.
    ∵,
    ∴,
    ∴.
    ∵平分平分,,
    ∴.
    ∵,
    ∴,
    ∴.
    (2)的度数改变.
    画出的图形如图2,过点作.
    ∵平分,平分,,
    ∴ .
    ∵,
    ∴,
    ∴.
    ∵,
    ∴,
    ∴,
    ∴.
    【点睛】
    本题考查了平行线性质和角平分线定义的应用,主要考查学生的推理能力.熟练掌握平行线的判定与性质是解答本题的关键.
    7、(1)见解析;(2)60°
    【分析】
    (1)利用同角的余角相等解答即可得出结论;
    (2)利用(1)的结论,等量代换可得∠BOC=4∠1,利用∠BOM=90°=3∠1,求得∠1的度数,则∠AOC=90°﹣∠1.
    【详解】
    解:(1)∵OM⊥AB,ON⊥CD,
    ∴∠AOM=∠CON=90°,
    ∴∠AOC+∠1=90°,∠AOC+∠2=90°,
    ∴∠1=∠2.
    (2)∵OM⊥AB,
    ∴∠BOM=90°.
    ∵∠1=∠2,∠BOC=4∠2,
    ∴∠BOC=4∠1.
    ∴∠BOM=∠BOC﹣∠1=4∠1﹣∠1=3∠1,
    即3∠1=90°,
    ∴∠1=30°.
    ∴∠AOC=∠AOM﹣∠1=90°﹣30°=60°.
    【点睛】
    本题考查了对顶角、垂线性质、余角等基本几何知识,属于基础题.熟练掌握基本几何公理、基本几何概念是关键.
    8、(1)见解析;(2)18.
    【分析】
    (1)直接利用网格结合平行线的判定方法得出答案;
    (2)利用四边形PMAN所在矩形减去周围三角形面积得出答案.
    【详解】
    解:(1)如图所示:点M,点N即为所求;
    (2)四边形PMAN的面积为:5×7﹣×3×3﹣×2×4﹣×2×4﹣×3×3=18.
    【点睛】
    本题考查网格与作图—作直线外一点作已知直线的平行线,网格图形面积等知识,是基础考点,掌握相关知识是解题关键.
    9、3.15
    【分析】
    根据跳远的距离应该是起跳板到P点的垂线段的长度进行求解即可
    【详解】
    解:由图形可知,小明的跳远成绩应该为PN的长度,即3.15米,
    故答案为:3.15.
    【点睛】
    本题主要考查了点到直线的距离,熟练掌握点到直线的距离的定义是解题的关键.
    10、(1)见解析;(2)150°
    【分析】
    (1)根据画角平分线的方法,画出角平分线即可;
    (2)先求出的度数,然后由角平分线的定义,即可求出答案.
    【详解】
    解:(1)如图,OD即为平分线
    (2)解:∵,
    ∴,

    ∴;
    【点睛】
    本题考查了角平分线的定义,画角平分线,解题的关键是掌握角平分线的定义进行解题.

    相关试卷

    沪教版 (五四制)第十三章 相交线 平行线综合与测试同步达标检测题:

    这是一份沪教版 (五四制)第十三章 相交线 平行线综合与测试同步达标检测题,共28页。试卷主要包含了直线m外一点P它到直线的上点A,下列说法中正确的个数是等内容,欢迎下载使用。

    初中数学沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试课后复习题:

    这是一份初中数学沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试课后复习题,共28页。试卷主要包含了如图,∠1与∠2是同位角的是,直线,在下列各题中,属于尺规作图的是等内容,欢迎下载使用。

    沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试课堂检测:

    这是一份沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试课堂检测,共32页。试卷主要包含了如图,直线AB,下列说法中,正确的是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map