搜索
    上传资料 赚现金
    英语朗读宝

    2022年必考点解析沪教版(上海)七年级数学第二学期第十三章相交线 平行线专项测评试题(无超纲)

    2022年必考点解析沪教版(上海)七年级数学第二学期第十三章相交线 平行线专项测评试题(无超纲)第1页
    2022年必考点解析沪教版(上海)七年级数学第二学期第十三章相交线 平行线专项测评试题(无超纲)第2页
    2022年必考点解析沪教版(上海)七年级数学第二学期第十三章相交线 平行线专项测评试题(无超纲)第3页
    还剩25页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试练习

    展开

    这是一份初中数学沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试练习,共28页。试卷主要包含了下列命题中,为真命题的是等内容,欢迎下载使用。
    七年级数学第二学期第十三章相交线 平行线专项测评
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、如图,直线a∥b,Rt△ABC的直角顶点C在直线b上.若∠1=50°,则∠2的度数为( )

    A.30° B.40° C.50° D.60°
    2、若∠1与∠2是内错角,则它们之间的关系是 ( )
    A.∠1=∠2 B.∠1>∠2 C.∠1<∠2 D.∠1=∠2或∠1>∠2或∠1<∠2
    3、嘉淇在证明“平行于同一条直线的两条直线平行”时,给出了如下推理过程:
    已知:如图,b∥a,c∥a,
    求证:b∥c;
    证明:作直线DF交直线a、b、c分
    别于点D、E、F,
    ∵a∥b,∴∠1=∠4,又∵a∥c,
    ∴∠1=∠5,
    ∴b∥c.
    小明为保证嘉淇的推理更严谨,想在方框中“∴∠1=∠5”和“∴b∥c”之间作补充,下列说法正确的是(  )
    A.嘉淇的推理严谨,不需要补充
    B.应补充∠2=∠5
    C.应补充∠3+∠5=180°
    D.应补充∠4=∠5
    4、如图,在直角三角形ABC中,∠BAC=90°,AD⊥BC于点D,则下列说法错误的是(  )

    A.线段AC的长度表示点C到AB的距离
    B.线段AD的长度表示点A到BC的距离
    C.线段CD的长度表示点C到AD的距离
    D.线段BD的长度表示点A到BD的距离
    5、如图,有A,B,C三个地点,且∠ABC=90°,B地在A地的北偏东43°方向,那么C地在B地的(  )方向.

    A.南偏东47° B.南偏西43° C.北偏东43° D.北偏西47°
    6、如图,已知直线,相交于O,平分,,则的度数是( )

    A. B. C. D.
    7、如图,直线,相交于点,,,平分,给出下列结论:①当时,;②为的平分线;③若时,;④.其中正确的结论有( )

    A.4个 B.3个 C.2个 D.1个
    8、下列命题中,为真命题的是( )
    A.若,则 B.若,则
    C.同位角相等 D.对顶角相等
    9、如图,∠1=∠2,∠3=25°,则∠4等于( )

    A.165° B.155° C.145° D.135°
    10、如图所示,直线l1∥l2,点A、B在直线l2上,点C、D在直线l1上,若△ABC的面积为S1,△ABD的面积为S2,则( )

    A.S1>S2 B.S1=S2 C.S1<S2 D.不确定
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、如图,直线AB、CD相交于点O,∠AOD+∠BOC=240°,则∠BOC的度数为__________°.

    2、如图,A、B、C为直线l上的点,D为直线l外一点,若,则的度数为______.

    3、两个角和的两边互相平行,且角比角的2倍少30°,则这个角是____________度.
    4、如图,把一张长方形的纸条按如图那样折叠后,若量得∠DBA=40°,则∠ABC的度数为 _____度.

    5、如图,在直线AB上有一点O,OC⊥OD,OE是∠DOB的角平分线,当∠DOE=20°时,∠AOC=___°.

    三、解答题(10小题,每小题5分,共计50分)
    1、如图,直线AB,CD,EF相交于点O,OG⊥CD.
    (1)已知∠AOC=38°12',求∠BOG的度数;
    (2)如果OC是∠AOE的平分线,那么OG是∠EOB的平分线吗?说明理由.

    2、已知:如图,中,点、分别在、上,交于点, ,.

    (1)求证:;
    (2)若平分,,求的度数.
    3、已知:如图,请分别依据所给出的条件,判定相应的哪两条直线平行?并写出推理的根据.

    (1)如果∠2=∠3,那么____________.(____________,____________)
    (2)如果∠2=∠5,那么____________.(____________,____________)
    (3)如果∠2+∠1=180°,那么____________.(____________,____________)
    (4)如果∠5=∠3,那么____________.(____________,____________)
    4、任意画两条相交的直线,在形成的四个角中,两两相配共能组成几对角?各对角存在怎样的位置关系?根据这种位置关系将它们分类.
    5、已知:如图,ABCDEF,点G、H、M分别在AB、CD、EF上.求证:.

    6、如图所示,从标有数字的角中找出:
    (1)直线CD和AB被直线AC所截构成的内错角.
    (2)直线CD和AC被直线AD所截构成的同位角.
    (3)直线AC和AB被直线BC所截构成的同旁内角.

    7、直线AB//CD,直线EF分别交AB、CD于点M、N,NP平分∠MND.

    (1)如图1,若MR平分∠EMB,则MR与NP的位置关系是 .
    (2)如图2,若MR平分∠AMN,则MR与NP有怎样的位置关系?请说明理由.
    (3)如图3,若MR平分∠BMN,则MR与NP有怎样的位置关系?请说明理由.
    8、如图,为解决A、B、C、D四个村庄的用水问题.政府准备投资修建一个蓄水池.
    (1)若使蓄水池与四个村庄的距离的和最小,请画出蓄水池P的位置;
    (2)为把河道l中的水引入蓄水池P中,需要再修建一条引水渠.若使引水渠的长度最小,请画出引水渠PQ的修建线路.

    9、已知,直线AB、CD交于点O,EO⊥AB,∠EOC:∠BOD=7:11.
    (1)如图1,求∠DOE的度数;
    (2)如图2,过点O画出直线CD的垂线MN,请直接写出图中所有度数为125°的角.

    10、如图,在ABC中,DEAC,DFAB.
    (1)判断∠A与∠EDF之间的大小关系,并说明理由.
    (2)求∠A+∠B+∠C的度数.


    -参考答案-
    一、单选题
    1、B
    【分析】
    由平角的定义可求得∠BCD的度数,再利用平行线的性质即可求得∠2的度数.
    【详解】
    解:如图所示:

    ∵∠1=50°,∠ACB=90°,
    ∴∠BCD=180°﹣∠1﹣∠BCD=40°,
    ∵a∥b,
    ∴∠2=∠BCD=40°.
    故选:B.
    【点睛】
    本题主要考查平行线的性质,解答的关键是熟记平行线的性质:两直线平行,同位角相等.
    2、D
    【分析】
    根据内错角角的定义和平行线的性质判断即可.
    【详解】
    解:∵只有两直线平行时,内错角才可能相等,
    ∴根据已知∠1与∠2是内错角可以得出∠1=∠2或∠1>∠2或∠1<∠2,
    三种情况都有可能,
    故选D.
    【点睛】
    本题考查了内错角和平行线的性质,能理解内错角的定义是解此题的关键.
    3、D
    【分析】
    根据平行线的性质与判定、平行公理及推论解决此题.
    【详解】
    解:证明:作直线DF交直线a、b、c分别于点D、E、F,
    ∵a∥b,
    ∴∠1=∠4,
    又∵a∥c,
    ∴∠1=∠5,
    ∴∠4=∠5.
    ∴b∥c.
    ∴应补充∠4=∠5.
    故选:D.
    【点睛】
    本题主要考查平行线的性质与判定、平行公理及推论,熟练掌握平行线的性质与判定、平行公理及推论是解决本题的关键.
    4、D
    【分析】
    根据直线外一点,到这条直线的垂线段的长度是这点到直线的距离判断即可.
    【详解】
    解:A. 线段AC的长度表示点C到AB的距离,说法正确,不符合题意;
    B. 线段AD的长度表示点A到BC的距离,说法正确,不符合题意;
    C. 线段CD的长度表示点C到AD的距离,说法正确,不符合题意;
    D. 线段BD的长度表示点B到AD的距离,原说法错误,符合题意;
    故选:D.
    【点睛】
    本题考查了点到直线的距离,解题关键是准确识图,正确进行判断.
    5、D
    【分析】
    根据方向角的概念,和平行线的性质求解.
    【详解】
    解:如图:

    ∵AF∥DE,
    ∴∠ABE=∠FAB=43°,
    ∵AB⊥BC,
    ∴∠ABC=90°,
    ∴∠CBD=180°﹣90°﹣43°=47°,
    ∴C地在B地的北偏西47°的方向上.
    故选:D.
    【点睛】
    本题主要考查了方位角,平行线的性质,正确的识别图形是解题的关键.
    6、C
    【分析】
    先根据角平分线的定义求得∠AOC的度数,再根据邻补角求得∠BOC的度数即可.
    【详解】
    解:∵OA平分∠EOC,∠EOC=100°,
    ∴∠AOC=∠EOC=50°,
    ∴∠BOC=180°﹣∠AOC=130°.
    故选:C.
    【点睛】
    本题考查角平分线的有关计算,邻补角.能正确识图是解题关键.
    7、B
    【分析】
    由邻补角,角平分线的定义,余角的性质进行依次判断即可.
    【详解】
    解:∵∠AOE=90°,∠DOF=90°,
    ∴∠BOE=90°=∠AOE=∠DOF,
    ∴∠AOF+∠EOF=90°,∠EOF+∠EOD=90°,∠EOD+∠BOD=90°,
    ∴∠EOF=∠BOD,∠AOF=∠DOE,
    ∴当∠AOF=50°时,∠DOE=50°;
    故①正确;
    ∵OB平分∠DOG,
    ∴∠BOD=∠BOG,
    ∴∠BOD=∠BOG=∠EOF=∠AOC,
    故④正确;
    ∵,
    ∴∠BOD=180°-150°=30°,

    故③正确;
    若为的平分线,则∠DOE=∠DOG,
    ∴∠BOG+∠BOD=90°-∠EOE,
    ∴∠EOF=30°,而无法确定,
    ∴无法说明②的正确性;
    故选:B.
    【点睛】
    本题考查了邻补角,角平分线的定义,余角的性质,数形结合是解决本题的关键.
    8、D
    【分析】
    利用互为相反数的两个数的平方也相等,有理数的大小比较,同位角和对顶角的概念性质进行分析判断即可.
    【详解】
    解:A、若,则或,故A错误.
    B、当时,有,故B错误.
    C、两直线平行,同位角相等,故C错误.
    D、对顶角相等,D正确.
    故选:D .
    【点睛】
    本题主要是考查了平方、绝对值的比较大小、同位角和对顶角的性质,熟练掌握相关概念及性质,是解决本题的关键.
    9、B
    【分析】
    设∠4的补角为,利用∠1=∠2求证,进而得到,最后即可求出∠4.
    【详解】
    解:设∠4的补角为,如下图所示:

    ∠1=∠2,



    故选:B.
    【点睛】
    本题主要是考查了平行线的性质与判定,熟练角相等,证明两直线平行,然后利用平行关系证明其他角相等,这是解决该题的关键.
    10、B
    【分析】
    由题意根据两平行线间的距离处处相等,可知△ABC和△ABD等底等高,结合三角形的面积公式从而进行分析即可.
    【详解】
    解:因为l1∥l2,所以C、D两点到l2的距离相等,即△ABC和△ABD的高相等.同时△ABC和△ABD有共同的底AB,所以它们的面积相等.
    故选:B.
    【点睛】
    本题考查平行线间的距离以及三角形的面积,解题时注意等高等底的两个三角形的面积相等.
    二、填空题
    1、120
    【分析】
    由题意根据对顶角相等得出∠BOC=∠AOD进而结合∠AOD+∠BOC=240°即可求出∠BOC的度数.
    【详解】
    解:∵∠AOD+∠BOC=240°,∠BOC=∠AOD,
    ∴∠BOC=120°.
    故答案为:120.
    【点睛】
    本题考查的是对顶角的性质,熟练掌握对顶角相等是解题的关键.
    2、60°度
    【分析】
    由邻补角的定义,结合,可得答案.
    【详解】
    解:

    故答案为:
    【点睛】
    本题考查的是邻补角的定义,掌握“互为邻补角的两个角的和为”是解本题的关键.
    3、或
    【分析】
    设为∠1和为∠2,根据图形可证得两角相等或互补,再利用方程建立等量关系求解即可.
    【详解】
    解:设的度数为,则的度数为,
    如图1,和互相平行,可得:∠2=∠3,
    同理:∠1=∠3,
    ∴∠2=∠1,
    ∴当两角相等时:,
    解得:,

    如图2,和互相平行,可得:∠2+∠3=,
    而和互相平行,得∠1=∠3,
    ∴∠2+∠1=,
    ∴当两角互补时:,
    解得:,

    故填:或.

    【点睛】
    本题考查平行线的性质和方程的应用,分类讨论思想是关键.
    4、70
    【分析】
    由∠DBA的度数可知∠ABE度数,再根据折叠的性质可得∠ABC=∠EBC=∠ABE即可.
    【详解】
    解:延长DB到点E,如图:

    ∵∠DBA=40°,
    ∴∠ABE=180°﹣∠DBA=180°﹣40°=140°,
    又∵把一张长方形的纸条按如图那样折叠,
    ∴∠ABC=∠EBC=∠ABE=70°,
    故答案为:70.
    【点睛】
    本题主要考查了折叠的性质和邻补角的定义,属于基础题目,得到∠ABC=∠ABE是解题的关键.
    5、50
    【分析】
    先求出∠BOD,根据平角的性质即可求出∠AOC.
    【详解】
    ∵OE是∠DOB的角平分线,当∠DOE=20°
    ∴∠BOD=2∠DOE=40°
    ∵OC⊥OD,
    ∴∠AOC=180°-90°-∠BOD=50°
    故答案为:50.
    【点睛】
    此题主要考查角度求解,解题的关键是熟知角平分线的性质、直角的性质.
    三、解答题
    1、(1)51°48′;(2)OG是∠EOB的平分线,理由见解析
    【分析】
    (1)根据互为余角的意义和对顶角的性质,可得∠AOC=∠BOD=38°12′,进而求出∠BOG;
    (2)求出∠EOG=∠BOG即可.
    【详解】
    解:(1)∵OG⊥CD.
    ∴∠GOC=∠GOD=90°,
    ∵∠AOC=∠BOD=38°12′,
    ∴∠BOG=90°﹣38°12′=51°48′,
    (2)OG是∠EOB的平分线,
    理由:
    ∵OC是∠AOE的平分线,
    ∴∠AOC=∠COE=∠DOF=∠BOD,
    ∵∠COE+∠EOG=∠BOG+∠BOD=90°,
    ∴∠EOG=∠BOG,
    即:OG平分∠BOE.
    【点睛】
    本题主要考查角平分线的定义及余角,熟练掌握角平分线的定义及余角是解题的关键.
    2、(1)见解析;(2)72°
    【分析】
    (1)等量代换得出∠3=∠DFE,平行线的判定得出EF//AB,可以推出∠ADE=∠B,即可判断结论;
    (2)由平分线的定义得出∠ADE=∠EDC=∠B,由平角的定义列出关于∠5+∠ADE+∠EDC==180°,求出∠B的度数,即可得出∠ADC的度数,由EF//AB即可求出∠2的度数.
    【详解】
    解:(1)∵,∠2+∠DFE=180°,
    ∴∠3=∠DFE,
    ∴EF//AB,
    ∴∠ADE=∠1,
    又∵,
    ∴∠ADE=∠B,
    ∴DE//BC,
    (2)∵平分,
    ∴∠ADE=∠EDC,
    ∵DE//BC,
    ∴∠ADE=∠B,

    ∴∠5+∠ADE+∠EDC==180°,
    解得:,
    ∴∠ADC=2∠B=72°,
    ∵EF//AB,
    ∴∠2=∠ADC=180°-108°=72°,
    【点睛】
    本题考查了平行线的判定和性质、邻补角、角平分线的定义等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
    3、(1)EFDG,内错角相等,两直线平行;(2)ABEF,同位角相等,两直线平行;(3)ADBC,同旁内角互补,两直线平行;(4)ABDG,内错角相等,两直线平行;
    【分析】
    (1)根据两直线被第3条直线所截,确定∠2,∠3的位置为内错角,然后再判断直线平行即可;
    (2)根据两直线被第3条直线所截,确定∠2,∠5的位置为同位角,然后再判断直线平行即可;
    (3)根据两直线被第3条直线所截,确定∠2,∠1的位置为同旁内角,然后再判断直线平行即可;
    (4)根据两直线被第3条直线所截,确定∠5,∠3的位置为内错角,然后再判断直线平行即可.
    【详解】
    (1)如果∠2=∠3,那么EF∥DC.(内错角相等,两直线平行);
    (2)如果∠2=∠5,那么EF∥AB.(同位角相等,两直线平行);
    (3)如果∠2+∠1=180°,那么AD∥BC.(同旁内角互补,两直线平行);
    (4)如果∠5=∠3,那么AB∥CD.(内错角相等,两直线平行.
    故答案为:(1)EFDG,内错角相等,两直线平行;(2)ABEF,同位角相等,两直线平行;(3)ADBC,同旁内角互补,两直线平行;(4)ABDG,内错角相等,两直线平行.
    【点睛】
    本题考查平行线的判定,角的位置关系识别,掌握三线八角的两角位置关系,直线平行的判定定理是解题关键.
    4、共组成6对角,位置关系有两种:①有公共顶点,一边重合,另一边互为反向延长线;②有公共顶点,角的两边互为反向延长线,具体分类见解析
    【分析】
    根据题意画出图形,然后结合题意可进行求解.
    【详解】
    解:如图,

    由图可知两条相交的直线,两两相配共组成6对角,
    位置关系有两种:①有公共顶点,一边重合,另一边互为反向延长线;②有公共顶点,角的两边互为反向延长线,
    这6对角中有:4对邻补角(即为∠AOD与∠AOC,∠AOD与∠BOD,∠BOD与∠BOC,∠BOC与∠AOC),
    2对对顶角(即为∠AOD与∠BOC,∠BOD与∠AOC).
    【点睛】
    本题主要考查对顶角及邻补角的概念,熟练掌握对顶角及邻补角的概念是解题的关键.
    5、见解析
    【分析】
    由AB∥CD∥EF可得,,,即可证明.
    【详解】
    证明:∵AB∥CD(已知)
    ∴(两直线平行,内错角相等)
    又 ∵CD∥EF(已知)
    ∴(两直线平行,内错角相等)
    ∵(已知)
    ∴(等式性质)

    【点睛】
    本题主要考查平行线的性质,准确观察图形,推出角之间的关系是解题关键.
    6、 (1)直线CD和AB被直线AC所截构成的内错角是∠2和∠5; (2)直线CD和AC被直线AD所截构成的同位角是∠1和∠7;(3)直线AC和AB被直线BC所截构成的同旁内角是∠3和∠4
    【分析】
    根据两条直线被第三条直线所截,所形成的角中,两角在两条直线的中间,第三条直线的两旁,可得内错角,两角在两直线的中间,第三条直线的同侧,可得同旁内角,两角在两条直线的同侧,第三条直线的同侧,可得同位角.
    【详解】
    解:(1)直线CD和AB被直线AC所截构成的内错角是∠2和∠5.
    (2)直线CD和AC被直线AD所截构成的同位角是∠1和∠7.
    (3)直线AC和AB被直线BC所截构成的同旁内角是∠3和∠4.
    【点睛】
    此题主要考查了三线八角,关键是掌握同位角的边构成F形,内错角的边构成Z形,同旁内角的边构成U形.
    7、(1)MR//NP;(2)MR//NP,理由见解析;(3)MR⊥NP,理由见解析
    【分析】
    (1)根据AB∥CD,得出∠EMB=∠END,根据MR平分∠EMB,NP平分∠EBD,得出,可证∠EMR=∠ENP即可;
    (2)根据AB∥CD,可得∠AMN=∠END,根据MR平分∠AMN,NP平分∠EBD,可得,得出∠RMN=∠ENP即可;
    (3设MR,NP交于点Q,过点Q作QG∥AB,根据AB∥CD,可得∠BMN+∠END=180°,根据MR平分∠BMN,NP平分∠EBD,得出,计算两角和∠BMR+∠NPD=,根据GQ∥AB,AB∥CD,得出∠BMQ=∠GQM,∠GQN=∠PND,得出∠MQN=∠GQM+∠GQN=∠BMQ+∠PND=90°即可.
    【详解】
    证明:(1)结论为MR∥NP.
    如题图1∵AB∥CD,
    ∴∠EMB=∠END,
    ∵MR平分∠EMB,NP平分∠EBD,
    ∴,
    ∴∠EMR=∠ENP,
    ∴MR∥BP;
    故答案为MR∥BP;
    (2)结论为:MR∥NP.
    如题图2,∵AB∥CD,
    ∴∠AMN=∠END,
    ∵MR平分∠AMN,NP平分∠EBD,

    ∴∠RMN=∠ENP,
    ∴MR∥NP;
    (3)结论为:MR⊥NP.
    如图,设MR,NP交于点Q,过点Q作QG∥AB,

    ∵AB∥CD,
    ∴∠BMN+∠END=180°,
    ∵MR平分∠BMN,NP平分∠EBD,
    ∴,
    ∴∠BMR+∠NPD=,
    ∵GQ∥AB,AB∥CD,
    ∴GQ∥CD∥AB,
    ∴∠BMQ=∠GQM,∠GQN=∠PND,
    ∴∠MQN=∠GQM+∠GQN=∠BMQ+∠PND=90°,
    ∴MR⊥NP,
    【点睛】
    本题考查平行线性质与判定,角平分线定义,角的和差,掌握平行线性质与判定,角平分线定义,角的和差是解题关键.
    8、(1)见解析;(2)见解析.
    【分析】
    (1)利用两点之间距离线段最短,进而得出答案;
    (2)利用点到直线的距离垂线段最短,即可得出答案.
    【详解】
    解答:解:(1)如图所示:由两点之间,线段最短,连接AC、BD交点即为P点,

    (2)如图所示:由垂线段最短,过P作PQ⊥河道l,垂足即为Q点.
    【点睛】
    本题主要考查了应用设计与作图,正确掌握点与点以及点到直线的距离定义是解题关键.
    9、(1)145°;(2)图中度数为125°的角有:∠EOM,∠BOC,∠AOD.
    【分析】
    (1)由EO⊥AB,得到∠BOE=90°,则∠COE+∠BOD=90°,再由∠EOC:∠BOD=7:11,求出∠COE=35°,∠BOD=55°,则∠DOE=∠BOD+∠BOE=145°;
    (2)由MN⊥CD,得到∠COM=90°,则∠EOM=∠COE+∠COM=125°,再由∠BOD=55°,得到∠BOC=180°-∠BOD=125°,则∠AOD=∠BOC=125°.
    【详解】
    解:(1)∵EO⊥AB,
    ∴∠BOE=90°,
    ∴∠COE+∠BOD=90°,
    ∵∠EOC:∠BOD=7:11,
    ∴∠COE=35°,∠BOD=55°,
    ∴∠DOE=∠BOD+∠BOE=145°;
    (2)∵MN⊥CD,
    ∴∠COM=90°,
    ∴∠EOM=∠COE+∠COM=125°,
    ∵∠BOD=55°,
    ∴∠BOC=180°-∠BOD=125°,
    ∴∠AOD=∠BOC=125°,
    ∴图中度数为125°的角有:∠EOM,∠BOC,∠AOD.
    【点睛】
    本题主要考查了几何中角度的计算,垂线的定义,解题的关键在于能够熟练掌握垂线的定义.
    10、(1)两角相等,见解析;(2)180°
    【分析】
    (1)根据平行线的性质得到∠A=∠BED,∠EDF=∠BED,即可得到结论;
    (2)根据平行线的性质得到∠C=∠EDB,∠B=∠FDC,利用平角的定义即可求解;
    【详解】
    (1)两角相等,理由如下:
    ∵DE∥AC,
    ∴∠A=∠BED(两直线平行,同位角相等).
    ∵DF∥AB,
    ∴∠EDF=∠BED(两直线平行,内错角相等),
    ∴∠A=∠EDF(等量代换).
    (2)∵DE∥AC,
    ∴∠C=∠EDB(两直线平行,同位角相等).
    ∵DF∥AB,
    ∴∠B=∠FDC(两直线平行,同位角相等).
    ∵∠EDB+∠EDF+∠FDC=180°,
    ∴∠A+∠B+∠C=180°(等量代换).
    【点睛】
    本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.

    相关试卷

    初中数学沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试当堂达标检测题:

    这是一份初中数学沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试当堂达标检测题,共31页。试卷主要包含了如图所示,下列说法错误的是,下列说法中,正确的是,下列说法中正确的有,如图,直线AB等内容,欢迎下载使用。

    初中数学沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试课后测评:

    这是一份初中数学沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试课后测评,共29页。试卷主要包含了下列说法,在下列各题中,属于尺规作图的是,下列说法中正确的有个等内容,欢迎下载使用。

    数学七年级下册第十三章 相交线 平行线综合与测试同步训练题:

    这是一份数学七年级下册第十三章 相交线 平行线综合与测试同步训练题,共26页。试卷主要包含了如图,在,如图,,交于点,,,则的度数是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map