数学沪教版 (五四制)第十三章 相交线 平行线综合与测试一课一练
展开
这是一份数学沪教版 (五四制)第十三章 相交线 平行线综合与测试一课一练,共32页。试卷主要包含了如图,直线AB∥CD,直线AB,如图,已知,,平分,则,如图,能判定AB∥CD的条件是等内容,欢迎下载使用。
七年级数学第二学期第十三章相交线 平行线专项攻克 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、在如图中,∠1和∠2不是同位角的是( )A. B.C. D.2、如图,下列四个结论:①∠1=∠3;②∠B=∠5;③∠B+∠BAD=180º;④∠2=∠4;⑤∠D+∠BCD=180º.能判断AB∥CD的个数有 ( )A.2个 B.3个 C.4个 D.5个3、如图,一辆快艇从P处出发向正北航行到A处时向左转50°航行到B处,再向右转80°继续航行,此时航行方向为( )A.西偏北50° B.北偏西50° C.东偏北30° D.北偏东30°4、如图,直线AB∥CD,直线AB、CD被直线EF所截,交点分别为点M、点N,若∠AME=130°,则∠DNM的度数为( )A.30° B.40° C.50° D.60°5、如图,已知∠1 = 40°,∠2=40°,∠3 = 140°,则∠4的度数等于( )A.40° B.36° C.44° D.100°6、如图,将一张长方形纸带沿EF折叠,点C、D的对应点分别为C'、D'.若∠DEF=α,用含α的式子可以将∠C'FG表示为( )A.2α B.90°+α C.180°﹣α D.180°﹣2α7、如图,已知,,平分,则( )A.32° B.60° C.58° D.64°8、如图,能判定AB∥CD的条件是( )A.∠2=∠B B.∠3=∠A C.∠1=∠A D.∠A=∠29、如图,直线a∥b,直线AB⊥AC,若∠1=52°,则∠2的度数是( )A.38° B.42° C.48° D.52°10、如图,下列条件中,不能判断∥的是( )A.∠1=∠3 B.∠2=∠4 C.∠4+∠5=180° D.∠3=∠4第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,直线 a、b相交于点O,将量角器的中心与点O重合,发现表示60°的点在直线a上,表示135°的点在直线b上,则∠1=______°.2、两个角和的两边互相平行,且角比角的2倍少30°,则这个角是____________度.3、如图,直线AD⊥BD,垂足为点D,则点B到AC的距离是线段 _____的长度.4、如图,OA⊥OB,若∠1=55°16′,则∠2的度数是 _____.5、如图所示,点A,B,C,D在同一条直线上.在线段PA,PB,PC,PD中,最短的线段是________,理由是________.三、解答题(10小题,每小题5分,共计50分)1、如图1,在平面直角坐标系中,,,且满足,过作轴于.(1)求,的值;(2)在轴上是否存在点P,使得和的面积相等,若存在,求出点P坐标,若不存在,试说明理由.(3)若过作交轴于,且,分别平分,,如图2,图3,①求:的度数;②求:的度数.2、如图所示,已知∠AOD=∠BOC,请在图中找出∠BOC的补角,邻补角及对顶角.3、将一个含有60°角的三角尺ABC的直角边BC放在直线MN上,其中∠ABC=90°,∠BAC=60°.点D是直线MN上任意一点,连接AD,在∠BAD外作∠EAD,使∠EAD=∠BAD.(1)如图,当点D落在线段BC上时,若∠BAD=18°,求∠CAE的度数;(2)当点E落在直线AC上时,直接写出∠BAD的度数;(3)当∠CAE:∠BAD=7:4时,直接写出写∠BAD的度数.4、填空,完成下列说理过程:如图,直线EF和CD相交于点O,∠AOB=90°,OC平分∠AOF,∠AOE=40°.求∠BOD的度数.解:∵∠AOE=40°(已知)∴∠AOF=180°﹣ (邻补角定义)=180°﹣ °= °∵OC平分∠AOF(已知)∴∠AOC∠AOF( )∵∠AOB=90°(已知)∴∠BOD=180°﹣∠AOB﹣∠AOC( )=180°﹣90°﹣ °= °5、如图,,P为,之间的一点,已知,,求∠1的度数.6、如图,AB∥DG,∠1+∠2=180°.(1)试说明:AD∥EF;(2)若DG是∠ADC的平分线,∠2=142°,求∠B的度数.7、如图,平面上两点C、D在直线AB的同侧,按下列要求画图并填空. (1)画直线AC;(2)画射线CD;(3)画线段BD;(4)过点D画垂线段DF⊥AB,垂足为F;(5)点D到直线AB的距离是线段 的长.8、已知:如图,BC,AF是直线,AD∥BC,∠1=∠2,∠3=∠求证:AB∥CD.证明:∵AD∥BC(已知),∴∠3= ( ).∵∠3=∠4(已知),∴∠4= ( ).∵∠1=∠2(已知),∴∠1+∠CAF=∠2+∠CAF( ).即∠BAF= .∴∠4=∠BAF.( ).∴AB∥CD( ).4.如图,点O是直线AB上的一点,∠BOC:∠AOC=1:2,OD平分∠BOC,OE⊥OD于点O.(1)求∠BOC的度数;(2)试说明OE平分∠AOC.9、补全下列推理过程:已知:如图,CE平分∠BCD,∠1=∠2=70°,∠3=40°,求证:AB∥CD.证明:∵CE平分∠BCD(______)∴∠1=_____(_______)∵∠1=∠2=70°(已知)∴∠1=∠2=∠4=70°(________)∴AD∥BC(________)∴∠D=180°-_______=180°-∠1-∠4=40°∵∠3=40°(已知)∴______=∠3∴AB∥CD(_______)10、如图,直线CD与EF相交于点O,将一直角三角尺AOB的直角顶点与点O重合.(1)如图1,若,试说明;(2)如图2,若,OB平分.将三角尺以每秒5°的速度绕点O顺时针旋转,设运动时间为t秒.①,当t为何值时,直线OE平分;②当,三角尺AOB旋转到三角POQ(A、B分别对应P、Q)的位置,若OM平分,求的值. -参考答案-一、单选题1、D【分析】同位角的定义:两条直线a,b被第三条直线c所截,在截线c的同侧,被截两直线a,b的同一方向的两个角,我们把这样的两个角称为同位角,依此即可求解.【详解】解:A、∠1与∠2有一条边在同一条直线上,另一条边在被截线的同一方,是同位角,不符合题意;B、∠1与∠2有一条边在同一条直线上,另一条边在被截线的同一方,是同位角,不符合题意;C、∠1与∠2有一条边在同一条直线上,另一条边在被截线的同一方,是同位角,不符合题意;D、∠1与∠2的一边不在同一条直线上,不是同位角,符合题意.故选:D.【点睛】本题题考查三线八角中的同位角识别,解题关键在于掌握判断是否是同位角,必须符合三线八角中,在截线的同侧,并且在被截线的同一方的两个角是同位角.2、A【分析】根据同位角相等、内错角相等、同旁内角互补的两直线平行分别判断即可.【详解】解:①∵,∴,无法推出;②∵,∴;③∵,∴,无法推出;④∵,∴;⑤∵∴,无法推出,综上所述,能判断的是:②④,有2个,故选:A.【点睛】题考查了平行线的判定,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.3、D【分析】由,证明,再利用角的和差求解 从而可得答案.【详解】解:如图,标注字母, , ∴, 此时的航行方向为北偏东30°, 故选:D.【点睛】本题考查的是平行线的性质,角的和差运算,掌握“两直线平行,同位角相等”是解本题的关键.4、C【分析】由对顶角得到∠BMN=130°,然后利用平行线的性质,即可得到答案.【详解】解:由题意,∵∠BMN与∠AME是对顶角,∴∠BMN=∠AME=130°,∵AB∥CD,∴∠BMN+∠DNM=180°,∴∠DNM=50°;故选:C.【点睛】本题考查了平行线的性质,对顶角相等,解题的关键是掌握所学的知识,正确得到∠BMN=130°.5、A【分析】首先根据得到,然后根据两直线平行,同旁内角互补即可求出∠4的度数.【详解】∵∠1=40°,∠2=40°,∴∠1=∠2,∴PQMN,∴∠4=180°﹣∠3=40°,故选:A.【点睛】本题考查了平行线的判定和性质,熟练掌握平行线的判定和性质是解题的关键.平行线的性质:两直线平行,内错角相等;两直线平行,同位角相等;两直线平行,同旁内角互补.平行线的判定:内错角相等,两直线平行;同位角相等,两直线平行;同旁内角互补,两直线平行.6、D【分析】由平行线的性质得,,由折叠的性质得,计算即可得出答案.【详解】∵四边形ABCD是矩形,∴,∴,,∵长方形纸带沿EF折叠,∴,∴.故选:D.【点睛】本题考查平行线的性质与折叠的性质,掌握平行线的性质以及折叠的性质是解题的关键.7、D【分析】先根据平行线的性质(两直线平行,内错角相等),可得∠ADB=∠B,再利用角平分线的性质可得:∠ADE=2∠ADB=64°,最后再利用平行线的性质(两直线平行,内错角相等)即可求出答案.【详解】解:∵AD∥BC,∠B=32°,∴∠ADB=∠B=32° .∵DB平分∠ADE,∴∠ADE=2∠ADB=64°,∵AD∥BC,∴∠DEC=∠ADE=64°.故选:D.【点睛】题目主要考查了平行线的性质和角平分线的性质,解题的关键是熟练掌握平行线的性质,找出题中所需的角与已知角之间的关系.8、D【分析】根据平行线的判定定理,找出正确选项即可.【详解】根据内错角相等,两直线平行,∵∠A=∠2,∴AB∥CD,故选:D.【点睛】本题主要考查了平行线的判定,解答此类要判定两直线平行的题,可围绕截线找同位角、内错角和同旁内角,培养了学生“执果索因”的思维方式与能力.9、A【分析】利用直角三角形的性质先求出∠B,再利用平行线的性质求出∠2.【详解】解:∵AB⊥AC,∠1=52°,∴∠B=90°﹣∠1=90°﹣52°=38°∵a∥b,∴∠2=∠B=38°.故选:A.【点睛】本题考查平行线的性质、两直线平行同位角相等,直角三角形两个锐角互余等知识,在基础考点,掌握相关知识是解题关键.10、D【分析】根据平行线的判定定理对各选项进行逐一判断即可.【详解】解:、,内错角相等,,故本选项错误,不符合题意;、,同位角相等,,故本选项错误,不符合题意;、,同旁内角互补,,故本选项错误,不符合题意;、,它们不是内错角或同位角,与的关系无法判定,故本选项正确,符合题意.故选:D.【点睛】本题考查的是平行线的判定,解题的关键是熟知同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行的知识.二、填空题1、75【分析】先计算∠AOB的度数,后利用对顶角相等确定即可.【详解】如图,根据题意,得∠AOB=135°-60°=75°,∵∠AOB=∠1, ∴∠1=75°,故答案为:75.【点睛】本题考查了角的计算,对顶角相等,熟练掌握对顶角相等这条性质是解题的关键.2、或【分析】设为∠1和为∠2,根据图形可证得两角相等或互补,再利用方程建立等量关系求解即可.【详解】解:设的度数为,则的度数为,如图1,和互相平行,可得:∠2=∠3,同理:∠1=∠3,∴∠2=∠1,∴当两角相等时:,解得:, 如图2,和互相平行,可得:∠2+∠3=,而和互相平行,得∠1=∠3,∴∠2+∠1=,∴当两角互补时:,解得:,,故填:或.【点睛】本题考查平行线的性质和方程的应用,分类讨论思想是关键.3、BD【分析】根据点到直线的距离判断即可;【详解】点的直线的距离为垂线段,因为AD⊥BD,所以点B到AC的距离是线段BD的长度;故答案是:BD.【点睛】本题主要考查了点到直线的距离,准确分析判断是解题的关键.4、【分析】直接利用垂线的定义得出∠1+∠2=90°,再求∠1的余角∠2,结合度分秒转化得出答案.【详解】解:∵OA⊥OB,∴∠AOB=90°,∴∠1+∠2=90°,∵∠1=55°16′,∴∠2=90°﹣55°16′=34°44′.故答案为:34°44′.【点睛】本题考查垂直定义,求一个角的余角,度分秒互化,掌握垂直定义,求一个角的余角,度分秒互化是解题关键.5、PC 垂线段最短 【分析】根据垂线段最短求解即可.【详解】解:∵,PA,PB,PD都不垂直于AD,∴由垂线段最短可得,最短的线段是PC,理由是:垂线段最短.故答案为:PC;垂线段最短.【点睛】此题考查了垂线段最短的性质,解题的关键是熟练掌握垂线段最短.三、解答题1、(1),;(2)存在,或;(3)①;②【分析】(1)根据非负数的和为零,则每一个数为零,列等式计算即可;(2)设点P的坐标为(n,0),根据题意,等高等底的两个三角形的面积相等,确定OP=AB=8即|n|=8,化简绝对值即可; (3)①利用平行线性质,得内错角相等,运用直角三角形的两个锐角互余求解;②作,利用平行线的性质,角的平分线的定义,计算即可.【详解】解:(1)∵,∴m+4=0,n-4=0,∴,.(2)存在,设点P的坐标为(n,0),则OP=|n|,∵A(-4,0),C(4,4),∴B(4,0),AB=4-(-4)=8,∵,,且和的面积相等,∴,∴OP=AB=8,∴|n|=8,∴n=8或n=-8,∴或;(3)①∵,∴,又∵,∴.②作,如图,∵,∴,∴,,∴,∵,分别平分,,∴,,∴,即.【点睛】本题考查了非负数的性质,平行线的性质,互余即两个角的和为90°,角的平分线即把从角的顶点引一条射线,把这个角分成相等的两个角;坐标的意义,熟练掌握平行线的性质,是解题的关键.2、∠BOC的补角有两个∠BOD和∠AOC;∠BOC的邻补角为∠AOC;∠BOC没有对顶角.【分析】由题意直接根据补角,邻补角及对顶角的定义进行分析即可找出.【详解】解:因为∠BOC+∠AOC=180º(平角定义),所以∠AOC是∠BOC的补角,∠AOD=∠BOC(已知),所以∠BOC+∠BOD=180º.所以∠BOD是∠BOC的补角.所以∠BOC的补角有两个:∠BOD和∠AOC.因为∠AOC和∠BOC相邻,所以∠BOC的邻补角为:∠AOC.∠BOC没有对顶角.【点睛】本题考查补角,邻补角及对顶角的定义,熟练掌握补角,邻补角及对顶角的定义是解题的关键.3、(1);(2);(3)的值为:或.【分析】(1)先求解 再利用角的和差关系可得答案;(2)分两种情况讨论,当落在的下方时,如图,当落在的上方时,如图,再结合已知条件可得答案;(3)分两种情况讨论,如图,当落在的内部时,如图,当落在的外部时,再利用角的和差倍分关系可得答案.【详解】解:(1) ∠BAD=18°,∠EAD=∠BAD, (2)当落在的下方时,如图, 当落在的上方时,如图, 而 (3)当落在的内部时,如图, ∠CAE:∠BAD=7:4, 当落在的外部时,如图, ∠CAE:∠BAD=7:4,设则 解得: 综上:的值为:或.【点睛】本题考查的是角的和差倍分关系,周角的含义,邻补角的含义,三角形中的角度问题,一元一次方程的应用,根据题干信息画出符合题意的图形,再进行分类讨论是解本题的关键.4、角平分线的定义,平角的定义,【分析】先利用邻补角的含义求解 再利用角平分线的含义证明:∠AOC∠AOF,再利用平角的定义结合角的和差关系可得答案.【详解】解:∵∠AOE=40°(已知)∴∠AOF=180°﹣(邻补角定义)=180°﹣40°=140°∵OC平分∠AOF(已知)∴∠AOC∠AOF(角平分线的定义)∵∠AOB=90°(已知)∴∠BOD=180°﹣∠AOB﹣∠AOC(平角的定义)=180°﹣90°﹣70°=20°故答案为:角平分线的定义,平角的定义,【点睛】本题考查的是平角的定义,邻补角的含义,角平分线的定义,角的和差运算,掌握“几何图形中角的和差关系”是解本题的关键.5、30°【分析】首先过点P作射线,根据两直线平行,内错角相等,即可求得答案.【详解】过点P作射线,如图①.∵,,∴.∴.∵,∴.又∵.∴. 【点睛】此题考查了平行线的判定与性质.平行线的判定是由角的数量关系判断两直线的位置关系,平行线的性质是由平行关系来寻找角的数量关系.6、(1)见解析;(2)∠B=38°.【分析】(1)由AB∥DG,得到∠BAD=∠1,再由∠1+∠2=180°,得到∠BAD+∠2=180°,由此即可证明;(2)先求出∠1=38°,由DG是∠ADC的平分线,得到∠CDG=∠1=38°,再由AB∥DG,即可得到∠B=∠CDG=38°.【详解】(1)∵AB∥DG,∴∠BAD=∠1,∵∠1+∠2=180°,∴∠BAD+∠2=180°.∵AD∥EF . (2)∵∠1+∠2=180°且∠2=142°,∴∠1=38°,∵DG是∠ADC的平分线,∴∠CDG=∠1=38°,∵AB∥DG,∴∠B=∠CDG=38°.【点睛】本题主要考查了平行线的性质与判定,角平分线的定义,熟知平行线的性质与判定条件是解题的关键.7、(1)见解析;(2)见解析;(3)见解析;(4)见解析;(5)DF【分析】(1)连接AC并向两端延长即可;(2)连接CD并延长CD即可;(3)连接BD即可;(4)过D作线段DF⊥AB,垂足为F;(5)根据垂线段的长度是点到直线的距离解答即可.【详解】解:(1)直线AC如图所示;(2)射线CD如图所示;(3)线段BD如图所示;(4)垂线段DF如图所示;(5)垂线段DF的长是点D到直线AB的距离,故答案为:DF.【点睛】本题考查画直线、射线、线段、垂线段、点到直线的距离,熟练掌握基本作图方法,理解点到直线的距离的定义是解答的关键.8、(1)∠BOC=60°(2)见解析【分析】(1)根据∠AOB是平角,∠BOC:∠AOC=1:2即可求解;(2)由角平分线的定义和相加等于90°的两个角互余、等角的余角相等来分析即可.【详解】(1)∵∠AOB=∠BOC+∠AOC=180°,又∠BOC:∠AOC=1:2,∴∠AOC=2∠BOC,∴∠BOC+2∠BOC=180°,∴∠BOC=60°;(2)∵OD平分∠BOC,∴∠BOD=∠DOC,∵∠DOC+∠COE=90°,∠AOB是平角,∴∠AOE+∠BOD=90°,∴∠AOE=∠COE即OE平分∠AOC.【点睛】本题考查了角的计算和角平分线的定义,垂直的定义,正确理解角平分线的定义,余角的性质以及平角的定义是解题的关键.9、见解析【分析】由已知CE平分∠BCD可得∠1= ∠4,利用等式的性质得出∠1=∠2=∠4=70°,根据直线判定定理得出AD∥BC,利用平角定义求出∠D=180°-∠BCD即可.【详解】证明:∵CE平分∠BCD( 已知 ),∴∠1= ∠4 ( 角平分线定义 ),∵∠1=∠2=70°已知,∴∠1=∠2=∠4=70°(等量代换),∴AD∥BC(内错角相等,两直线平行),∴∠D=180°-∠BCD=180°-∠1-∠4=40°,∵∠3=40°已知,∴ ∠D =∠3,∴AB∥CD(内错角相等,两直线平行).故答案为:已知;∠4 ,角平分线定义 ;等量代换;内错角相等,两直线平行;∠BCD;∠D;内错角相等,两直线平行.【点睛】本题考查平行线判定,角平分线定义,平角,掌握平行线判定方法,角平分线定义,平角是解题关键.10、(1)见解析;(2)①或;②【分析】(1)根据垂直的性质即可求解;(2)①分当OE平分时,和OF平分时根据旋转的特点求出旋转的角度即可求解;②根据,可知OP在内部,根据题意作图,分别表示出, ,故可求解.【详解】解:(1)∵,∴,∴.(2)①∵OB平分,,∴.情况1:当OE平分时,则旋转之后,∴OB旋转的角度为,∴,.情况2:当OF平分时,同理可得,OB旋转的角度为,∴,.综上所述,或.②∵,∴OP在内部,如图所示,由题意知,,∴,∵OM平分,∴,∴,∴.【点睛】此题主要考查角度的综合判断与求解,解题的关键是根熟知垂直的性质、角平分线的性质及角度的和差关系.
相关试卷
这是一份沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试课后练习题,共27页。试卷主要包含了如图,能与构成同位角的有,下列命题正确的是等内容,欢迎下载使用。
这是一份初中数学沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试课后练习题,共31页。试卷主要包含了如图,能与构成同位角的有等内容,欢迎下载使用。
这是一份数学七年级下册第十三章 相交线 平行线综合与测试当堂达标检测题,共28页。试卷主要包含了如图所示,直线l1∥l2,点A等内容,欢迎下载使用。