![2022年强化训练沪教版(上海)七年级数学第二学期第十三章相交线 平行线专题测评练习题(无超纲)第1页](http://img-preview.51jiaoxi.com/2/3/12709097/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年强化训练沪教版(上海)七年级数学第二学期第十三章相交线 平行线专题测评练习题(无超纲)第2页](http://img-preview.51jiaoxi.com/2/3/12709097/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年强化训练沪教版(上海)七年级数学第二学期第十三章相交线 平行线专题测评练习题(无超纲)第3页](http://img-preview.51jiaoxi.com/2/3/12709097/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试课堂检测
展开
这是一份沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试课堂检测,共29页。试卷主要包含了下列命题中,为真命题的是,如图,∠1与∠2是同位角的是等内容,欢迎下载使用。
七年级数学第二学期第十三章相交线 平行线专题测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,,交于点,,,则的度数是( )A.34° B.66° C.56° D.46°2、如果两个角的两边两两互相平行,且一个角的等于另一个角的,则这两个角的度数分别是( )A.48°,72° B.72°,108°C.48°,72°或72°,108° D.80°,120°3、如图,下列条件中,不能判断∥的是( )A.∠1=∠3 B.∠2=∠4 C.∠4+∠5=180° D.∠3=∠44、下列命题中,为真命题的是( )A.若,则 B.若,则C.同位角相等 D.对顶角相等5、下列各图中,∠1与∠2是对顶角的是( )A. B. C. D.6、一学员在广场上练习驾驶汽车,两次拐弯后行驶的方向与原来的方向相同,这两次拐弯的角度可能是( ) .A.第一次向左拐30°,第二次向右拐30°.B.第一次向右拐50°,第二次向左拐130°.C.第一次向左拐50°,第二次向左拐130°.D.第一次向左拐50°,第二次向右拐130°.7、如图,点A是直线l外一点,过点A作AB⊥l于点B.在直线l上取一点C,连结AC,使AC=AB,点P在线段BC上,连结AP.若AB=3,则线段AP的长不可能是( )A.3.5 B.4 C.5 D.5.58、∠A两边分别垂直于∠B的两边,∠A与∠B的关系是( )A.相等 B.互补 C.相等或互补 D.不能确定9、如图,∠1与∠2是同位角的是( ) ① ② ③ ④A.① B.② C.③ D.④10、如图,,能表示点到直线(或线段)的距离的线段有( )A.五条 B.二条 C.三条 D.四条第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、一副三角板按如图方式放置,含45°角的三角板的斜边与含30°角的三角板的长直角边平行,则∠α的度数是______.2、如图,∠C=90°,线段AB=10cm,线段AD=8cm,线段AC=6cm,则点A到BC的距离为_____cm.3、如图,已知直线l1∥l2,∠A=125°,∠B=85°,且∠1比∠2大4°,那么∠1=______.4、∠1与∠2的两边分别平行,且∠2的度数比∠1的度数的3倍少40°,那么∠2的度数为 ___.5、如图,OA⊥OB,若∠1=55°16′,则∠2的度数是 _____.三、解答题(10小题,每小题5分,共计50分)1、阅读并完成下列推理过程,在括号内填写理由.已知:如图,点,分别在线段、上,,平分,平分交于点、.求证:.证明:平分(已知), .平分(已知), (角平分线的定义),(已知), . . .2、如图,直线AB、CD相交于点O,OE平分∠BOC,∠FOE=90°,若∠AOD=70°,求∠AOF度数3、在三角形ABC中,于D,F是BC上一点,于H,E在AC上,.(1)如图1,求证:;(2)如图2,若,请直接写出图中与互余的角,不需要证明.4、如果把图看成是直线AB,EF被直线CD所截,那么(1)∠1与∠2是一对什么角?(2)∠3与∠4呢?∠2与∠4呢?5、已知:如图,ABCDEF,点G、H、M分别在AB、CD、EF上.求证:. 6、如图,直线AB与CD相交于点O,OE是∠COB的平分线,OE⊥OF,∠AOD=74°,求∠COF的度数.7、如图,EF⊥BC,∠1=∠C,∠2+∠3=180°,试说明∠ADC=90°.请完善解答过程,并在括号内填写相应的理论依据.解:∵∠1=∠C,(已知)∴GD∥ .( )∴∠2=∠DAC.( )∵∠2+∠3=180°,(已知)∴∠DAC+∠3=180°.(等量代换)∴AD∥EF.( )∴∠ADC=∠ .( )∵EF⊥BC,(已知)∴∠EFC=90°.( )∴∠ADC=90°.(等量代换)8、如图,在中,平分交于D,平分交于F,已知,求证:.9、如图,己知AB∥DC,AC⊥BC,AC平分∠DAB,∠B=50°,求∠D的大小.阅读下面的解答过程,并填括号里的空白(理由或数学式).解:∵AB∥DC( ),∴∠B+∠DCB=180°( ).∵∠B=( )(已知),∴∠DCB=180°﹣∠B=180°﹣50°=130°.∵AC⊥BC(已知),∴∠ACB=( )(垂直的定义).∴∠2=( ).∵AB∥DC(已知),∴∠1=( )( ).∵AC平分∠DAB(已知),∴∠DAB=2∠1=( )(角平分线的定义).∵AB∥DC(己知),∴( )+∠DAB=180°(两条直线平行,同旁内角互补).∴∠D=180°﹣∠DAB= .10、如图1所示,MN//PQ,∠ABC与MN,PQ分别交于A、C两点(1)若∠MAB=∠QCB=20°,则B的度数为 度.(2)在图1分别作∠NAB与∠PCB的平分线,且两条角平分线交于点F.①依题意在图1中补全图形;②若∠ABC=n°,求∠AFC的度数(用含有n的代数式表示);(3)如图2所示,直线AE,CD相交于D点,且满足∠BAM=m∠MAE, ∠BCP=m∠DCP,试探究∠CDA与∠ABC的数量关系 -参考答案-一、单选题1、C【分析】由余角的定义得出的度数,由两直线平行内错角相等即可得出结论.【详解】解:∵,,∴,∵,∴,故选:C【点睛】本题考查了平行线的性质和余角,解题的关键是灵活运用所学知识解决问题.2、B【分析】根据题意可得这两个角互补,设其中一个角为x,则另一个角为,由两个角之间的数量关系列出一元一次方程,求解即可得.【详解】解:∵两个角的两边两两互相平行,∴这两个角可能相等或者两个角互补,∵一个角的等于另一个角的,∴这两个角互补,设其中一个角为x,则另一个角为,根据题意可得:,解得:,,故选:B.【点睛】题目主要考查平行线的性质、角的数量关系、一元一次方程等,理解题意,列出方程是解题关键.3、D【分析】根据平行线的判定定理对各选项进行逐一判断即可.【详解】解:、,内错角相等,,故本选项错误,不符合题意;、,同位角相等,,故本选项错误,不符合题意;、,同旁内角互补,,故本选项错误,不符合题意;、,它们不是内错角或同位角,与的关系无法判定,故本选项正确,符合题意.故选:D.【点睛】本题考查的是平行线的判定,解题的关键是熟知同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行的知识.4、D【分析】利用互为相反数的两个数的平方也相等,有理数的大小比较,同位角和对顶角的概念性质进行分析判断即可.【详解】解:A、若,则或,故A错误.B、当时,有,故B错误.C、两直线平行,同位角相等,故C错误.D、对顶角相等,D正确.故选:D .【点睛】本题主要是考查了平方、绝对值的比较大小、同位角和对顶角的性质,熟练掌握相关概念及性质,是解决本题的关键.5、C【分析】根据对顶角的定义作出判断即可.【详解】解:根据对顶角的定义可知:只有C选项的是对顶角,其它都不是.故选C.【点睛】本题考查对顶角的定义,两条直线相交后所得的只有一个公共顶点且两边互为反向延长线,这样的两个角叫做对顶角.6、A【分析】根据题意分析判断即可;【详解】由第一次向左拐30°,第二次向右拐30°可得转完两次后相当于在原方向上转过了,和原来方向相同,故A正确;第一次向右拐50°,第二次向左拐130°可得转完两次后相当于在原方向上左拐,故B错误;第一次向左拐50°,第二次向左拐130°可得转完两次后相当于在原方向上右拐,故C错误;第一次向左拐50°,第二次向右拐130°可得转完两次后相当于在原方向上右拐,故D错误;综上所述,符合条件的是A.故选:A.【点睛】本题主要考查了平行的判定与性质,准确分析判断是解题的关键.7、D【分析】直接利用垂线段最短以及结合已知得出AP的取值范围进而得出答案.【详解】∵过点A作AB⊥l于点B,在直线l上取一点C,连接AC,使AC=AB,P在线段BC上连接AP.∵AB=3,∴AC=5,∴3≤AP≤5,故AP不可能是5.5,故选:D.【点睛】本题考查了垂线段最短,正确得出AP的取值范围是解题的关键.8、C【分析】分别画出∠A两边分别垂直于∠B的两边,然后利用同角的余角相等进行求解即可.【详解】解:如图所示:BE⊥AE,BC⊥AC,∴∠BCF=∠AEF=90°,∴∠A+∠AFE=90°,∠B+∠BFC=90°,∴∠A=∠B如图所示:BD⊥AD,BC⊥AC,∴∠ADE=∠BCE=90°,∴∠A+∠BEC=90°,∠CBE+∠BEC=90°,∴∠A=∠CBE,∵∠CBE+∠DBC=180°,∴∠A+∠DBC=180°,综上所述,∠A与∠B的关系是相等或互补,故选C.【点睛】本题主要考查了垂直的定义,同角的余角相等,以及等角的补角之间的关系,解题的关键在于能够根据题意画出图形进行求解.9、B【分析】同位角就是两个角都在截线的同旁,又分别处在被截线的两条直线的同侧位置的角.【详解】根据同位角的定义可知②中的∠1与∠2是同位角;故选B.【点睛】本题主要考查了同位角的判断,准确分析判断是解题的关键.10、A【分析】直接利用点到直线的距离的定义分析得出答案.【详解】解:线段的长是点到的距离,线段的长是点到的距离,线段的长是点到的距离,线段的长是点到的距离,线段的长是点到的距离,故图中能表示点到直线距离的线段共有五条.故选:A.【点睛】此题考查了点到直线的距离.解题的关键是掌握点到直线的距离的定义,点到直线的距离是一个长度,而不是一个图形,也就是垂线段的长度,而不是垂线段.二、填空题1、15°【分析】根据平行线的性质和三角板的特殊角的度数解答即可.【详解】解:如图:∵ABCD,∴∠BAD=∠D=30°,∵∠BAE=45°,∴∠α=45°﹣30°=15°,故答案为:15°.【点睛】此题主要考查平行线的性质,解题的关键是熟知两直线平行,内错角相等.2、6【分析】根据点到直线的距离的定义,可得答案.【详解】解:因为∠C=90°,所以AC⊥BC,所以A到BC的距离是AC,因为线段AC=6cm,所以点A到BC的距离为6cm.故答案为:6.【点睛】本题考查了点到直线的距离,明确定义是关键.3、【分析】延长AB,交两平行线与C、D,根据平行线的性质和领补角的性质计算即可;【详解】延长AB,交两平行线与C、D,∵直线l1∥l2,∠A=125°,∠B=85°,∴,,,∴,∴,又∵∠1比∠2大4°,∴,∴,∴;故答案是.【点睛】本题主要考查了平行线的性质应用,准确计算是解题的关键.4、20°或125°或20°【分析】根据∠1,∠2的两边分别平行,所以∠1,∠2相等或互补列出方程求解则得到答案.【详解】解:∵∠1与∠2的两边分别平行,∴∠1,∠2相等或互补,①当∠1=∠2时,∵∠2=3∠1-40°,∴∠2=3∠2-40°,解得∠2=20°;②当∠1+∠2=180°时,∵∠2=3∠1-40°,∴∠1+3∠1-40°=180°,解得∠1=55°,∴∠2=180°-∠1=125°;故答案为:20°或125°.【点睛】本题考查了平行线的性质的运用,关键是注意:同一平面内两边分别平行的两角相等或互补.5、【分析】直接利用垂线的定义得出∠1+∠2=90°,再求∠1的余角∠2,结合度分秒转化得出答案.【详解】解:∵OA⊥OB,∴∠AOB=90°,∴∠1+∠2=90°,∵∠1=55°16′,∴∠2=90°﹣55°16′=34°44′.故答案为:34°44′.【点睛】本题考查垂直定义,求一个角的余角,度分秒互化,掌握垂直定义,求一个角的余角,度分秒互化是解题关键.三、解答题1、角平分线的定义;;两直线平行,同位角相等;等量代换;同位角相等,两直线平行.【分析】根据角平分线的定义和平行线的性质与判定即可证明.【详解】证明:平分(已知),(角平分线的定义).平分(已知),(角平分线的定义),(已知),(两直线平行,同位角相等).(等量代换).(同位角相等,两直线平行).故答案为:角平分线的定义;;两直线平行,同位角相等;等量代换;同位角相等,两直线平行.【点睛】本题主要考查了角平分线的定义,平行线的性质与判定,解题的关键在于能够熟练掌握相关知识进行求解.2、55°【分析】由题意利用对顶角可得∠COB=∠AOD=70°,再根据角平分线性质可得∠EOB=∠EOC=35°,进而利用邻补角的性质得出∠AOF=180°-∠EOB-∠FOE即可求得答案.【详解】解:∵∠AOD=70°,∴∠COB=∠AOD=70°,∵OE平分∠BOC,∴∠EOB=∠EOC=35°,∵∠FOE=90°,∴∠AOF=180°-∠EOB-∠FOE=55°.【点睛】本题考查角的运算,熟练掌握对顶角、邻补角的性质以及角平分线的定义,掌握对顶角相等、邻补角之和等于180°是解题的关键.3、(1)证明见解析;(2).【分析】(1)由垂直于同一条直线的两直线平行可推出.再根据平行线的性质可得出,即得出.最后根据平行线的判定条件,即可判断;(2)由可推出,,即得出,.由,可推出,即得出.由,可直接推出.由此即可判断哪些角与互余.(1)证明:∵,,∴,∴.∵,∴,∴.(2)与互余的角有:.证明:∵,∴,,∴,. ∵,∴,∴.∵,∴,即.综上,可知与互余的角有:.【点睛】本题考查平行线的判定和性质,余角的概念.熟练掌握平行线的判定条件和性质是解答本题的关键.4、(1)∠1与∠2是一对同位角;(2)∠3与∠4是一对内错角,∠2与∠4是一对同旁内角【分析】同位角:两条直线被第三条直线所截,在截线的同旁,被截两直线的同一侧的角,我们把这样的两个角称为同位角;内错角:两条直线被第三条直线所截,两个角分别在截线的两侧,且夹在两条被截直线之间,具有这样位置关系的一对角叫做内错角;同旁内角:两条直线被第三条直线所截,在截线同旁,且在被截直线之间的两角,叫做同旁内角;由以上概念进行判断即可.【详解】解:直线AB,EF被直线CD所截,(1)∠1与∠2是一对同位角;(2)∠3与∠4是一对内错角,∠2与∠4是一对同旁内角.【点睛】本题考查同位角、内错角以及同旁内角的识别,掌握这几种角的基本定义是解题关键.5、见解析【分析】由AB∥CD∥EF可得,,,即可证明.【详解】证明:∵AB∥CD(已知)∴(两直线平行,内错角相等) 又 ∵CD∥EF(已知)∴(两直线平行,内错角相等) ∵(已知)∴(等式性质)【点睛】本题主要考查平行线的性质,准确观察图形,推出角之间的关系是解题关键.6、53°【分析】首先根据对顶角相等可得∠BOC=74°,再根据角平分线的性质可得∠COE=∠COB=37°,再利用余角定义可计算出∠COF的度数.【详解】解:∵∠AOD=74°,∴∠BOC=74°,∵OE是∠COB的平分线,∴∠COE=∠COB=37°,∵OE⊥OF,∴∠EOF=90°,∴∠COF=90°-37°=53°.【点睛】本题考查了角平分线的性质、余角、对顶角的性质,关键是掌握对顶角相等,角平分线把角分成相等的两部分.7、AC,同位角相等,两直线平行;两直线平行,内错角相等;同旁内角互补,两直线平行;EFC,两直线平行,同位角相等;垂直定义【分析】根据平行线的判定与性质以及垂直的定义即可完成填空.【详解】解:如图,∵∠1=∠C,(已知)∴,(同位角相等,两直线平行)∴∠2=∠DAC,(两直线平行,内错角相等)∵∠2+∠3=180°,(已知)∴∠DAC+∠3=180°,(等量代换)∴,(同旁内角互补,两直线平行)∴∠ADC=∠EFC,(两直线平行,同位角相等)∵EF⊥BC,(已知)∴∠EFC=90°,(垂直的定义)∴∠ADC=90°.(等量代换)【点睛】本题考查平行线的判定与性质,掌握平行线的判定定理以及性质是解题的关键.8、见解析【分析】根据∠ADE=∠B可判定DE∥BC,根据平行线的性质得到∠ACB=∠AED,再根据角平分线的定义推出∠ACD=∠AEF,即可判定EF∥CD.【详解】证明:(已知),(同位角相等,两直线平行),(两直线平行,同位角相等),平分,平分(已知),,(角平分线的定义),(等量代换).(同位角相等,两直线平行).【点睛】此题考查了平行线的判定与性质,以及角平分线的定义,熟练掌握平行线的判定与性质是解题的关键.9、见解析.【分析】先根据平行线的性质可得,从而可得,再根据垂直的定义可得,从而可得,然后根据平行线的性质可得,根据角平分线的定义可得,最后根据平行线的性质即可得.【详解】解:∵(已知),∴(两直线平行,同旁内角互补).∵(已知),∴.∵(已知),∴(垂直的定义).∴.∵(已知),∴(两直线平行,内错角相等).∵平分(已知),∴(角平分线的定义).∵(己知),∴(两条直线平行,同旁内角互补).∴.【点睛】本题考查了平行线的性质、垂直的定义、角平分线的定义等知识点,熟练掌握平行线的性质是解题关键.10、(1)40;(2)①见解析;②;(3)m∠CDA+∠ABC=180°【分析】(1)作MN、PQ的平行线HG,根据两直线平行,内错角相等即可解答;(2)①根据题意作图即可,②过F作 ,根据两直线平行,同旁内角互补和内错角相等即可解答;(3)延长AE交PQ于点G,设∠MAE=x°,∠DCP=y°,知∠BAM=m∠MAE=mx°,∠BCP=m∠DCP=my°,∠BCQ=180°−my°,根据(1)中所得结论知∠ABC=mx°+180°−my°,即y°−x°= ,由MNPQ知∠MAE=∠DGP=x°,根据∠CDA=∠DCP−∠DGC可得答案.【详解】解:(1)作 ,∵MN//PQ,∴,∴ ,∴ ;(2)①如图所示,②过点F作 ,∴ ,∴ ,∵ ,∴ ,∵∴ ,∴ ,∵ ,∴ ;(3)延长AE交PQ于点G,设∠MAE=x°,∠DCP=y°,则∠BAM=m∠MAE=mx°,∠BCP=m∠DCP=my°,∴∠BCQ=180°−my°,由(1)知,∠ABC=mx°+180°−my°,∴y°−x°=,∵MNPQ,∴∠MAE=∠DGP=x°,则∠CDA=∠DCP−∠DGC=y°−x°=,即m∠CDA+∠ABC=180°.【点睛】本题主要考查平行线的性质,解题的关键是掌握平行线的性质和判定等知识点.
相关试卷
这是一份初中数学沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试同步达标检测题,共32页。试卷主要包含了如图木条a,在下列各题中,属于尺规作图的是等内容,欢迎下载使用。
这是一份初中数学沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试当堂达标检测题,共31页。试卷主要包含了如图所示,下列说法错误的是,下列说法中,正确的是,下列说法中正确的有,如图,直线AB等内容,欢迎下载使用。
这是一份沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试课时训练,共30页。试卷主要包含了下列说法等内容,欢迎下载使用。