搜索
    上传资料 赚现金
    英语朗读宝

    2022年最新精品解析沪教版(上海)七年级数学第二学期第十三章相交线 平行线章节练习试题(含解析)

    2022年最新精品解析沪教版(上海)七年级数学第二学期第十三章相交线 平行线章节练习试题(含解析)第1页
    2022年最新精品解析沪教版(上海)七年级数学第二学期第十三章相交线 平行线章节练习试题(含解析)第2页
    2022年最新精品解析沪教版(上海)七年级数学第二学期第十三章相交线 平行线章节练习试题(含解析)第3页
    还剩25页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    数学第十三章 相交线 平行线综合与测试课时作业

    展开

    这是一份数学第十三章 相交线 平行线综合与测试课时作业,共28页。
    七年级数学第二学期第十三章相交线 平行线章节练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、如图,直线ABCD,直线ABCD被直线EF所截,交点分别为点M、点N,若∠AME=130°,则∠DNM的度数为(       A.30° B.40° C.50° D.60°2、已知∠α的两边分别平行于∠β的两边.若∠α=60°,则∠β的大小为(  )A.30° B.60° C.30°或60° D.60°或120°3、如图,∠1与∠2是同位角的是(     ① ② ③ ④A.① B.② C.③ D.④4、如图,ACBCCDAB,则点CAB的距离是线段(  )的长度A.CD B.AD C.BD D.BC5、如果同一平面内有三条直线,那么它们交点个数是(    )个.A.3个 B.1或3个 C.1或2或3个 D.0或1或2或3个6、若直线abbc,则ac的依据是(    ).A.平行的性质 B.等量代换C.平行于同一直线的两条直线平行. D.以上都不对7、嘉淇在证明“平行于同一条直线的两条直线平行”时,给出了如下推理过程:已知:如图,baca求证:bc证明:作直线DF交直线abc别于点DEFab,∴∠1=∠4,又∵ac∴∠1=∠5,bc小明为保证嘉淇的推理更严谨,想在方框中“∴∠1=∠5”和“∴bc”之间作补充,下列说法正确的是(  )A.嘉淇的推理严谨,不需要补充B.应补充∠2=∠5C.应补充∠3+∠5=180°D.应补充∠4=∠58、如图,ABEF,则∠A,∠C,∠D,∠E满足的数量关系是(    A.∠A+∠C+∠D+∠E=360° B.∠A+∠D=∠C+∠EC.∠A﹣∠C+∠D+∠E=180° D.∠E﹣∠C+∠D﹣∠A=90°9、一副直角三角板如图放置,点CFD的延长线上,ABCF,∠F=∠ACB=90°,∠A=60°,则∠DBC的度数为( )A.45° B.25° C.15° D.20°10、如图,在两地之间要修条笔直的公路,从地测得公路走向是北偏东两地同时开工,若干天后公路准确接通,若公路千米,另一条公路长是千米,且从地测得公路的走向是北偏西,则地到公路的距离是(    A.千米 B.千米 C.千米 D.千米第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、如图,已知CE平分,则______°.2、如图,已知上一点,平分于点,则的度数为_______________.3、已知两个角的两边分别平行,其中一个角为40°,则另一个角的度数是_____.4、判断正误:(1)如果两个角有公共顶点且没有公共边,那么这两个角是对顶角(    (2)如果两个角相等,那么这两个角是对顶角(    (3)有一条公共边的两个角是邻补角(    (4)如果两个角是邻补角,那么它们一定互补(    (5)有一条公共边和公共顶点,且互为补角的两个角是邻补角(    5、将含30°角的三角板如图摆放,ABCD,若=20°,则的度数是______.三、解答题(10小题,每小题5分,共计50分)1、如图,长方形纸片ABCD,点EFC分别在边ADABCD上.将∠AEF沿折痕EF翻折,点A落在点A'处;将∠DEG沿折痕EG翻折,点D落在点D'处.(1)如图1,若∠AEF=40°,∠DEG=35°,求∠A'ED'的度数;(2)如图1,若∠A'ED'=α,求∠FEG的度数(用含α的式子表示);(3)如图2,若∠A'ED'=α,求∠FEG的度数(用含α的式子表示).2、如图,方格纸中每个小正方形的边长都是1.(1)过点P分别画PMACPNABPMAB相交于点MPNAC相交于点N(2)求四边形PMAN的面积.3、如图所示,MN是直线AB上两点,∠1=∠2,问∠1与∠2,∠3与∠4是对顶角吗? ∠1与∠5,∠3与∠6是邻补角吗?4、如图所示,直线ABCD相交于点O,∠1=65°,求∠2、∠3、∠4的度数5、如图,直线ABCD相交于点OOE是∠COB的平分线,OEOF,∠AOD=74°,求∠COF的度数.6、已知:如图①,AB∥CD,点F在直线ABCD之间,点E在直线AB上,点G在直线CD上,∠EFG=90°.(1)如图①,若∠BEF=130°,则∠FGC     度;(2)小明同学发现:如图②,无论∠BEF度数如何变化,∠FEB﹣∠FGC的值始终为定值,并给出了一种证明该发现的辅助线作法:过点EEM∥FG,交CD于点M.请你根据小明同学提供的辅助线方法,补全下面的证明过程;(3)拓展应用:如图③,如果把题干中的“∠EFG=90°”条件改为“∠EFG=110°”,其它条件不变,则∠FEB﹣∠FGC     度.解:如图②,过点EEM∥FG,交CD于点MAB∥CD(已知)∴∠BEM=∠EMC     又∵EM∥FG∴∠FGC=∠EMC     EFG+∠FEM=180°(      即∠FGC=(      )(等量代换)∴∠FEB﹣∠FGC=∠FEB﹣∠BEM=(      又∵∠EFG=90°∴∠FEM=90°∴∠FEB﹣∠FGC     即:无论∠BEF度数如何变化,∠FEB﹣∠FGC的值始终为定值.7、如图,已知平分平分,求证证明:∵平分(已知),                             ),同理                          又∵(已知)                             ),8、如图,点ABC在8×5网格的格点上,每小方格是边长为1个单位长度的正方形.请按要求画图,并回答问题:(1)延长线段AB到点D,使BDAB(2)过点CCEAB,垂足为E(3)点C到直线AB的距离是      个单位长度;(4)通过测量           ,并由此结论可猜想直线BCAF的位置关系是       9、如图,在中,平分D平分F,已知,求证:10、已知直线ABCD交于点O,∠AOC=α,∠BOE=90°,OF平分∠AOD(1)当α=30°时,则∠EOC=_________°;∠FOD=_________°.(2)当α=60°时,射线OE′从OE开始以12°/秒的速度绕点O逆时针转动,同时射线OF′从OF开始以8°/秒的速度绕点O顺时针转动,当射线OE′转动一周时射线OF′也停止转动,求经过多少秒射线OE′与射线OF′第一次重合?(3)在(2)的条件下,射线OE′在转动一周的过程中,当∠EOF′=90°时,请直接写出射线OE′转动的时间为_________秒. -参考答案-一、单选题1、C【分析】由对顶角得到∠BMN=130°,然后利用平行线的性质,即可得到答案.【详解】解:由题意,∵∠BMN与∠AME是对顶角,∴∠BMN=∠AME=130°,ABCD∴∠BMN+∠DNM=180°,∴∠DNM=50°;故选:C.【点睛】本题考查了平行线的性质,对顶角相等,解题的关键是掌握所学的知识,正确得到∠BMN=130°.2、D【分析】根据题意画图如图(1),根据平行线性质两直线平行,同位角相等,即可得出∠α=∠1=∠β,即可得出答案,如图(2)根据平行线性质,两直线平行,同旁内角互补,∠α+∠2=180°,再根据两直线平行,内错角相等,∠2=∠β,即可得出答案.【详解】解:如图1,ab∴∠1=∠αcd∴∠β=∠1=∠α=60°;如图(2),ab∴∠α+∠2=180°,cd∴∠2=∠β∴∠β+∠α=180°,∵∠α=60°,∴∠β=120°.综上,∠β=60°或120°.故选:D【点睛】本题主要考查了平行线的性质,熟练掌握相关性质进行计算是解决本题的关键.3、B【分析】同位角就是两个角都在截线的同旁,又分别处在被截线的两条直线的同侧位置的角.【详解】根据同位角的定义可知②中的∠1与∠2是同位角;故选B.【点睛】本题主要考查了同位角的判断,准确分析判断是解题的关键.4、A【分析】根据和点到直线的距离的定义即可得出答案.【详解】解:的距离是线段的长度,故选:A.【点睛】本题考查了点到直线的距离,理解定义是解题关键.5、D【分析】根据三条直线是否有平行线分类讨论即可.【详解】解:当三条直线平行时,交点个数为0;当三条直线相交于1点时,交点个数为1;当三条直线中,有两条平行,另一条分别与他们相交时,交点个数为2;当三条直线互相不平行时,且交点不重合时,交点个数为3;所以,它们的交点个数有4种情形.故选:D【点睛】本题考查多条直线交点问题,解题关键是根据三条直线中是否有平行线和是否交于一点进行分类讨论.6、C【分析】根据平行公理的推论进行判断即可.【详解】解:直线abbc,则ac的依据是平行于同一直线的两条直线平行,故选:C.【点睛】本题考查了平行公理的推论,解题关键是明确平行于同一直线的两条直线平行.7、D【分析】根据平行线的性质与判定、平行公理及推论解决此题.【详解】解:证明:作直线DF交直线abc分别于点DEFab∴∠1=∠4,又∵ac∴∠1=∠5,∴∠4=∠5.bc∴应补充∠4=∠5.故选:D【点睛】本题主要考查平行线的性质与判定、平行公理及推论,熟练掌握平行线的性质与判定、平行公理及推论是解决本题的关键.8、C【分析】如图,过点CCGAB,过点DDHEF,根据平行线的性质可得∠A=∠ACG,∠EDH=180°﹣∠E,根据ABEF可得CGDH,根据平行线的性质可得∠CDH=∠DCG,进而根据角的和差关系即可得答案.【详解】如图,过点CCGAB,过点DDHEF∴∠A=∠ACG,∠EDH=180°﹣∠EABEFCGDH∴∠CDH=∠DCG∴∠ACD=∠ACG+∠CDH=∠A+∠CDE﹣(180°﹣∠E),∴∠A﹣∠ACD+∠CDE+∠E=180°.故选:C.【点睛】本题考查了平行线的性质,两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补;熟练掌握平行线的性质,正确作出辅助线是解题关键.9、C【分析】直接利用三角板的特点,结合平行线的性质得出∠ABD=45°,进而得出答案.【详解】解:由题意可得:∠EDF=45°,∠ABC=30°,ABCF∴∠ABD=∠EDF=45°,∴∠DBC=45°-30°=15°.故选:C【点睛】此题主要考查了平行线的性质,根据题意得出∠ABD的度数是解题关键.10、B【分析】根据方位角的概念,图中给出的信息,再根据已知转向的角度求解.【详解】解:根据两直线平行,内错角相等,可得∠ABG=48°,∵∠ABC=180°−∠ABG−∠EBC=180°−48°−42°=90°,ABBCA地到公路BC的距离是AB=8千米,故选B【点睛】此题是方向角问题,结合生活中的实际问题,将解三角形的相关知识有机结合,体现了数学应用于实际生活的思想.二、填空题1、65【分析】由平行线的性质先求解再利用角平分线的定义可得答案.【详解】解: CE平分 故答案为:【点睛】本题考查的是角平分线的定义,平行线的性质,掌握“两直线平行,同旁内角互补”是解本题的关键.2、【分析】根据平行线的性质可得,根据平分线的性质可得,进而即可求得的度数.【详解】平分故答案为:【点睛】本题考查了平行线的性质,角平分线的定义,掌握平行线的性质是解题的关键.3、40°【分析】由两角的两边互相平行可得这两个角相等或互补,再由其中一个角为 ,即可得出答案.【详解】解:因为两个角的两边互相平行,所以这两个角相等或互补,若这两个角相等,因为其中一个角为,所以另一个角的度数为若这两个角互补,则另一个角的度数为故答案为【点睛】此题考查了平行线的性质和补角的定义,属于基本题型,正确分类,熟练掌握平行线的性质是关键.4、(1)×;(2)×;(3)×;(4)√;(5)×【分析】根据对顶角与邻补角的定义与性质分析判断即可求解.【详解】(1)如果两个角有公共顶点且没有公共边,那么这两个角是对顶角,错误;(2)如果两个角相等,那么这两个角不一定是对顶角,错误;(3)有一条公共边的两个角不一定是邻补角,错误;(4)如果两个角是邻补角,那么它们一定互补,正确;(5)有一条公共边和公共顶点,且互为补角的两个角不一定是邻补角,错误;故答案为:(1)×;(2)×;(3)×;(4)√;(5)×.【点睛】本题主要考查了对顶角的与邻补角的性质,是基础题,熟记概念与性质是解题的关键,如果一个角的两边分别是另一个角两边的反向延长线,且这两个角有公共顶点,那么这两个角是对顶角,两个角有一条公共边,它们的另一条边互为反向延长线,具有这种关系的两个角,叫做邻补角.5、50°【分析】三角形的外角等于不相邻的两个内角和,同位角相等可得出,从而得到的值.【详解】解:如图故答案为:【点睛】本题考察了三角形的外角,平行线的性质.解题的关键在于角度之间的转化和等量关系.三、解答题1、(1);(2);(3)【分析】(1)由折叠的性质,得到,然后由邻补角的定义,即可求出答案;(2)由折叠的性质,先求出,然后求出∠FEG的度数即可;(3)由折叠的性质,先求出,然后求出∠FEG的度数即可.【详解】解:(1)将∠AEF沿折痕EF翻折,点A落在点A'处;将∠DEG沿折痕EG翻折,点D落在点D'处,(2)根据题意,则(3)根据题意,【点睛】本题考查了折叠的性质,邻补角的定义,解题的关键是熟练掌握折叠的性质,正确得到2、(1)见解析;(2)18.【分析】(1)直接利用网格结合平行线的判定方法得出答案;(2)利用四边形PMAN所在矩形减去周围三角形面积得出答案.【详解】解:(1)如图所示:点M,点N即为所求;(2)四边形PMAN的面积为:5×7﹣×3×3﹣×2×4﹣×2×4﹣×3×3=18.【点睛】本题考查网格与作图—作直线外一点作已知直线的平行线,网格图形面积等知识,是基础考点,掌握相关知识是解题关键.3、∠1和∠2,∠3和∠4都不是对顶角,∠1与∠5,∠3与∠6也都不是邻补角【分析】根据对顶角和邻补角的定义求解即可.【详解】解:根据对顶角的定义可得:∠1和∠2,∠3和∠4都不是对顶角;根据邻补角的定义可得,∠1与∠5,∠3与∠6也都不是邻补角.【点睛】此题考查了邻补角和对顶角的定义,解题的关键是掌握邻补角和对顶角的有关定义,牢记两条直线相交,才能产生对顶角或邻补角.两个角有公共点顶点,且角的一边重合、另一条边互为反向延长线,这样的两个角叫做邻补角,对顶角是指角的顶点重合,角的两条边分别互为反向延长线的角。4、∠2=115°,∠3=65°,∠4=115°【分析】根据对顶角相等和邻补角定义可求出各个角.【详解】解:∵∠1=65°,∠1=∠3,∴∠3=65°,∵∠1=65°,∠1+∠2=180°,∴∠2=180°-65°=115°,又∵∠2=∠4,∴∠4=115°.【点睛】本题考核知识点:对顶角,邻补角,解题关键是掌握对顶角,邻补角的定义和性质.5、53°【分析】首先根据对顶角相等可得∠BOC=74°,再根据角平分线的性质可得∠COE=COB=37°,再利用余角定义可计算出∠COF的度数.【详解】解:∵∠AOD=74°,∴∠BOC=74°,OE是∠COB的平分线,∴∠COE=COB=37°,OEOF∴∠EOF=90°,∴∠COF=90°-37°=53°.【点睛】本题考查了角平分线的性质、余角、对顶角的性质,关键是掌握对顶角相等,角平分线把角分成相等的两部分.6、(1)40°;(2)见解析;(3)70°【分析】(1)过点FFN∥AB,由∠FEB=150°,可计算出∠EFN的度数,由∠EFG=90°,可计算出∠NFG的度数,由平行线的性质即可得出答案;(2)根据题目补充理由和相关结论即可;(3)类似(2)中的方法求解即可.【详解】解:(1)过点FFN∥ABFN∥AB,∠FEB=130°,∴∠EFN+∠FEB=180°,∴∠EFN=180°﹣∠FEB=180°﹣130°=50°,∵∠EFG=90°,∴∠NFG=∠EFG﹣∠EFN=90°﹣50°=40°,AB∥CDFN∥CD∴∠FGC=∠NFG=40°.故答案为:40°;(2)如图②,过点EEMFG,交CD于点MAB∥CD(已知)∴∠BEM=∠EMC(两直线平行,内错角相等)又∵EM∥FG∴∠FGC=∠EMC(两直线平行,同位角相等)EFG+∠FEM=180°(两直线平行,同旁内角互补)即∠FGC=(∠BEM)(等量代换)∴∠FEB﹣∠FGC=∠FEB﹣∠BEM=(∠FEM又∵∠EFG=90°∴∠FEM=90°∴∠FEB﹣∠FGC=90°故答案为:两直线平行,内错角相等,两直线平行,同位角相等,两直线平行,同旁内角互补,∠BEM,∠FEM,90°(3)过点EEH∥FG,交CD于点HAB∥CD∴∠BEH=∠EHC又∵EM∥FG∴∠FGC=∠EHCEFG+∠FEH=180°即∠FGC=∠BEH∴∠FEB﹣∠FGC=∠FEB﹣∠BEH=∠FEH又∵∠EFG=110°∴∠FEH=70°∴∠FEB﹣∠FGC=70°故答案为:70°.【点睛】本题主要考查了平行线的判定与性质,熟练掌握平行线的判定与性质进行求解是解决本题的关键.7、ABC;角平分线的定义;BCD;(∠ABC+∠BCD);180°;两直线平行,同旁内角互补【分析】由平行线的性质可得到∠BAC+∠ACD=180°,再结合角平分线的定义可求得∠1+∠2=90°,可得出结论,据此填空即可.【详解】证明:∵BE平分∠ABC(已知),∴∠2=ABC(角平分线的定义),同理∠1=BCD∴∠1+∠2=(∠ABC+∠BCD),又∵ABCD(已知)∴∠ABC+∠BCD=180°(两直线平行,同旁内角互补 ),∴∠1+∠2=90°.故答案为:ABC;角平分线的定义;BCD;(∠ABC+∠BCD);180°;两直线平行,同旁内角互补.【点睛】本题考查了平行线的性质,角平分线的定义,是基础题,熟记性质是解题的关键.8、(1)见解析;(2)见解析;(3)2;(4),平行【分析】(1)根据网格的特点和题意,延长,使(2)根据网格是正方形,垂线的定义,画出,垂足为,点在线段的延长线上,(3)点C到直线AB的距离即的长,网格的特点即可数出的长;(4)根据同位角相等,两直线平行,或内错角相等,两直线平行即可得,即可知测量的角度【详解】解:(1)(2)如图所示, (3)由网格可知即点C到直线AB的距离是个单位长度故答案为:2(4)通过测量,可知故答案为:,平行【点睛】本题考查了画线段,画垂线,平行线的性质与判定,点到直线的距离,掌握以上知识是解题的关键.9、见解析【分析】根据∠ADE=∠B可判定DEBC,根据平行线的性质得到∠ACB=∠AED,再根据角平分线的定义推出∠ACD=∠AEF,即可判定EFCD【详解】证明:(已知),(同位角相等,两直线平行),(两直线平行,同位角相等),平分平分(已知),(角平分线的定义),(等量代换).(同位角相等,两直线平行).【点睛】此题考查了平行线的判定与性质,以及角平分线的定义,熟练掌握平行线的判定与性质是解题的关键.10、(1)60,75;(2)秒;(3)3或12或21或30【分析】(1)根据题意利用互余和互补的定义可得:∠EOC与∠FOD的度数.(2)由题意先根据,得出∠EOF=150°,则射线OE'、OF'第一次重合时,其OE'运动的度数+OF'运动的度数=150,列式解出即可;(3)根据题意分两种情况在直线OE的左边和右边,进而根据其夹角列4个方程可得时间.【详解】解:(1)∵∠BOE=90°,∴∠AOE=90°,∵∠AOC=α=30°,∴∠EOC=90°-30°=60°,AOD=180°-30°=150°,OF平分∠AOD∴∠FOD=AOD=×150°=75°;故答案为:60,75;(2)当设当射线与射线重合时至少需要t秒,可得,解得:答:当射线与射线重合时至少需要秒;(3)设射线转动的时间为t秒,由题意得:解得:或12或21或30.答:射线转动的时间为3或12或21或30秒.【点睛】本题考查对顶角相等,邻补角互补的定义,角平分线的定义,角的计算,第三问有难度,熟记相关性质是解题的关键,注意要分情况讨论. 

    相关试卷

    沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试巩固练习:

    这是一份沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试巩固练习,共31页。试卷主要包含了下列说法,下列关于画图的语句正确的是.,下列语句中等内容,欢迎下载使用。

    沪教版 (五四制)第十三章 相交线 平行线综合与测试课后练习题:

    这是一份沪教版 (五四制)第十三章 相交线 平行线综合与测试课后练习题,共29页。试卷主要包含了如图所示,下列说法错误的是,如图,下列条件中能判断直线的是,直线m外一点P它到直线的上点A,如图,已知,,平分,则等内容,欢迎下载使用。

    初中数学沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试同步练习题:

    这是一份初中数学沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试同步练习题,共28页。试卷主要包含了如图,直线b,下列说法等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map