搜索
    上传资料 赚现金
    英语朗读宝

    2022年最新精品解析沪教版(上海)七年级数学第二学期第十三章相交线 平行线同步测试练习题(精选含解析)

    2022年最新精品解析沪教版(上海)七年级数学第二学期第十三章相交线 平行线同步测试练习题(精选含解析)第1页
    2022年最新精品解析沪教版(上海)七年级数学第二学期第十三章相交线 平行线同步测试练习题(精选含解析)第2页
    2022年最新精品解析沪教版(上海)七年级数学第二学期第十三章相交线 平行线同步测试练习题(精选含解析)第3页
    还剩28页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021学年第十三章 相交线 平行线综合与测试达标测试

    展开

    这是一份2021学年第十三章 相交线 平行线综合与测试达标测试,共31页。试卷主要包含了如图,直线AB等内容,欢迎下载使用。
    七年级数学第二学期第十三章相交线 平行线同步测试
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、如图,直线AB经过点O,射线OA是北偏东40°方向,则射线OB的方位角是( )

    A.南偏西50° B.南偏西40° C.北偏西50° D.北偏西40°
    2、如图,O为直线AB上一点,∠COB=36°12',则∠AOC的度数为(  )

    A.164°12' B.136°12' C.143°88' D.143°48'
    3、如图,AB∥CD,AE∥CF,∠C=131°,则∠A=( )

    A.39° B.41° C.49° D.51°
    4、如图,直线a,b被直线c所截,下列条件不能判定直线a与b平行的是(  )

    A.∠1=∠3 B.∠2+∠3=180° C.∠1=∠4 D.∠1+∠4=180°
    5、如图,点D是AB上的一点,点E是AC边上的一点,且∠B=70°,∠ADE=70°,∠DEC=100°,则∠C是( )

    A.70° B.80° C.100° D.110°
    6、如图,直线AB、CD相交于点O,EO⊥AB于点O,∠EOC=35°,则∠AOD的度数为( )

    A.55° B.125° C.65° D.135°
    7、如图,AB∥CD,AE∥CF,∠A=41°,则∠C的度数为( )

    A.139° B.141° C.131° D.129°
    8、如图,木工用图中的角尺画平行线的依据是( )

    A.垂直于同一条直线的两条直线平行
    B.平行于同一条直线的两条直线平行
    C.同位角相等,两直线平行
    D.经过直线外一点,有且只有一条直线与这条直线平行
    9、如图,一辆快艇从P处出发向正北航行到A处时向左转50°航行到B处,再向右转80°继续航行,此时航行方向为(  )

    A.西偏北50° B.北偏西50° C.东偏北30° D.北偏东30°
    10、如图,直线b、c被直线a所截,则与是( )

    A.对顶角 B.同位角 C.内错角 D.同旁内角
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、在体育课上某同学跳远的情况如图所示,直线表示起跳线,经测量,PB=3.3米,PC=3.1米,PD=3.5米,则该同学的实际立定跳远成绩是___________米;

    2、已知直线AB、CD相交于点O,且A、B和C、D分别位于点O两侧,OE⊥AB,,则____________.
    3、如图,已知直线l1∥l2,∠A=125°,∠B=85°,且∠1比∠2大4°,那么∠1=______.

    4、如图,已知 AB∥CD∥EF,BC∥AD,AC 平分∠BAD,那么图中与∠AGE 相等的角(不包括∠AGE)有_____个.

    5、如图,已知,CE平分,,则______°.

    三、解答题(10小题,每小题5分,共计50分)
    1、如图,直线AB,CD,EF相交于点O,OG⊥CD.
    (1)已知∠AOC=38°12',求∠BOG的度数;
    (2)如果OC是∠AOE的平分线,那么OG是∠EOB的平分线吗?说明理由.

    2、如图,直线AB与CD相交于点O,OC平分∠BOE,OF⊥CD,垂足为点O.
    (1)写出∠AOF的一个余角和一个补角.
    (2)若∠BOE=60°,求∠AOD的度数.
    (3)∠AOF与∠EOF相等吗?说明理由.

    3、如图,在8×6的正方形网格中,每个小正方形的顶点称为格点,点D是∠ABC的边BC上的一点,点M是∠ABC内部的一点,点A、B、C、D、M均在格点上,只用无刻度的直尺,在给定的网格中按要求画图,并回答问题:
    (1)过点M画BC的平行线MN交AB于点N;
    (2)过点D画BC的垂线DE,交AB于点E;
    (3)点E到直线BC的距离是线段    的长度.

    4、如图,已知,,,试说明直线AD与BC垂直(请在下面的解答过程的空格内填空或在括号内填写理由).

    理由:C,(已知)
    ,( )
    .( )
    又,(已知)
    =180°.(等量代换)
    ,( )
    .( )
    ,(已知)


    5、已知AB∥CD,点E在AB上,点F在DC上,点G为射线EF上一点.
    (基础问题)如图1,试说明:∠AGD=∠A+∠D.(完成图中的填空部分).
    证明:过点G作直线MN∥AB,
    又∵AB∥CD,
    ∴MN∥CD(    )
    ∵MN∥AB,
    ∴∠A=(    )(    )
    ∵MN∥CD,
    ∴∠D=    (    )
    ∴∠AGD=∠AGM+∠DGM=∠A+∠D.
    (类比探究)如图2,当点G在线段EF延长线上时,直接写出∠AGD、∠A、∠D三者之间的数量关系.
    (应用拓展)如图3,AH平分∠GAB,DH交AH于点H,且∠GDH=2∠HDC,∠HDC=22°,∠H=32°,直接写出∠DGA的度数.

    6、如图,平面上有三个点A、B、C.

    (1)根据下列语句按要求画图.
    ①画射线AB,用圆规在线段AB的延长线上截取BD=AB(保留作图痕迹);
    ②连接CA、CD、CB;
    ③过点C画CE⊥AD,垂足为点E;
    ④过点D画DF∥AC,交CB的延长线于点F.
    (2)①在线段CA、CE、CD中,线段_________最短,依据是_________.
    ②用刻度尺或圆规检验DF与AC的大小关系为_________.
    7、如图,OB⊥OD,OC平分∠AOD,∠BOC=35°,求∠AOD和∠AOB的大小.

    8、按要求画图,并回答问题:
    如图,平面内有三个点A,B,C.

    根据下列语句画图:
    (1)画直线AB;
    (2)射线BC;
    (3)延长线段AC到点D,使得;
    (4)通过画图、测量,点B到点D的距离约为______cm(精确到0.1);
    (5)通过画图、测量,点D到直线AB的最短距离约为______cm(精确到0.1).
    9、如图,直线AB、CD相交于点O,OE平分∠BOC,∠FOE=90°,若∠AOD=70°,求∠AOF度数

    10、已知:如图,中,点、分别在、上,交于点, ,.

    (1)求证:;
    (2)若平分,,求的度数.

    -参考答案-
    一、单选题
    1、B
    【分析】
    由对顶角可知∠1=40°,故可知射线OB的方位角;
    【详解】
    解:由对顶角可知,∠1=40°
    所以射线OB的方位角是南偏西40°
    故答案为B

    【点睛】
    本题考查了方向角.解题的关键是掌握方向角的定义,方向角的表示方法是北偏东或北偏西,南偏东或南偏西.
    2、D
    【分析】
    根据邻补角及角度的运算可直接进行求解.
    【详解】
    解:由图可知:∠AOC+∠BOC=180°,
    ∵∠COB=36°12',
    ∴∠AOC=180°-∠BOC=143°48',
    故选D.
    【点睛】
    本题主要考查邻补角及角度的运算,熟练掌握邻补角及角度的运算是解题的关键.
    3、C
    【分析】
    由题意直接根据平行线的性质进行分析计算即可得出答案.
    【详解】
    解:如图,

    ∵AB∥CD,∠C=131°,
    ∴∠1 =180°-∠C=49°(两直线平行,同旁内角互补),
    ∵AE∥CF,
    ∴∠A=∠C=49°(两直线平行,同位角相等).
    故选:C.
    【点睛】
    本题主要考查平行线的性质,熟练掌握平行线的性质即两直线平行,同旁内角互补和两直线平行,同位角相等以及两直线平行,内错角相等是解答此题的关键.
    4、D
    【分析】
    同位角相等,两直线平行,同旁内角互补,两直线平行,根据平行线的判定方法逐一分析即可.
    【详解】
    解:(同位角相等,两直线平行),故A不符合题意;
    ∠2+∠3=180°,(同旁内角互补,两直线平行)故B不符合题意;

    (同位角相等,两直线平行)故C不符合题意;
    ∠1+∠4=180°,不是同旁内角,也不能利用等量代换转换成同旁内角,
    所以不能判定 故D符合题意;
    故选D
    【点睛】
    本题考查的是平行线的判定,对顶角相等,掌握“平行线的判定方法”是解本题的关键.
    5、B
    【分析】
    先证明DEBC,根据平行线的性质求解.
    【详解】
    解:因为∠B=∠ADE=70°
    所以DEBC,
    所以∠DEC+∠C=180°,所以∠C=80°.
    故选:B.
    【点睛】
    此题主要考查平行线的判定与性质,解题的关键是熟知同位角相等,两直线平行.
    6、B
    【分析】
    先根据余角的定义求得,进而根据邻补角的定义求得即可.
    【详解】
    EO⊥AB,∠EOC=35°,


    故选:B.
    【点睛】
    本题考查了垂直的定义,求一个角的余角、补角,掌握求一个角的余角与补角是解题的关键.
    7、A
    【分析】
    如图,根据AECF,得到∠CGB=41°,根据ABCD,即可得到∠C=139°..
    【详解】
    解:如图,∵AECF,
    ∴∠A=∠CGB=41°,
    ∵ABCD,
    ∴∠C=180°-∠CGB=139°.

    故选:A
    【点睛】
    本题考查了平行线的性质,熟知平行线的性质是解题关键.
    8、C
    【分析】
    由于角尺是一个直角,木工画线实质是在画一系列的直角,且这些直角有一边在同一直线上,根据平行线的判定即可作出判断.
    【详解】
    由于木工画一条线实际上是在画一个直角,且这些直角的一边在同一直线上,且这些直角是同位角相等,因而这些直线平行.
    故选:C
    【点睛】
    本题是平行线判定在实质中的应用,关键能够把实际问题转化为数学问题.
    9、D
    【分析】
    由,证明,再利用角的和差求解 从而可得答案.
    【详解】
    解:如图,标注字母, ,

    ∴,

    此时的航行方向为北偏东30°,
    故选:D.
    【点睛】
    本题考查的是平行线的性质,角的和差运算,掌握“两直线平行,同位角相等”是解本题的关键.
    10、B
    【分析】
    根据对顶角、同位角、内错角、同旁内角的特征去判断即可.
    【详解】
    ∠1与∠2是同位角
    故选:B
    【点睛】
    本题考查了同位角的含义,理解同位角的含义并正确判断同位角是关键.
    二、填空题
    1、3.1
    【分析】
    根据点到直线,垂线段最短,即可求解.
    【详解】
    解:根据题意得:该同学的实际立定跳远成绩是PC=3.1米.
    故答案为:3.1
    【点睛】
    本题主要考查了点与直线的位置关系,熟练掌握点到直线,垂线段最短是解题的关键.
    2、130°或50°
    【分析】
    根据题意作出图形,根据垂直的定义,互余与互补的定义,分类讨论即可
    【详解】
    ①如图,






    ②如图,






    综上所述,或
    故答案为:130°或50°
    【点睛】
    本题考查了相交线所成角,对顶角相等,垂直的定义,求一个角的余角,补角,分类讨论是解题的关键.
    3、
    【分析】
    延长AB,交两平行线与C、D,根据平行线的性质和领补角的性质计算即可;
    【详解】
    延长AB,交两平行线与C、D,

    ∵直线l1∥l2,∠A=125°,∠B=85°,
    ∴,,,
    ∴,
    ∴,
    又∵∠1比∠2大4°,
    ∴,
    ∴,
    ∴;
    故答案是.
    【点睛】
    本题主要考查了平行线的性质应用,准确计算是解题的关键.
    4、5
    【分析】
    由AB∥CD∥EF,可得∠AGE=∠GAB=∠DCA;由BC∥AD,可得∠GAE=∠GCF;又因为AC平分∠BAD,可得∠GAB=∠GAE;根据对顶角相等可得∠AGE=∠CGF.所以图中与∠AGE相等的角有5个.
    【详解】
    解:∵AB∥CD∥EF,
    ∴∠AGE=∠GAB=∠DCA;
    ∵BC∥AD,
    ∴∠GAE=∠GCF;
    又∵AC平分∠BAD,
    ∴∠GAB=∠GAE;
    ∵∠AGE=∠CGF.
    ∴∠AGE=∠GAB=∠DCA=∠CGF=∠GAE=∠GCF.
    ∴图中与∠AGE相等的角有5个
    故答案为:5.
    【点睛】
    本题考查对顶角、邻补角及角平分线的定义和平行线的性质,根据题意仔细观察图形并找出全部答案是解题关键.
    5、65
    【分析】
    由平行线的性质先求解再利用角平分线的定义可得答案.
    【详解】
    解: , ,

    CE平分,

    故答案为:
    【点睛】
    本题考查的是角平分线的定义,平行线的性质,掌握“两直线平行,同旁内角互补”是解本题的关键.
    三、解答题
    1、(1)51°48′;(2)OG是∠EOB的平分线,理由见解析
    【分析】
    (1)根据互为余角的意义和对顶角的性质,可得∠AOC=∠BOD=38°12′,进而求出∠BOG;
    (2)求出∠EOG=∠BOG即可.
    【详解】
    解:(1)∵OG⊥CD.
    ∴∠GOC=∠GOD=90°,
    ∵∠AOC=∠BOD=38°12′,
    ∴∠BOG=90°﹣38°12′=51°48′,
    (2)OG是∠EOB的平分线,
    理由:
    ∵OC是∠AOE的平分线,
    ∴∠AOC=∠COE=∠DOF=∠BOD,
    ∵∠COE+∠EOG=∠BOG+∠BOD=90°,
    ∴∠EOG=∠BOG,
    即:OG平分∠BOE.
    【点睛】
    本题主要考查角平分线的定义及余角,熟练掌握角平分线的定义及余角是解题的关键.
    2、(1)∠AOF的余角是:∠COE或∠BOC或∠AOD;∠AOF的补角是∠BOF;(2)30°;(3)∠AOF=∠EOF,理由见解析
    【分析】
    (1)由OC⊥CD,可得∠DOF=90°,则∠AOF+∠AOD=90°,由对顶角相等得∠BOC=∠AOD,则∠AOF+∠BOC=90°,由OC平分∠BOE,可得∠COE=∠BOC,∠AOF+∠COE=90°;由∠AOF+∠BOF=180°,可得∠AOF的补角是∠BOF;
    (2)由OC平分∠BOE,∠BOE=60°,可得∠BOC=30°,再由∠AOD=∠BOC,即可得到∠AOD=30°;
    (3)由(1)可得∠AOD=∠BOC=∠COE,再由OF⊥OC,得到∠DOF=∠COF=90°,则∠AOD+∠AOF=∠EOF+∠COE=90°,即可推出∠AOF=∠EOF.
    【详解】
    解:(1)∵OC⊥CD,
    ∴∠DOF=90°,
    ∴∠AOF+∠AOD=90°,
    又∵∠BOC=∠AOD,
    ∴∠AOF+∠BOC=90°,
    ∵OC平分∠BOE,
    ∴∠COE=∠BOC,
    ∴∠AOF+∠COE=90°;
    ∴∠AOF的余角是,∠COE,∠BOC,∠AOD;
    ∵∠AOF+∠BOF=180°,
    ∴∠AOF的补角是∠BOF;
    (2)∵OC平分∠BOE,∠BOE=60°,
    ∴∠BOC=30°,
    又∵∠AOD=∠BOC,
    ∴∠AOD=30°;
    (3)∠AOF=∠EOF,理由如下:
    由(1)可得∠AOD=∠BOC=∠COE,
    ∵OF⊥OC,
    ∴∠DOF=∠COF=90°,
    ∴∠AOD+∠AOF=∠EOF+∠COE=90°,
    ∴∠AOF=∠EOF.
    【点睛】
    本题主要考查了与余角、补角有关的计算,等角的余角相等,垂线的定义,解题的关键在于熟知余角与补角的定义:如果两个角的相加的度数为90度,那么这两个角互余,如果两个角相加的度数为180度,那么这两个角互补.
    3、(1)见解析;(2)见解析;(3)DE
    【分析】
    (1)根据平行线的判定条件:同位角相同,两直线平行,进行作图即可;
    (2)根据垂线的定义作图即可;
    (3)根据点到直线的距离的定义求解即可.
    【详解】
    解:(1)如图所示,点N即为所求;

    (2)如图所示,点E即为所求;

    (3)由题意可知:点E到直线BC的距离是线段DE的长度,
    故答案为:DE.
    【点睛】
    本题主要考查了点到直线的距离,平行线的判定,作垂线,画平行线,解题的关键在于能够熟练掌握相关知识进行求解.
    4、GD;AC;同位角相等,两直线平行;;两直线平行,内错角相等;;AD;EF;同旁内角互补,两直线平行;两直线平行,同位角相等;AD;BC
    【分析】
    结合图形,根据平行线的判定和性质逐一进行填空即可.
    【详解】
    解:,已知
    ,同位角相等,两直线平行
    两直线平行,内错角相等

    又,(已知)
    (等量代换)
    ,同旁内角互补,两直线平行)
    (两直线平行,同位角相等)
    ,(已知)



    【点睛】
    本题主要考查了平行线的判定和性质,垂线的定义,解答此题的关键是注意平行线的性质和判定定理的综合运用.
    5、基础问题:平行于同一条直线的两条直线平行;∠AGM;两直线平行,内错角相等;∠DGM,两直线平行,内错角相等;类比探究:∠AGD=∠A-∠D;应用拓展:42°.
    【分析】
    基础问题:由MN∥AB,可得∠A=∠AGM,由MN∥CD,可得∠D=∠DGM,则∠AGD=∠AGM+∠DGM=∠A+∠D;
    类比探究:如图所示,过点G作直线MN∥AB,同理可得∠A=∠AGM,∠D=∠DGM,则∠AGD=∠AGM-∠DGM=∠A-∠D.
    应用拓展:如图所示,过点G作直线MN∥AB,过点H作直线PQ∥AB,由MN∥AB,PQ∥AB,得到∠BAG=∠AGM,∠BAH=∠AHP,由MN∥CD,PQ∥CD,得到∠CDG=∠DGM,∠CDH=∠DHP,再由∠GDH=2∠HDC,∠HDC=22°,∠AHD=32°,可得∠GDH=44°,∠DHP=22°,则∠CDG=66°,∠AHP=54°,∠DGM=66°,∠BAH=54°,再由AH平分∠BAG,即可得到∠AGM=108°,则∠AGD=∠AGM-∠DGM=42°.
    【详解】
    解:基础问题:过点G作直线MN∥AB,
    又∵AB∥CD,
    ∴MN∥CD(平行于同一条直线的两条直线平行),
    ∵MN∥AB,
    ∴∠A=∠AGM(两直线平行,内错角相等),
    ∵MN∥CD,
    ∴∠D=∠DGM(两直线平行,内错角相等),
    ∴∠AGD=∠AGM+∠DGM=∠A+∠D.
    故答案为:平行于同一条直线的两条直线平行;∠AGM;两直线平行,内错角相等;∠DGM,两直线平行,内错角相等;
    类比探究:如图所示,过点G作直线MN∥AB,
    又∵AB∥CD,
    ∴MN∥CD,
    ∵MN∥AB,
    ∴∠A=∠AGM,
    ∵MN∥CD,
    ∴∠D=∠DGM,
    ∴∠AGD=∠AGM-∠DGM=∠A-∠D.

    应用拓展:如图所示,过点G作直线MN∥AB,过点H作直线PQ∥AB,
    又∵AB∥CD,
    ∴MN∥CD,PQ∥CD
    ∵MN∥AB,PQ∥AB,
    ∴∠BAG=∠AGM,∠BAH=∠AHP,
    ∵MN∥CD,PQ∥CD,
    ∴∠CDG=∠DGM,∠CDH=∠DHP,
    ∵∠GDH=2∠HDC,∠HDC=22°,∠AHD=32°,
    ∴∠GDH=44°,∠DHP=22°,
    ∴∠CDG=66°,∠AHP=54°,
    ∴∠DGM=66°,∠BAH=54°,
    ∵AH平分∠BAG,
    ∴∠BAG=2∠BAH=108°,
    ∴∠AGM=108°,
    ∴∠AGD=∠AGM-∠DGM=42°.

    【点睛】
    本题主要考查了平行线的性质,平行公理,解题的关键在于能够熟练掌握平行线的性质.
    6、(1)见解析;(2)①;垂线段最短;②相等
    【分析】
    (1)根据题意作图即可;
    (2)根据垂线段最短以及圆规进行检验即可.
    【详解】
    (1)如图所示,即为所求;

    (2)①根据垂线段最短可知,在线段CA、CE、CD中,线段CE最短;
    ②用圆规检验DF=AC.
    【点睛】
    本题主要考查了画平行线,画垂线,画线段,垂线段最短等等,熟知相关知识是解题的关键.
    7、∠AOD=110°,∠AOB=20°
    【分析】
    根据OB⊥OD,先可求出∠COD,再根据角平分线的性质求出∠AOD,利用角度的关系即可求出∠AOB.
    【详解】
    解:∵OB⊥OD
    ∴∠BOD=90°
    ∵∠BOC=35°,
    ∴∠COD=90°-∠BOC=55°
    ∵OC平分∠AOD,
    ∴∠AOD=2∠COD=110°
    ∴∠AOB=∠AOD-∠BOD=110°-90°=20°.
    【点睛】
    此题主要考查角度的求解,解题的关键是熟知角平分线的性质、垂直的定义.
    8、(1)见解析;(2)见解析;(3)见解析;(4)3.5;(5)1.4
    【分析】
    (1)根据直线定义即可画直线AB;
    (2)根据射线定义即可画直线BC;
    (3)根据线段定义即可连接AC并延长到点D,使得CD=AC;
    (4)通过画图、测量,即可得点B到点D的距离.
    (5)通过画图、测量,即可得点D到直线AB的距离.
    【详解】
    解:(1)如图,直线AB即为所求;

    (2)如图,射线BC即为所求;
    (3)如图,线段CD即为所画;
    (4)通过画图、测量,点B到点D的距离约为3.5cm,
    故答案为:3.5;
    (5)通过画图、测量,点D到点AB的距离DE约为1.4cm
    故答案为:1.4
    【点睛】
    本题考查了基本作图、直线是向两方无限延伸的,射线是向一方无限延伸的;线段有两个端点、两点间的距离,点到直线间的距离,解决本题的关键是准确作图.
    9、55°
    【分析】
    由题意利用对顶角可得∠COB=∠AOD=70°,再根据角平分线性质可得∠EOB=∠EOC=35°,进而利用邻补角的性质得出∠AOF=180°-∠EOB-∠FOE即可求得答案.
    【详解】
    解:∵∠AOD=70°,
    ∴∠COB=∠AOD=70°,
    ∵OE平分∠BOC,
    ∴∠EOB=∠EOC=35°,
    ∵∠FOE=90°,
    ∴∠AOF=180°-∠EOB-∠FOE=55°.
    【点睛】
    本题考查角的运算,熟练掌握对顶角、邻补角的性质以及角平分线的定义,掌握对顶角相等、邻补角之和等于180°是解题的关键.
    10、(1)见解析;(2)72°
    【分析】
    (1)等量代换得出∠3=∠DFE,平行线的判定得出EF//AB,可以推出∠ADE=∠B,即可判断结论;
    (2)由平分线的定义得出∠ADE=∠EDC=∠B,由平角的定义列出关于∠5+∠ADE+∠EDC==180°,求出∠B的度数,即可得出∠ADC的度数,由EF//AB即可求出∠2的度数.
    【详解】
    解:(1)∵,∠2+∠DFE=180°,
    ∴∠3=∠DFE,
    ∴EF//AB,
    ∴∠ADE=∠1,
    又∵,
    ∴∠ADE=∠B,
    ∴DE//BC,
    (2)∵平分,
    ∴∠ADE=∠EDC,
    ∵DE//BC,
    ∴∠ADE=∠B,

    ∴∠5+∠ADE+∠EDC==180°,
    解得:,
    ∴∠ADC=2∠B=72°,
    ∵EF//AB,
    ∴∠2=∠ADC=180°-108°=72°,
    【点睛】
    本题考查了平行线的判定和性质、邻补角、角平分线的定义等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.

    相关试卷

    沪教版 (五四制)第十三章 相交线 平行线综合与测试同步达标检测题:

    这是一份沪教版 (五四制)第十三章 相交线 平行线综合与测试同步达标检测题,共28页。试卷主要包含了直线m外一点P它到直线的上点A,下列说法中正确的个数是等内容,欢迎下载使用。

    初中数学沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试课后练习题:

    这是一份初中数学沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试课后练习题,共31页。试卷主要包含了如图,能与构成同位角的有等内容,欢迎下载使用。

    数学七年级下册第十三章 相交线 平行线综合与测试课后测评:

    这是一份数学七年级下册第十三章 相交线 平行线综合与测试课后测评,共30页。试卷主要包含了下列说法,如图,下列条件中能判断直线的是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map