终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    精品试卷沪教版(上海)七年级数学第二学期第十三章相交线 平行线专项练习练习题(无超纲)

    立即下载
    加入资料篮
    精品试卷沪教版(上海)七年级数学第二学期第十三章相交线 平行线专项练习练习题(无超纲)第1页
    精品试卷沪教版(上海)七年级数学第二学期第十三章相交线 平行线专项练习练习题(无超纲)第2页
    精品试卷沪教版(上海)七年级数学第二学期第十三章相交线 平行线专项练习练习题(无超纲)第3页
    还剩30页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试同步练习题

    展开

    这是一份初中数学沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试同步练习题,共33页。试卷主要包含了如图所示,下列说法错误的是等内容,欢迎下载使用。
    七年级数学第二学期第十三章相交线 平行线专项练习
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、如图,一辆快艇从P处出发向正北航行到A处时向左转50°航行到B处,再向右转80°继续航行,此时航行方向为(  )

    A.西偏北50° B.北偏西50° C.东偏北30° D.北偏东30°
    2、如图,将矩形纸条ABCD折叠,折痕为EF,折叠后点C,D分别落在点C′,D′处,D′E与BF交于点G.已知∠BGD′=26°,则∠α的度数是( )

    A.77° B.64° C.26° D.87°
    3、下列说法:
    ①和为180°且有一条公共边的两个角是邻补角;
    ②过一点有且只有一条直线与已知直线垂直;
    ③同位角相等;
    ④经过直线外一点,有且只有一条直线与这条直线平行,
    其中正确的有( )
    A.0个 B.1个 C.2个 D.3个
    4、如图,直线a,b被直线c所截,下列条件不能判定直线a与b平行的是(  )

    A.∠1=∠3 B.∠2+∠3=180° C.∠1=∠4 D.∠1+∠4=180°
    5、如图,已知直线AD∥BC,BE平分∠ABC交直线DA于点E,若∠DAB=54°,则∠E等于( )

    A.25° B.27° C.29° D.45°
    6、如图,一条公路经过两次转弯后又回到原来的方向,如果第一次的拐角为140°,则第二次的拐角为(  )

    A.40° B.50° C.140° D.150°
    7、如图,直线AB经过点O,射线OA是北偏东40°方向,则射线OB的方位角是( )

    A.南偏西50° B.南偏西40° C.北偏西50° D.北偏西40°
    8、如图,直线a∥b,直线AB⊥AC,若∠1=52°,则∠2的度数是(  )

    A.38° B.42° C.48° D.52°
    9、如图所示,下列说法错误的是(  )

    A.∠1和∠3是同位角 B.∠1和∠5是同位角
    C.∠1和∠2是同旁内角 D.∠5和∠6是内错角
    10、已知∠α的两边分别平行于∠β的两边.若∠α=60°,则∠β的大小为(  )
    A.30° B.60° C.30°或60° D.60°或120°
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、如图,直线AB、CD相交于点O,∠AOD+∠BOC=240°,则∠BOC的度数为__________°.

    2、如图,直线a、b、c分别与直线d、e相交,与∠1构成同位角的角共有________个,和∠l构成内错角的角共有________个,与∠1构成同旁内角的角共有________个.

    3、填写推理理由:
    如图,CD∥EF,∠1=∠2.求证:∠3=∠ACB.

    证明:∵CD∥EF,
    ∴∠DCB=∠2________.
    ∵∠1=∠2,
    ∴∠DCB=∠1________.
    ∴GD∥CB________.
    ∴∠3=∠ACB________.
    4、如图,BD平分,,,要使,则______°.

    5、如图,∠AOB=90°,则AB___BO;若OA=3cm,OB=2cm,则A点到OB的距离是________cm,点B到OA的距离是________cm;O点到AB上各点连接的所有线段中________最短.

    三、解答题(10小题,每小题5分,共计50分)
    1、如图,直线相交于点平分.
    (1)若,求∠BOD的度数;
    (2)若,求∠DOE的度数.

    2、如图1,在平面直角坐标系中,,,且满足,过作轴于.

    (1)求,的值;
    (2)在轴上是否存在点P,使得和的面积相等,若存在,求出点P坐标,若不存在,试说明理由.
    (3)若过作交轴于,且,分别平分,,如图2,图3,
    ①求:的度数;
    ②求:的度数.
    3、如图,为解决A、B、C、D四个村庄的用水问题.政府准备投资修建一个蓄水池.
    (1)若使蓄水池与四个村庄的距离的和最小,请画出蓄水池P的位置;
    (2)为把河道l中的水引入蓄水池P中,需要再修建一条引水渠.若使引水渠的长度最小,请画出引水渠PQ的修建线路.

    4、已知:如图,ABCDEF,点G、H、M分别在AB、CD、EF上.求证:.

    5、如图,直线CD与EF相交于点O,将一直角三角尺AOB的直角顶点与点O重合.

    (1)如图1,若,试说明;
    (2)如图2,若,OB平分.将三角尺以每秒5°的速度绕点O顺时针旋转,设运动时间为t秒.
    ①,当t为何值时,直线OE平分;
    ②当,三角尺AOB旋转到三角POQ(A、B分别对应P、Q)的位置,若OM平分,求的值.
    6、阅读并完成下列推理过程,在括号内填写理由.

    已知:如图,点,分别在线段、上,,平分,平分交于点、.
    求证:.
    证明:平分(已知),
      .
    平分(已知),
      (角平分线的定义),
    (已知),
      .
      .
      .
    7、按要求画图,并回答问题:
    如图,平面内有三个点A,B,C.

    根据下列语句画图:
    (1)画直线AB;
    (2)射线BC;
    (3)延长线段AC到点D,使得;
    (4)通过画图、测量,点B到点D的距离约为______cm(精确到0.1);
    (5)通过画图、测量,点D到直线AB的最短距离约为______cm(精确到0.1).
    8、小明同学遇到这样一个问题:
    如图①,已知:AB∥CD,E为AB、CD之间一点,连接BE,ED,得到∠BED.
    求证:∠BED=∠B+∠D.
    小亮帮助小明给出了该问的证明.
    证明:
    过点E作EF∥AB
    则有∠BEF=∠B
    ∵AB∥CD
    ∴EF∥CD
    ∴∠FED=∠D
    ∴∠BED=∠BEF+∠FED=∠B+∠D
    请你参考小亮的思考问题的方法,解决问题:
    (1)直线l1∥l2,直线EF和直线l1、l2分别交于C、D两点,点A、B分别在直线l1、l2上,猜想:如图②,若点P在线段CD上,∠PAC=15°,∠PBD=40°,求∠APB的度数.
    (2)拓展:如图③,若点P在直线EF上,连接PA、PB(BD<AC),直接写出∠PAC、∠APB、∠PBD之间的数量关系.

    9、如图1,点A、O、B依次在直线MN上,现将射线OA绕点O沿顺时针方向以每秒4°的速度旋转,同时射线OB绕点O沿逆时针方向以每秒6°的速度旋转,直线MN保持不动,如图2,设旋转时间为t(0≤t≤30,单位:秒)

    (1)当t=3时,求∠AOB的度数;
    (2)在运动过程中,当∠AOB达到60°时,求t的值;
    (3)在旋转过程中是否存在这样的t,使得射线OB与射线OA垂直?如果存在,请直接写出t的值;如果不存在,请说明理由.
    10、如图,∠AGB=∠EHF,∠C=∠D.
    (1)求证:BD∥CE;
    (2)求证:∠A=∠F.


    -参考答案-
    一、单选题
    1、D
    【分析】
    由,证明,再利用角的和差求解 从而可得答案.
    【详解】
    解:如图,标注字母, ,

    ∴,

    此时的航行方向为北偏东30°,
    故选:D.
    【点睛】
    本题考查的是平行线的性质,角的和差运算,掌握“两直线平行,同位角相等”是解本题的关键.
    2、A
    【分析】
    本题首先根据∠BGD′=26°,可以得出∠AEG=∠BGD′=26°,由折叠可知∠α=∠FED,由此即可求出∠α=77°.
    【详解】
    解:由图可知: AD∥BC
    ∴∠AEG=∠BGD′=26°,
    即:∠GED=154°,
    由折叠可知: ∠α=∠FED,
    ∴∠α==77°
    故选:A.
    【点睛】
    本题主要考察的是根据平行得性质进行角度的转化.
    3、B
    【分析】
    根据举反例可判断①,根据垂线的定义可判断②,根据举反例可判断③,根据平行线的基本事实可判断④.
    【详解】
    解:①如图∠AOC=∠2=150°,∠BOC=∠1=30°,满足∠1+∠2=180°,射线OC是两角的共用边,但∠1与∠2不是邻补角,故①不正确;

    ②在同一个面内,过一点有且只有一条直线与已知直线垂直,故②不正确;
    ③如图直线a、b被直线c所截,∠1与∠2是同位角,但∠1>∠2,故③不正确;

    ④经过直线外一点,有且只有一条直线与这条直线平行,是基本事实,故④正确;
    其中正确的有④一共1个.
    故选择B.
    【点睛】
    本题考查基本概念的理解,掌握基本概念是解题关键.
    4、D
    【分析】
    同位角相等,两直线平行,同旁内角互补,两直线平行,根据平行线的判定方法逐一分析即可.
    【详解】
    解:(同位角相等,两直线平行),故A不符合题意;
    ∠2+∠3=180°,(同旁内角互补,两直线平行)故B不符合题意;

    (同位角相等,两直线平行)故C不符合题意;
    ∠1+∠4=180°,不是同旁内角,也不能利用等量代换转换成同旁内角,
    所以不能判定 故D符合题意;
    故选D
    【点睛】
    本题考查的是平行线的判定,对顶角相等,掌握“平行线的判定方法”是解本题的关键.
    5、B
    【分析】
    根据两直线平行,内错角相等可求∠ABC=54°,再根据角平分线的性质可求∠EBC=27°,再根据两直线平行,内错角相等可求∠E.
    【详解】
    解:∵AD∥BC,
    ∴∠ABC=∠DAB=54°,∠EBC=∠E,
    ∵BE平分∠ABC,
    ∴∠EBC=∠ABC=27°,
    ∴∠E=27°.
    故选:B.
    【点睛】
    本题考查了平行线的性质,角平分线,关键是求出∠EBC=27°.
    6、C
    【分析】
    由于拐弯前、后的两条路平行,用平行线的性质求解即可.
    【详解】
    解:∵拐弯前、后的两条路平行,
    ∴(两直线平行,内错角相等).
    故选:C.
    【点睛】
    本题考查平行线的性质,解答此题的关键是将实际问题转化为几何问题,利用平行线的性质求解.
    7、B
    【分析】
    由对顶角可知∠1=40°,故可知射线OB的方位角;
    【详解】
    解:由对顶角可知,∠1=40°
    所以射线OB的方位角是南偏西40°
    故答案为B

    【点睛】
    本题考查了方向角.解题的关键是掌握方向角的定义,方向角的表示方法是北偏东或北偏西,南偏东或南偏西.
    8、A
    【分析】
    利用直角三角形的性质先求出∠B,再利用平行线的性质求出∠2.
    【详解】
    解:∵AB⊥AC,∠1=52°,
    ∴∠B=90°﹣∠1
    =90°﹣52°
    =38°
    ∵a∥b,
    ∴∠2=∠B=38°.
    故选:A.
    【点睛】
    本题考查平行线的性质、两直线平行同位角相等,直角三角形两个锐角互余等知识,在基础考点,掌握相关知识是解题关键.
    9、B
    【分析】
    根据同位角、内错角、同旁内角的意义:两条直线被第三条直线所截,在截线的同旁,在被截的两直线的同一侧的角叫做同位角;两条直线被第三条直线所截,两个角分别在截线的两侧,且夹在两条被截直线之间的两个角叫做内错角;两条直线被第三条直线所截,在截线同旁,且在被截两条直线之内的两角叫做同旁内角,可得答案.
    【详解】
    解:A、∠1和∠3是同位角,故此选项不符合题意;
    B、∠1和∠5不存在直接联系,故此选项符合题意;
    C、∠1和∠2是同旁内角,故此选项不符合题意;
    D、∠1和∠6是内错角,故此选项不符合题意;
    故选B.
    【点睛】
    本题考查了同位角、内错角、用旁内角,利用同位角、内错角、同旁内角的意义是解题关键.
    10、D
    【分析】
    根据题意画图如图(1),根据平行线性质两直线平行,同位角相等,即可得出∠α=∠1=∠β,即可得出答案,如图(2)根据平行线性质,两直线平行,同旁内角互补,∠α+∠2=180°,再根据两直线平行,内错角相等,∠2=∠β,即可得出答案.
    【详解】
    解:如图1,
    ∵a∥b,
    ∴∠1=∠α,
    ∵c∥d,
    ∴∠β=∠1=∠α=60°;
    如图(2),
    ∵a∥b,
    ∴∠α+∠2=180°,
    ∵c∥d,
    ∴∠2=∠β,
    ∴∠β+∠α=180°,
    ∵∠α=60°,
    ∴∠β=120°.
    综上,∠β=60°或120°.
    故选:D.

    【点睛】
    本题主要考查了平行线的性质,熟练掌握相关性质进行计算是解决本题的关键.
    二、填空题
    1、120
    【分析】
    由题意根据对顶角相等得出∠BOC=∠AOD进而结合∠AOD+∠BOC=240°即可求出∠BOC的度数.
    【详解】
    解:∵∠AOD+∠BOC=240°,∠BOC=∠AOD,
    ∴∠BOC=120°.
    故答案为:120.
    【点睛】
    本题考查的是对顶角的性质,熟练掌握对顶角相等是解题的关键.
    2、3 2 2
    【分析】
    根据同位角、内错角、同旁内角的定义判断即可;
    【详解】
    如图,与∠1是同位角的是:∠2, ∠3,∠4;与∠1是内错角的是:∠5, ∠6;与∠1是同旁内角的是:∠7,∠8.

    【点睛】
    本题主要考查了同位角、内错角、同旁内角的判断,准确分析是解题的关键.
    3、两直线平行,同位角相等 等量代换 内错角相等,两直线平行 两直线平行,同位角相等
    【分析】
    根据平行线的性质得出,求出,根据平行线的判定得出,利用平行线的性质即可得出.
    【详解】
    证明:
    ∵,
    ∴(两直线平行,同位角相等)
    ∵,
    ∴.(等量代换)
    ∴(内错角相等,两直线平行).
    ∴(两直线平行,同位角相等).
    故答案为:①两直线平行,同位角相等;②等量代换;③内错角相等,两直线平行;④两直线平行,同位角相等.
    【点睛】
    题目主要考查平行线的判定定理及性质,理解题意,结合图形,综合运用判定的性质定理是解题关键.
    4、20
    【分析】
    利用角平分线的定义求解再由可得再列方程求解即可.
    【详解】
    解: BD平分,,

    由,
    而,

    解得:
    所以当时,,
    故答案为:
    【点睛】
    本题考查的是角平分线的定义,平行线的判定与性质,一元一次方程的应用,掌握平行线的判定与性质是解本题的关键.
    5、> 3 2 垂线段
    【分析】
    根据点到直线的距离的定义,大角对大边,垂线段最短进行求解即可.
    【详解】
    解:∵∠AOB=90°,
    ∴AO⊥BO,AB>BO,
    ∵OA=3cm,OB=2cm,
    ∴A点到OB的距离是3cm,点B到OA的距离是2cm,O点到AB上各点连接的所有线段中垂线段最短,
    故答案为:>,3,2,垂线段.
    【点睛】
    本题主要考查了点到直线的距离,大角对大边,垂线段最短,解题的关键在于能够熟知相关定义.
    三、解答题
    1、(1)20°;(2)60°
    【分析】
    (1)先求出∠AOF=140°,然后根据角平分线的定义求出∠AOC=70°,再由垂线的定义得到∠AOB=90°,则∠BOD=180°-∠AOB-∠AOC=20°;
    (2)先求出∠AOE=60°,从而得到∠AOF=120°,根据角平分线的性质得到∠AOC =60°,则∠COE=∠AOE+∠AOC=120°,∠DOE=180°-∠COE=60°.
    【详解】
    解:(1)∵∠AOE=40°,
    ∴∠AOF=180°-∠AOE=140°,
    ∵OC平分∠AOF,
    ∴∠AOC=∠AOF=70°,
    ∵OA⊥OB,
    ∴∠AOB=90°,
    ∴∠BOD=180°-∠AOB-∠AOC=20°;

    (2)∵∠BOE=30°,OA⊥OB,
    ∴∠AOE=60°,
    ∴∠AOF=180°-∠AOE=120°,
    ∵OC平分∠AOF,
    ∴∠AOC=∠AOF=60°,
    ∴∠COE=∠AOE+∠AOC=60°+60°=120°,
    ∴∠DOE=180°-∠COE=60°.
    【点睛】
    本题主要考查了几何中角度的计算,角平分线的定义,垂线的定义,解题的关键在于能够熟练掌握角平分线的定义.
    2、(1),;(2)存在,或;(3)①;②
    【分析】
    (1)根据非负数的和为零,则每一个数为零,列等式计算即可;
    (2)设点P的坐标为(n,0),根据题意,等高等底的两个三角形的面积相等,确定OP=AB=8即|n|=8,化简绝对值即可;
    (3)①利用平行线性质,得内错角相等,运用直角三角形的两个锐角互余求解;
    ②作,利用平行线的性质,角的平分线的定义,计算即可.
    【详解】
    解:(1)∵,
    ∴m+4=0,n-4=0,
    ∴,.
    (2)存在,
    设点P的坐标为(n,0),则OP=|n|,
    ∵A(-4,0),C(4,4),
    ∴B(4,0),AB=4-(-4)=8,
    ∵,,且和的面积相等,
    ∴,
    ∴OP=AB=8,
    ∴|n|=8,
    ∴n=8或n=-8,
    ∴或;
    (3)①∵,
    ∴,
    又∵,
    ∴.
    ②作,如图,

    ∵,
    ∴,
    ∴,,
    ∴,
    ∵,分别平分,,
    ∴,,
    ∴,
    即.
    【点睛】
    本题考查了非负数的性质,平行线的性质,互余即两个角的和为90°,角的平分线即把从角的顶点引一条射线,把这个角分成相等的两个角;坐标的意义,熟练掌握平行线的性质,是解题的关键.
    3、(1)见解析;(2)见解析.
    【分析】
    (1)利用两点之间距离线段最短,进而得出答案;
    (2)利用点到直线的距离垂线段最短,即可得出答案.
    【详解】
    解答:解:(1)如图所示:由两点之间,线段最短,连接AC、BD交点即为P点,

    (2)如图所示:由垂线段最短,过P作PQ⊥河道l,垂足即为Q点.
    【点睛】
    本题主要考查了应用设计与作图,正确掌握点与点以及点到直线的距离定义是解题关键.
    4、见解析
    【分析】
    由AB∥CD∥EF可得,,,即可证明.
    【详解】
    证明:∵AB∥CD(已知)
    ∴(两直线平行,内错角相等)
    又 ∵CD∥EF(已知)
    ∴(两直线平行,内错角相等)
    ∵(已知)
    ∴(等式性质)

    【点睛】
    本题主要考查平行线的性质,准确观察图形,推出角之间的关系是解题关键.
    5、(1)见解析;(2)①或;②
    【分析】
    (1)根据垂直的性质即可求解;
    (2)①分当OE平分时,和OF平分时根据旋转的特点求出旋转的角度即可求解;
    ②根据,可知OP在内部,根据题意作图,分别表示出, ,故可求解.
    【详解】
    解:(1)∵,
    ∴,
    ∴.
    (2)①∵OB平分,,
    ∴.
    情况1:当OE平分时,
    则旋转之后,
    ∴OB旋转的角度为,
    ∴,.
    情况2:当OF平分时,同理可得,OB旋转的角度为,
    ∴,.
    综上所述,或.
    ②∵,
    ∴OP在内部,如图所示,

    由题意知,,
    ∴,∵OM平分,
    ∴,
    ∴,
    ∴.
    【点睛】
    此题主要考查角度的综合判断与求解,解题的关键是根熟知垂直的性质、角平分线的性质及角度的和差关系.
    6、角平分线的定义;;两直线平行,同位角相等;等量代换;同位角相等,两直线平行.
    【分析】
    根据角平分线的定义和平行线的性质与判定即可证明.
    【详解】
    证明:平分(已知),
    (角平分线的定义).
    平分(已知),
    (角平分线的定义),
    (已知),
    (两直线平行,同位角相等).
    (等量代换).
    (同位角相等,两直线平行).
    故答案为:角平分线的定义;;两直线平行,同位角相等;等量代换;同位角相等,两直线平行.
    【点睛】
    本题主要考查了角平分线的定义,平行线的性质与判定,解题的关键在于能够熟练掌握相关知识进行求解.
    7、(1)见解析;(2)见解析;(3)见解析;(4)3.5;(5)1.4
    【分析】
    (1)根据直线定义即可画直线AB;
    (2)根据射线定义即可画直线BC;
    (3)根据线段定义即可连接AC并延长到点D,使得CD=AC;
    (4)通过画图、测量,即可得点B到点D的距离.
    (5)通过画图、测量,即可得点D到直线AB的距离.
    【详解】
    解:(1)如图,直线AB即为所求;

    (2)如图,射线BC即为所求;
    (3)如图,线段CD即为所画;
    (4)通过画图、测量,点B到点D的距离约为3.5cm,
    故答案为:3.5;
    (5)通过画图、测量,点D到点AB的距离DE约为1.4cm
    故答案为:1.4
    【点睛】
    本题考查了基本作图、直线是向两方无限延伸的,射线是向一方无限延伸的;线段有两个端点、两点间的距离,点到直线间的距离,解决本题的关键是准确作图.
    8、(1)55°;(2)当P在线段CD上时,∠APB=∠PAC +∠PBD;当P在DC延长线上时,∠APB=∠PBD-∠PAC;当P在CD延长线上时,∠APB=∠PAC-∠PBD;
    【分析】
    (1)过点P作PG∥l1,可得∠APG=∠PAC=15°,由l1∥l2,可得PG∥l2,则∠BPG=∠PBD=40°,即可得到∠APB=∠APG+∠BPG=55°;
    (2)分当P在线段CD上时;当P在DC延长线上时;当P在CD延长线上时,三种情况讨论求解即可.
    【详解】
    解:(1)如图所示,过点P作PG∥l1,
    ∴∠APG=∠PAC=15°,
    ∵l1∥l2,
    ∴PG∥l2,
    ∴∠BPG=∠PBD=40°,
    ∴∠APB=∠APG+∠BPG=55°;

    (2)由(1)可得当P在线段CD上时,∠APB=∠PAC +∠PBD;
    如图1所示,当P在DC延长线上时,过点P作PG∥l1,
    ∴∠APG=∠PAC,
    ∵l1∥l2,
    ∴PG∥l2,
    ∴∠BPG=∠PBD=40°,
    ∴∠APB=∠BPG-∠APG=∠PBD-∠PAC;

    如图2所示,当P在CD延长线上时,过点P作PG∥l1,
    ∴∠APG=∠PAC,
    ∵l1∥l2,
    ∴PG∥l2,
    ∴∠BPG=∠PBD=40°,
    ∴∠APB=∠APG-∠BPG=∠PAC-∠PBD;
    ∴综上所述,当P在线段CD上时,∠APB=∠PAC +∠PBD;当P在DC延长线上时,∠APB=∠PBD-∠PAC;当P在CD延长线上时,∠APB=∠PAC-∠PBD.

    【点睛】
    本题主要考查了平行线的性质,平行公理的应用,解题的关键在于能够熟练掌握平行线的性质.
    9、(1)150°;(2)12或24;(3)存在,9秒、27秒
    【分析】
    (1)根据∠AOB=180°−∠AOM−∠BON计算即可.
    (2)先求解重合时,再分两种情况讨论:当0≤t≤18时;当18≤t≤30时;再构建方程求解即可.
    (3)分两种情形,当0≤t≤18时;当18≤t≤30时;分别构建方程求解即可.
    【详解】
    解:(1)当t=3时,∠AOB=180°−4°×3−6°×3=150°.
    (2)当重合时,
    解得:
    当0≤t≤18时:


    4t+6t=120
    解得:
    当18≤t≤30时:则
    4t+6t=180+60,
    解得 t=24,
    答:当∠AOB达到60°时,t的值为6或24秒.
    (3) 当0≤t≤18时,由

    180−4t−6t=90,
    解得t=9,
    当18≤t≤30时,同理可得:
    4t+6t=180+90
    解得t=27.
    所以大于的答案不予讨论,
    答:在旋转过程中存在这样的t,使得射线OB与射线OA垂直,t的值为9秒、27秒.
    【点睛】
    本题考查的是平角的定义,角的和差关系,垂直的定义,一元一次方程的应用,熟练的利用一元一次方程解决几何角度问题,清晰的分类讨论是解本题的关键.
    10、(1)证明见解析;(2)证明见解析.
    【分析】
    (1)由∠AGB=∠1,∠AGB=∠EHF,可得∠1=∠EHF,则BD∥CE;
    (2)由BD∥CE,可得∠D=∠2,则∠2=∠C,推出AC∥DF,则∠A=∠F.
    【详解】
    证明:(1)∵∠AGB=∠1,∠AGB=∠EHF,
    ∴∠1=∠EHF,
    ∴BD∥CE;
    (2)∵BD∥CE,
    ∴∠D=∠2,
    ∵∠D=∠C,
    ∴∠2=∠C,
    ∴AC∥DF,
    ∴∠A=∠F.

    【点睛】
    本题主要考查了平行线的性质与判定,对顶角相等,熟练掌握平行线的性质与判定条件是解题的关键.

    相关试卷

    2020-2021学年第十三章 相交线 平行线综合与测试复习练习题:

    这是一份2020-2021学年第十三章 相交线 平行线综合与测试复习练习题,共34页。试卷主要包含了在下列各题中,属于尺规作图的是,如图所示,下列说法错误的是,如图,直线a等内容,欢迎下载使用。

    沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试当堂检测题:

    这是一份沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试当堂检测题,共29页。试卷主要包含了如图所示,直线l1∥l2,点A,如图木条a等内容,欢迎下载使用。

    数学七年级下册第十三章 相交线 平行线综合与测试课时练习:

    这是一份数学七年级下册第十三章 相交线 平行线综合与测试课时练习,共31页。试卷主要包含了如图,直线b,如图,直线AB等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map