搜索
    上传资料 赚现金
    英语朗读宝

    精品试卷沪教版(上海)七年级数学第二学期第十三章相交线 平行线综合练习试卷(含答案解析)

    精品试卷沪教版(上海)七年级数学第二学期第十三章相交线 平行线综合练习试卷(含答案解析)第1页
    精品试卷沪教版(上海)七年级数学第二学期第十三章相交线 平行线综合练习试卷(含答案解析)第2页
    精品试卷沪教版(上海)七年级数学第二学期第十三章相交线 平行线综合练习试卷(含答案解析)第3页
    还剩26页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试练习

    展开

    这是一份沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试练习,共29页。试卷主要包含了下列说法中正确的有,下列说法中正确的是,下列命题正确的是等内容,欢迎下载使用。
    七年级数学第二学期第十三章相交线 平行线综合练习
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、如图,已知直线,相交于O,平分,,则的度数是( )

    A. B. C. D.
    2、如图所示,下列条件中,不能推出AB∥CE成立的条件是( )

    A.∠A=∠ACE B.∠B=∠ACE C.∠B=∠ECD D.∠B+∠BCE=180°
    3、如图,直线被所截,下列说法,正确的有( )

    ①与是同旁内角;
    ②与是内错角;
    ③与是同位角;
    ④与是内错角.
    A.①③④ B.③④ C.①②④ D.①②③④
    4、下列说法中正确的有( )
    ①一条直线的平行线只有一条.
    ②过一点与已知直线平行的直线只有一条.
    ③因为a∥b,c∥d,所以a∥d.
    ④经过直线外一点有且只有一条直线与已知直线平行.
    A.1个 B.2个 C.3个 D.4个
    5、如图,直线a,b被直线c所截,下列条件不能判定直线a与b平行的是(  )

    A.∠1=∠3 B.∠2+∠3=180° C.∠1=∠4 D.∠1+∠4=180°
    6、下列说法中正确的是(  )
    A.锐角的2倍是钝角 B.两点之间的所有连线中,线段最短
    C.相等的角是对顶角 D.若AC=BC,则点C是线段AB的中点
    7、如图,点A是直线l外一点,过点A作AB⊥l于点B.在直线l上取一点C,连结AC,使AC=AB,点P在线段BC上,连结AP.若AB=3,则线段AP的长不可能是(  )

    A.3.5 B.4 C.5 D.5.5
    8、如图,有A,B,C三个地点,且∠ABC=90°,B地在A地的北偏东43°方向,那么C地在B地的(  )方向.

    A.南偏东47° B.南偏西43° C.北偏东43° D.北偏西47°
    9、下列命题正确的是(  )
    (1)两条直线被第三条直线所截,同位角相等;
    (2)在同一平面内,过一点有且只有一条直线与已知直线垂直;
    (3)平移前后连接各组对应点的线段平行且相等;
    (4)从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离;
    (5)在同一平面内,三条直线的交点个数有三种情况.
    A.0个 B.1个 C.2个 D.3个
    10、如图,已知,,平分,则( )

    A.32° B.60° C.58° D.64°
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、如图,把一张三角形纸片(△ABC)进行折叠,使点A落在BC上的点F处,折痕为DE,点D,点E分别在AB和AC上,DE∥BC,若∠B=70°,则∠BDF的度数为____.

    2、如图所示,已知∠1=52°,∠2=52°,∠3=91°,那么∠4=__.

    3、已知:某小区地下停车场的栏杆如图所示,当栏杆抬起到最大高度时∠ABC=150°,若此时CD平行地面AE,则_________度.

    4、将含30°角的三角板如图摆放,ABCD,若=20°,则的度数是______.

    5、如图,直线AB和直线CD相交于点O,且∠AOC=2∠BOC,则∠AOD的度数为____________.

    三、解答题(10小题,每小题5分,共计50分)
    1、小明同学遇到这样一个问题:
    如图①,已知:AB∥CD,E为AB、CD之间一点,连接BE,ED,得到∠BED.
    求证:∠BED=∠B+∠D.
    小亮帮助小明给出了该问的证明.
    证明:
    过点E作EF∥AB
    则有∠BEF=∠B
    ∵AB∥CD
    ∴EF∥CD
    ∴∠FED=∠D
    ∴∠BED=∠BEF+∠FED=∠B+∠D
    请你参考小亮的思考问题的方法,解决问题:
    (1)直线l1∥l2,直线EF和直线l1、l2分别交于C、D两点,点A、B分别在直线l1、l2上,猜想:如图②,若点P在线段CD上,∠PAC=15°,∠PBD=40°,求∠APB的度数.
    (2)拓展:如图③,若点P在直线EF上,连接PA、PB(BD<AC),直接写出∠PAC、∠APB、∠PBD之间的数量关系.

    2、如图,直线AB、CD相交于点O,OE平分∠BOC,∠FOE=90°,若∠AOD=70°,求∠AOF度数

    3、如图所示,从标有数字的角中找出:
    (1)直线CD和AB被直线AC所截构成的内错角.
    (2)直线CD和AC被直线AD所截构成的同位角.
    (3)直线AC和AB被直线BC所截构成的同旁内角.

    4、如图所示,已知∠AOD=∠BOC,请在图中找出∠BOC的补角,邻补角及对顶角.

    5、如图,长方形纸片ABCD,点E,F,C分别在边AD,AB,CD上.将∠AEF沿折痕EF翻折,点A落在点A'处;将∠DEG沿折痕EG翻折,点D落在点D'处.
    (1)如图1,若∠AEF=40°,∠DEG=35°,求∠A'ED'的度数;
    (2)如图1,若∠A'ED'=α,求∠FEG的度数(用含α的式子表示);
    (3)如图2,若∠A'ED'=α,求∠FEG的度数(用含α的式子表示).

    6、感知与填空:如图①,直线AB∥CD.求证:∠B+∠D=∠BED.
    证明:过点E作直线EF∥CD,
    ∠2=______,( )
    AB∥CD(已知),EF∥CD
    _____∥EF,( )
    ∠B=∠1,( )
    ∠1+∠2=∠BED,
    ∠B+∠D=∠BED,( )
    方法与实践:如图②,直线AB∥CD.若∠D=53°,∠B=22°,则∠E=______度.

    7、补全下列推理过程:已知:如图,CE平分∠BCD,∠1=∠2=70°,∠3=40°,求证:AB∥CD.

    证明:∵CE平分∠BCD(______)
    ∴∠1=_____(_______)
    ∵∠1=∠2=70°(已知)
    ∴∠1=∠2=∠4=70°(________)
    ∴AD∥BC(________)
    ∴∠D=180°-_______=180°-∠1-∠4=40°
    ∵∠3=40°(已知)
    ∴______=∠3
    ∴AB∥CD(_______)
    8、已知:如图,BC,AF是直线,AD∥BC,∠1=∠2,∠3=∠求证:AB∥CD.

    证明:∵AD∥BC(已知),
    ∴∠3=   (    ).
    ∵∠3=∠4(已知),
    ∴∠4=   (    ).
    ∵∠1=∠2(已知),
    ∴∠1+∠CAF=∠2+∠CAF(    ).
    即∠BAF=   .
    ∴∠4=∠BAF.(    ).
    ∴AB∥CD(    ).
    4.如图,点O是直线AB上的一点,∠BOC:∠AOC=1:2,OD平分∠BOC,OE⊥OD于点O.

    (1)求∠BOC的度数;
    (2)试说明OE平分∠AOC.
    9、如图,在由相同小正方形组成的网格中,点A、B、C、O都在网格的格点上,∠AOB=90°,射线OC在∠AOB的内部.
    (1)用无刻度的直尺作图:
    ①过点A作ADOC;
    ②在∠AOB的外部,作∠AOE,使∠AOE=∠BOC;
    (2)在(1)的条件下,探究∠AOC与∠BOE之间的数量关系,并说明理由.

    10、已知:如图,直线,直线MN交EF,PO于点A,B,直线HQ交EF,PO于点D,C,DG与OP交于点G,若,,.

    (1)求证:;
    (2)请直接写出的度数.

    -参考答案-
    一、单选题
    1、C
    【分析】
    先根据角平分线的定义求得∠AOC的度数,再根据邻补角求得∠BOC的度数即可.
    【详解】
    解:∵OA平分∠EOC,∠EOC=100°,
    ∴∠AOC=∠EOC=50°,
    ∴∠BOC=180°﹣∠AOC=130°.
    故选:C.
    【点睛】
    本题考查角平分线的有关计算,邻补角.能正确识图是解题关键.
    2、B
    【分析】
    根据平行线的判定定理分析即可.
    【详解】
    A、∠A和∠ACE是AB与CE被AC所截形成的内错角,则∠A=∠ACE时,可以推出AB∥CE,不符合题意;
    B、∠B和∠ACE不属于AB与CE被第三条直线所截形成的任何角,则∠B=∠ACE时,无法推出AB∥CE,符合题意;
    C、∠B和∠ECD是AB与CE被BD所截形成的同位角,则∠B=∠ECD时,可以推出AB∥CE,不符合题意;
    D、∠B和∠BCE AB与CE被BD所截形成的同旁内角,则∠B+∠BCE=180°时,可以推出AB∥CE,不符合题意;
    故选:B.
    【点睛】
    本题考查平行线的判定,理解并熟练运用平行线的判定定理是解题关键.
    3、D
    【分析】
    根据同位角、内错角、同旁内角的定义可直接得到答案.
    【详解】
    解:①与是同旁内角,说法正确;
    ②与是内错角,说法正确;
    ③与是同位角,说法正确;
    ④与是内错角,说法正确,
    故选:D.
    【点睛】
    此题主要考查了三线八角,在复杂的图形中判别三类角时,应从角的两边入手,具有上述关系的角必有两边在同一直线上,此直线即为截线,而另外不在同一直线上的两边,它们所在的直线即为被截的线.同位角的边构成“F” 形,内错角的边构成“Z”形,同旁内角的边构成“U”形.
    4、A
    【分析】
    根据平行线的性质,平行线的判定判断即可.
    【详解】
    ∵一条直线的平行线有无数条,
    ∴①的说法不正确;
    ∵经过直线外一点有且只有一条直线与已知直线平行,
    ∴②的说法不正确,④的说法正确;
    ∵a∥b,c∥d,无法判定a∥d
    ∴③的说法不正确.
    只有一个是正确的,
    故选A.
    【点睛】
    本题考查了平行线的性质,平行线的判定,熟练掌握性质,灵活运用平行线的判定定理是解题的关键.
    5、D
    【分析】
    同位角相等,两直线平行,同旁内角互补,两直线平行,根据平行线的判定方法逐一分析即可.
    【详解】
    解:(同位角相等,两直线平行),故A不符合题意;
    ∠2+∠3=180°,(同旁内角互补,两直线平行)故B不符合题意;

    (同位角相等,两直线平行)故C不符合题意;
    ∠1+∠4=180°,不是同旁内角,也不能利用等量代换转换成同旁内角,
    所以不能判定 故D符合题意;
    故选D
    【点睛】
    本题考查的是平行线的判定,对顶角相等,掌握“平行线的判定方法”是解本题的关键.
    6、B
    【分析】
    根据锐角和钝角的概念、线段的性质、对顶角的定义以及中点的性质,即可得到正确结论.
    【详解】
    解:A.锐角的2倍不一定是钝角,例如:锐角20°的2倍是40°是锐角,故不符合题意;
    B.两点之间的所有连线中,线段最短,正确;
    C.相等的角不一定是对顶角,故不符合题意;
    D.当点C在线段AB上,若AC=BC,则点C是线段AB的中点,故不符合题意;
    故选:B.
    【点睛】
    本题考查了锐角和钝角的概念、线段的性质、对顶角的定义以及中点的性质,解题的关键是:熟练掌握这些性质.
    7、D
    【分析】
    直接利用垂线段最短以及结合已知得出AP的取值范围进而得出答案.
    【详解】
    ∵过点A作AB⊥l于点B,在直线l上取一点C,连接AC,使AC=AB,P在线段BC上连接AP.
    ∵AB=3,
    ∴AC=5,
    ∴3≤AP≤5,
    故AP不可能是5.5,
    故选:D.
    【点睛】
    本题考查了垂线段最短,正确得出AP的取值范围是解题的关键.
    8、D
    【分析】
    根据方向角的概念,和平行线的性质求解.
    【详解】
    解:如图:

    ∵AF∥DE,
    ∴∠ABE=∠FAB=43°,
    ∵AB⊥BC,
    ∴∠ABC=90°,
    ∴∠CBD=180°﹣90°﹣43°=47°,
    ∴C地在B地的北偏西47°的方向上.
    故选:D.
    【点睛】
    本题主要考查了方位角,平行线的性质,正确的识别图形是解题的关键.
    9、B
    【分析】
    根据平行线的性质、垂直的定义、平移的性质、点到直线的距离的定义、直线的位置关系逐个判断即可得.
    【详解】
    解:(1)两条平行线被第三条直线所截,同位角相等;则原命题错误;
    (2)在同一平面内,过一点有且只有一条直线与已知直线垂直;则原命题正确;
    (3)平移前后连接各组对应点的线段平行(或在同一条直线上)且相等;则原命题错误;
    (4)从直线外一点到这条直线的垂线段的长度,叫做这点到这条直线的距离;则原命题错误;
    (5)在同一平面内,三条直线的交点个数可能为0个或1个或2个或3个,共有四种情况;则原命题错误;
    综上,命题正确的是1个,
    故选:B.
    【点睛】
    本题考查了平行线的性质、垂直的定义、平移的性质、点到直线的距离的定义、直线的位置关系,熟练掌握各定义和性质是解题关键.
    10、D
    【分析】
    先根据平行线的性质(两直线平行,内错角相等),可得∠ADB=∠B,再利用角平分线的性质可得:∠ADE=2∠ADB=64°,最后再利用平行线的性质(两直线平行,内错角相等)即可求出答案.
    【详解】
    解:∵AD∥BC,∠B=32°,
    ∴∠ADB=∠B=32° .
    ∵DB平分∠ADE,
    ∴∠ADE=2∠ADB=64°,
    ∵AD∥BC,
    ∴∠DEC=∠ADE=64°.
    故选:D.
    【点睛】
    题目主要考查了平行线的性质和角平分线的性质,解题的关键是熟练掌握平行线的性质,找出题中所需的角与已知角之间的关系.
    二、填空题
    1、40°
    【分析】
    利用平行线的性质求出∠ADE=70°,再由折叠的性质推出∠ADE=∠EDF=70°即可解决问题.
    【详解】
    解:∵DE∥BC,
    ∴∠ADE=∠B=70°,
    由折叠的性质可得∠ADE=∠EDF=70°,
    ∴∠BDF=180°﹣∠ADE-∠EDF=40°,
    故答案为:40°.
    【点睛】
    本题综合考查了平行线以及折叠的性质,熟练掌握两性质定理是解答关键.
    2、
    【分析】
    根据同位角相等判定两直线平行,再利用平行线性质可得∠3=∠5=91°,再利用平角性质计算即可.
    【详解】
    解:如图,∵∠1=∠2=52°,
    ∴a∥b,
    ∴∠3=∠5=91°,
    ∵∠5+∠4=180°,
    ∴∠4=180°﹣∠5=89°.
    故答案为:89°.

    【点睛】
    此题考查了平行线的判定与性质,熟练掌握平行线的判定与性质是解本题的关键.
    3、120
    【分析】
    过点B作BF∥CD,因为AB⊥AE,可得∠ABF=90°,即可得出∠FBC的度数,再由BF∥CD,可得∠FBC+∠BCD=180°,代入计算即可得出答案.
    【详解】
    解:过点B作BF∥CD,如图,

    由题意可知,∠ABF=90°,
    ∵∠ABC=150°,
    ∴∠FBC=∠ABC-∠ABF=150°-90°=60°,
    ∵BF∥CD,
    ∴∠FBC+∠BCD=180°,
    ∴∠BCD=180°-∠FBC=180°-60°=120°.
    故答案为:120.
    【点睛】
    本题主要考查了平行线的性质,熟练应用平行线的性质进行求解是解决本题的关键.
    4、50°
    【分析】
    三角形的外角等于不相邻的两个内角和,同位角相等可得出,从而得到的值.
    【详解】
    解:如图




    故答案为:.
    【点睛】
    本题考察了三角形的外角,平行线的性质.解题的关键在于角度之间的转化和等量关系.
    5、
    【分析】
    根据,可得,再根据对顶角相等即可求出的度数.
    【详解】
    解:∵,




    故答案为:
    【点睛】
    本题主要考查了邻补角、对顶角的相关知识,熟练运用邻补角、对顶角的相关知识是解答此题的关键.
    三、解答题
    1、(1)55°;(2)当P在线段CD上时,∠APB=∠PAC +∠PBD;当P在DC延长线上时,∠APB=∠PBD-∠PAC;当P在CD延长线上时,∠APB=∠PAC-∠PBD;
    【分析】
    (1)过点P作PG∥l1,可得∠APG=∠PAC=15°,由l1∥l2,可得PG∥l2,则∠BPG=∠PBD=40°,即可得到∠APB=∠APG+∠BPG=55°;
    (2)分当P在线段CD上时;当P在DC延长线上时;当P在CD延长线上时,三种情况讨论求解即可.
    【详解】
    解:(1)如图所示,过点P作PG∥l1,
    ∴∠APG=∠PAC=15°,
    ∵l1∥l2,
    ∴PG∥l2,
    ∴∠BPG=∠PBD=40°,
    ∴∠APB=∠APG+∠BPG=55°;

    (2)由(1)可得当P在线段CD上时,∠APB=∠PAC +∠PBD;
    如图1所示,当P在DC延长线上时,过点P作PG∥l1,
    ∴∠APG=∠PAC,
    ∵l1∥l2,
    ∴PG∥l2,
    ∴∠BPG=∠PBD=40°,
    ∴∠APB=∠BPG-∠APG=∠PBD-∠PAC;

    如图2所示,当P在CD延长线上时,过点P作PG∥l1,
    ∴∠APG=∠PAC,
    ∵l1∥l2,
    ∴PG∥l2,
    ∴∠BPG=∠PBD=40°,
    ∴∠APB=∠APG-∠BPG=∠PAC-∠PBD;
    ∴综上所述,当P在线段CD上时,∠APB=∠PAC +∠PBD;当P在DC延长线上时,∠APB=∠PBD-∠PAC;当P在CD延长线上时,∠APB=∠PAC-∠PBD.

    【点睛】
    本题主要考查了平行线的性质,平行公理的应用,解题的关键在于能够熟练掌握平行线的性质.
    2、55°
    【分析】
    由题意利用对顶角可得∠COB=∠AOD=70°,再根据角平分线性质可得∠EOB=∠EOC=35°,进而利用邻补角的性质得出∠AOF=180°-∠EOB-∠FOE即可求得答案.
    【详解】
    解:∵∠AOD=70°,
    ∴∠COB=∠AOD=70°,
    ∵OE平分∠BOC,
    ∴∠EOB=∠EOC=35°,
    ∵∠FOE=90°,
    ∴∠AOF=180°-∠EOB-∠FOE=55°.
    【点睛】
    本题考查角的运算,熟练掌握对顶角、邻补角的性质以及角平分线的定义,掌握对顶角相等、邻补角之和等于180°是解题的关键.
    3、 (1)直线CD和AB被直线AC所截构成的内错角是∠2和∠5; (2)直线CD和AC被直线AD所截构成的同位角是∠1和∠7;(3)直线AC和AB被直线BC所截构成的同旁内角是∠3和∠4
    【分析】
    根据两条直线被第三条直线所截,所形成的角中,两角在两条直线的中间,第三条直线的两旁,可得内错角,两角在两直线的中间,第三条直线的同侧,可得同旁内角,两角在两条直线的同侧,第三条直线的同侧,可得同位角.
    【详解】
    解:(1)直线CD和AB被直线AC所截构成的内错角是∠2和∠5.
    (2)直线CD和AC被直线AD所截构成的同位角是∠1和∠7.
    (3)直线AC和AB被直线BC所截构成的同旁内角是∠3和∠4.
    【点睛】
    此题主要考查了三线八角,关键是掌握同位角的边构成F形,内错角的边构成Z形,同旁内角的边构成U形.
    4、∠BOC的补角有两个∠BOD和∠AOC;∠BOC的邻补角为∠AOC;∠BOC没有对顶角.
    【分析】
    由题意直接根据补角,邻补角及对顶角的定义进行分析即可找出.
    【详解】
    解:因为∠BOC+∠AOC=180º(平角定义),
    所以∠AOC是∠BOC的补角,
    ∠AOD=∠BOC(已知),
    所以∠BOC+∠BOD=180º.
    所以∠BOD是∠BOC的补角.
    所以∠BOC的补角有两个:∠BOD和∠AOC.
    因为∠AOC和∠BOC相邻,
    所以∠BOC的邻补角为:∠AOC.
    ∠BOC没有对顶角.
    【点睛】
    本题考查补角,邻补角及对顶角的定义,熟练掌握补角,邻补角及对顶角的定义是解题的关键.
    5、(1);(2);(3)
    【分析】
    (1)由折叠的性质,得到,,然后由邻补角的定义,即可求出答案;
    (2)由折叠的性质,先求出,然后求出∠FEG的度数即可;
    (3)由折叠的性质,先求出,然后求出∠FEG的度数即可.
    【详解】
    解:(1)将∠AEF沿折痕EF翻折,点A落在点A'处;将∠DEG沿折痕EG翻折,点D落在点D'处,
    ∴,,
    ∴;
    (2)根据题意,则
    ,,
    ∵,
    ∴,
    ∴,
    ∴;
    (3)根据题意,
    ,,
    ∵,
    ∴,
    ∴,
    ∴;
    【点睛】
    本题考查了折叠的性质,邻补角的定义,解题的关键是熟练掌握折叠的性质,正确得到,.
    6、∠D;两直线平行,内错角相等;AB;两直线都和第三条直线平行,那么这两条直线也互相平行;两直线平行,内错角相等;等量代换;31.
    【分析】
    过点E作直线EF//CD,由两直线平行,内错角相等得出∠2=∠D;由两直线都和第三条直线平行,那么这两条直线也互相平行得出AB//EF;由两直线平行,内错角相等得出∠B=∠1;由∠1+∠2=∠BED,等量代换得出∠B+∠D=∠BED;方法与实践:如图②,由平行的性质可得∠BOD=∠D=53°,然后再根据三角形外角的性质解答即可
    【详解】
    解:过点E作直线EF∥CD,
    ∠2=∠D,(两直线平行,内错角相等)
    AB∥CD(已知),EF∥CD
    AB//EF,(两直线都和第三条直线平行,那么这两条直线也互相平行)
    ∠B=∠1,(两直线平行,内错角相等)
    ∠1+∠2=∠BED,
    ∠B+∠D=∠BED,(等量代换 )
    方法与实践:如图②,
    ∵直线AB∥CD
    ∴∠BOD=∠D=53°
    ∵∠BOD=∠E+∠B
    ∴∠E=∠BOD-∠B=53°- 22°=31°.
    故答案依次为:∠D;两直线平行,内错角相等;AB;两直线都和第三条直线平行,那么这两条直线也互相平行;两直线平行,内错角相等;等量代换;31.

    【点睛】
    本题主要考查了平行线的判定与性质、三角形内角和定理等知识点;熟练掌握平行线的性质是解答本题的关键.
    7、见解析
    【分析】
    由已知CE平分∠BCD可得∠1= ∠4,利用等式的性质得出∠1=∠2=∠4=70°,根据直线判定定理得出AD∥BC,利用平角定义求出∠D=180°-∠BCD即可.
    【详解】
    证明:∵CE平分∠BCD( 已知 ),
    ∴∠1= ∠4 ( 角平分线定义 ),
    ∵∠1=∠2=70°已知,
    ∴∠1=∠2=∠4=70°(等量代换),
    ∴AD∥BC(内错角相等,两直线平行),
    ∴∠D=180°-∠BCD=180°-∠1-∠4=40°,
    ∵∠3=40°已知,
    ∴ ∠D =∠3,
    ∴AB∥CD(内错角相等,两直线平行).

    故答案为:已知;∠4 ,角平分线定义 ;等量代换;内错角相等,两直线平行;∠BCD;∠D;内错角相等,两直线平行.
    【点睛】
    本题考查平行线判定,角平分线定义,平角,掌握平行线判定方法,角平分线定义,平角是解题关键.
    8、
    (1)∠BOC=60°
    (2)见解析
    【分析】
    (1)根据∠AOB是平角,∠BOC:∠AOC=1:2即可求解;
    (2)由角平分线的定义和相加等于90°的两个角互余、等角的余角相等来分析即可.
    【详解】
    (1)∵∠AOB=∠BOC+∠AOC=180°,
    又∠BOC:∠AOC=1:2,
    ∴∠AOC=2∠BOC,
    ∴∠BOC+2∠BOC=180°,
    ∴∠BOC=60°;
    (2)∵OD平分∠BOC,
    ∴∠BOD=∠DOC,
    ∵∠DOC+∠COE=90°,∠AOB是平角,
    ∴∠AOE+∠BOD=90°,
    ∴∠AOE=∠COE
    即OE平分∠AOC.
    【点睛】
    本题考查了角的计算和角平分线的定义,垂直的定义,正确理解角平分线的定义,余角的性质以及平角的定义是解题的关键.
    9、(1)①见解析;②见解析;(2)∠AOC+∠BOE=180°,理由见解析
    【分析】
    (1)①取格点D,然后作直线AD即可;②取格点E,然后作射线OE即可.
    (2)根据角的和差定义证明即可.
    【详解】
    解:(1)①如图,直线AD即为所求作.
    ②∠AOE即为所求作.

    (2)∠AOC+∠BOE=180°.
    理由:∵∠AOC=90°﹣∠BOC,∠BOE=90°+∠AOE,∠BOC=∠AOE,
    ∴∠AOC+∠BOE=90°﹣∠AOE+90°+∠AOE=180°.
    【点睛】
    本题考查了格点作图以及角的大小关系,明确题意、熟练掌握上述基本知识是解题关键.
    10、(1)见解析;(2)
    【分析】
    (1)根据可得,,再根据内错角相等两直线平行即可得证;
    (2)根据两直线平行的性质可得,从而可得,再由即可求解.
    【详解】
    解:(1)∵,
    ∴,
    ∵,
    ∴,
    ∴;
    (2)∵,,
    ∴,

    ∵,
    ∴,
    ∴.
    【点睛】
    本题考查了平行线的判定及性质,解题的关键是掌握平行线的判定及性质,利用数形结合的思想进行求解.

    相关试卷

    沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试练习题:

    这是一份沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试练习题,共30页。试卷主要包含了直线,下列说法中正确的有个,如图,∠1与∠2是同位角的是,下列命题正确的是等内容,欢迎下载使用。

    沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试综合训练题:

    这是一份沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试综合训练题,共27页。试卷主要包含了下列说法中正确的有个,下列说法,下列关于画图的语句正确的是.,如图,不能推出a∥b的条件是等内容,欢迎下载使用。

    初中数学沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试课后复习题:

    这是一份初中数学沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试课后复习题,共28页。试卷主要包含了如图,∠1与∠2是同位角的是,直线,在下列各题中,属于尺规作图的是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map