初中数学第十三章 相交线 平行线综合与测试随堂练习题
展开
这是一份初中数学第十三章 相交线 平行线综合与测试随堂练习题,共33页。试卷主要包含了如图,能与构成同位角的有,如图所示,下列说法错误的是,下列说法等内容,欢迎下载使用。
七年级数学第二学期第十三章相交线 平行线综合训练
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列说法中正确的有( )个
①两条直线被第三条直线所截,同位角相等;
②同一平面内,不相交的两条线段一定平行;
③过一点有且只有一条直线垂直于已知直线;
④经过直线外一点有且只有一条直线与这条直线平行;
⑤从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离.
A.1 B.2 C.3 D.4
2、如图所示,直线l1l2,∠1和∠2分别为直线l3与直线l1和l2相交所成角.如果∠1=52°,那么∠2=( )
A.138° B.128° C.52° D.152°
3、如图,直线b、c被直线a所截,则与是( )
A.对顶角 B.同位角 C.内错角 D.同旁内角
4、如图,点D是AB上的一点,点E是AC边上的一点,且∠B=70°,∠ADE=70°,∠DEC=100°,则∠C是( )
A.70° B.80° C.100° D.110°
5、如图,AB∥CD,AE∥CF,∠C=131°,则∠A=( )
A.39° B.41° C.49° D.51°
6、如图,直线a∥b,Rt△ABC的直角顶点C在直线b上.若∠1=50°,则∠2的度数为( )
A.30° B.40° C.50° D.60°
7、如图,能与构成同位角的有( )
A.4个 B.3个 C.2个 D.1个
8、如图所示,下列说法错误的是( )
A.∠1和∠3是同位角 B.∠1和∠5是同位角
C.∠1和∠2是同旁内角 D.∠5和∠6是内错角
9、下列说法:
①和为180°且有一条公共边的两个角是邻补角;
②过一点有且只有一条直线与已知直线垂直;
③同位角相等;
④经过直线外一点,有且只有一条直线与这条直线平行,
其中正确的有( )
A.0个 B.1个 C.2个 D.3个
10、如图,直线a、b被直线c所截,下列说法不正确的是( )
A.1与5是同位角 B.3与6是同旁内角
C.2与4是对顶角 D.5与2是内错角
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,直线AB,CD相交于点O, 过O点作EF⊥AB,若∠1=35º,则∠2=_____ º.
2、将含30°角的三角板如图摆放,ABCD,若=20°,则的度数是______.
3、如图,直线AB、CD相交于点O,∠AOD+∠BOC=240°,则∠BOC的度数为__________°.
4、如图,直线l分别与直线AB、CD相交于点E、F,EG平分∠BEF交直线CD于点G,若∠1=∠BEF=68°,则∠EGF的度数为_______.
5、如图,已知,CE平分,,则______°.
三、解答题(10小题,每小题5分,共计50分)
1、已知AB∥CD,点是AB,CD之间的一点.
(1)如图1,试探索∠AEC,∠BAE,∠DCE之间的数量关系;
以下是小明同学的探索过程,请你结合图形仔细阅读,并完成填空(理由或数学式):
解:过点E作PE∥AB(过直线外一点有且只有一条直线与这条直线平行).
∵AB∥CD(已知),
∴PE∥CD( ),
∴∠BAE=∠1,∠DCE=∠2( ),
∴∠BAE+∠DCE= + (等式的性质).
即∠AEC,∠BAE,∠DCE之间的数量关系是 .
(2)如图2,点F是AB,CD之间的一点,AF平分∠BAE,CF平分∠DCE.
①若∠AEC=74°,求∠AFC的大小;
②若CG⊥AF,垂足为点G,CE平分∠DCG,∠AEC+∠AFC=126°,求∠BAE的大小.
2、如图,直线AB与CD相交于点O,OC平分∠BOE,OF⊥CD,垂足为点O.
(1)写出∠AOF的一个余角和一个补角.
(2)若∠BOE=60°,求∠AOD的度数.
(3)∠AOF与∠EOF相等吗?说明理由.
3、已知:如图,ABCDEF,点G、H、M分别在AB、CD、EF上.求证:.
4、如图,∠AGB=∠EHF,∠C=∠D.
(1)求证:BD∥CE;
(2)求证:∠A=∠F.
5、如图,运动会上,小明自踏板M处跳到沙坑P处,甲、乙、丙三名同学分别测得PM=3.25米,PN=3.15米,PF=3.21米,则小明的成绩为 _____米.(填具体数值)
6、已知AB∥CD,点E在AB上,点F在DC上,点G为射线EF上一点.
(基础问题)如图1,试说明:∠AGD=∠A+∠D.(完成图中的填空部分).
证明:过点G作直线MN∥AB,
又∵AB∥CD,
∴MN∥CD( )
∵MN∥AB,
∴∠A=( )( )
∵MN∥CD,
∴∠D= ( )
∴∠AGD=∠AGM+∠DGM=∠A+∠D.
(类比探究)如图2,当点G在线段EF延长线上时,直接写出∠AGD、∠A、∠D三者之间的数量关系.
(应用拓展)如图3,AH平分∠GAB,DH交AH于点H,且∠GDH=2∠HDC,∠HDC=22°,∠H=32°,直接写出∠DGA的度数.
7、如图,EF⊥BC,∠1=∠C,∠2+∠3=180°,试说明∠ADC=90°.请完善解答过程,并在括号内填写相应的理论依据.
解:∵∠1=∠C,(已知)
∴GD∥ .( )
∴∠2=∠DAC.( )
∵∠2+∠3=180°,(已知)
∴∠DAC+∠3=180°.(等量代换)
∴AD∥EF.( )
∴∠ADC=∠ .( )
∵EF⊥BC,(已知)
∴∠EFC=90°.( )
∴∠ADC=90°.(等量代换)
8、如图,已知∠A=120°,∠FEC=120°,∠1=∠2,试说明∠FDG=∠EFD.请补全证明过程,即在下列括号内填上结论或理由.
解:∵∠A=120°,∠FEC=120°(已知),
∴∠A= ( ).
∴AB∥ ( ).
又∵∠1=∠2(已知),
∴AB∥CD ( ).
∴EF∥ ( ).
∴∠FDG=∠EFD ( ).
9、已知:如图①,AB∥CD,点F在直线AB、CD之间,点E在直线AB上,点G在直线CD上,∠EFG=90°.
(1)如图①,若∠BEF=130°,则∠FGC= 度;
(2)小明同学发现:如图②,无论∠BEF度数如何变化,∠FEB﹣∠FGC的值始终为定值,并给出了一种证明该发现的辅助线作法:过点E作EM∥FG,交CD于点M.请你根据小明同学提供的辅助线方法,补全下面的证明过程;
(3)拓展应用:如图③,如果把题干中的“∠EFG=90°”条件改为“∠EFG=110°”,其它条件不变,则∠FEB﹣∠FGC= 度.
解:如图②,过点E作EM∥FG,交CD于点M.
∵AB∥CD(已知)
∴∠BEM=∠EMC( )
又∵EM∥FG
∴∠FGC=∠EMC( )
∠EFG+∠FEM=180°( )
即∠FGC=( )(等量代换)
∴∠FEB﹣∠FGC=∠FEB﹣∠BEM=( )
又∵∠EFG=90°
∴∠FEM=90°
∴∠FEB﹣∠FGC=
即:无论∠BEF度数如何变化,∠FEB﹣∠FGC的值始终为定值.
10、作图并计算:如图,点O在直线上.
(1)画出的平分线(不必写作法);
(2)在(1)的前提下,若,求的度数.
-参考答案-
一、单选题
1、A
【分析】
根据平行线的性质,垂线的性质,平行公理,点到直线的距离的定义逐项分析判断即可.
【详解】
①互相平行的两条直线被第三条直线所截,同位角相等,故①不正确;
②同一平面内,不相交的两条直线一定平行,故②不正确;
③同一平面内,过一点有且只有一条直线垂直于已知直线,故③不正确;
④经过直线外一点有且只有一条直线与这条直线平行,故④正确
⑤从直线外一点到这条直线的垂线段的长度,叫做这点到这条直线的距离,故⑤不正确.
故正确的有④,共1个,
故选A.
【点睛】
本题考查了平行线的性质,平行公理,垂线的性质,点到直线的距离,掌握相关定理性质是解题的关键.
2、B
【分析】
根据两直线平行同位角相等,得出∠1=∠3=52°.再由∠2与∠3是邻补角,得∠2=180°﹣∠3=128°.
【详解】
解:如图.
∵l1//l2,
∴∠1=∠3=52°.
∵∠2与∠3是邻补角,
∴∠2=180°﹣∠3=180°﹣52°=128°.
故选:B.
【点睛】
本题主要考查了平行线的性质、邻补角的定义,熟练掌握平行线的性质、邻补角的定义是解决本题的关键.
3、B
【分析】
根据对顶角、同位角、内错角、同旁内角的特征去判断即可.
【详解】
∠1与∠2是同位角
故选:B
【点睛】
本题考查了同位角的含义,理解同位角的含义并正确判断同位角是关键.
4、B
【分析】
先证明DEBC,根据平行线的性质求解.
【详解】
解:因为∠B=∠ADE=70°
所以DEBC,
所以∠DEC+∠C=180°,所以∠C=80°.
故选:B.
【点睛】
此题主要考查平行线的判定与性质,解题的关键是熟知同位角相等,两直线平行.
5、C
【分析】
由题意直接根据平行线的性质进行分析计算即可得出答案.
【详解】
解:如图,
∵AB∥CD,∠C=131°,
∴∠1 =180°-∠C=49°(两直线平行,同旁内角互补),
∵AE∥CF,
∴∠A=∠C=49°(两直线平行,同位角相等).
故选:C.
【点睛】
本题主要考查平行线的性质,熟练掌握平行线的性质即两直线平行,同旁内角互补和两直线平行,同位角相等以及两直线平行,内错角相等是解答此题的关键.
6、B
【分析】
由平角的定义可求得∠BCD的度数,再利用平行线的性质即可求得∠2的度数.
【详解】
解:如图所示:
∵∠1=50°,∠ACB=90°,
∴∠BCD=180°﹣∠1﹣∠BCD=40°,
∵a∥b,
∴∠2=∠BCD=40°.
故选:B.
【点睛】
本题主要考查平行线的性质,解答的关键是熟记平行线的性质:两直线平行,同位角相等.
7、B
【分析】
根据同位角的定义判断即可;
【详解】
如图,与能构成同位角的有:∠1,∠2,∠3.
故选B.
【点睛】
本题主要考查了同位角的判断,准确分析判断是解题的关键.
8、B
【分析】
根据同位角、内错角、同旁内角的意义:两条直线被第三条直线所截,在截线的同旁,在被截的两直线的同一侧的角叫做同位角;两条直线被第三条直线所截,两个角分别在截线的两侧,且夹在两条被截直线之间的两个角叫做内错角;两条直线被第三条直线所截,在截线同旁,且在被截两条直线之内的两角叫做同旁内角,可得答案.
【详解】
解:A、∠1和∠3是同位角,故此选项不符合题意;
B、∠1和∠5不存在直接联系,故此选项符合题意;
C、∠1和∠2是同旁内角,故此选项不符合题意;
D、∠1和∠6是内错角,故此选项不符合题意;
故选B.
【点睛】
本题考查了同位角、内错角、用旁内角,利用同位角、内错角、同旁内角的意义是解题关键.
9、B
【分析】
根据举反例可判断①,根据垂线的定义可判断②,根据举反例可判断③,根据平行线的基本事实可判断④.
【详解】
解:①如图∠AOC=∠2=150°,∠BOC=∠1=30°,满足∠1+∠2=180°,射线OC是两角的共用边,但∠1与∠2不是邻补角,故①不正确;
②在同一个面内,过一点有且只有一条直线与已知直线垂直,故②不正确;
③如图直线a、b被直线c所截,∠1与∠2是同位角,但∠1>∠2,故③不正确;
④经过直线外一点,有且只有一条直线与这条直线平行,是基本事实,故④正确;
其中正确的有④一共1个.
故选择B.
【点睛】
本题考查基本概念的理解,掌握基本概念是解题关键.
10、D
【分析】
根据同位角、对顶角、同旁内角以及内错角的定义对各选项作出判断即可.
【详解】
解:A、∠1与∠5是同位角,故本选项不符合题意;
B、∠3与∠6是同旁内角,故本选项不符合题意.
C、∠2与∠4是对顶角,故本选项不符合题意;
D、∠5与2不是内错角,故本选项符合题意.
故选:D.
【点睛】
本题主要考查了同位角、对顶角、同旁内角、内错角的定义,解答此题的关键是确定三线八角,可直接从截线入手.对平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解,对不同的几何语言的表达要注意理解它们所包含的意义.
二、填空题
1、55
【分析】
由已知可得,,进而根据,∠1=35º,即可求得.
【详解】
EF⊥AB,
,
,∠1=35º,
故答案为:55
【点睛】
本题考查了两条相交线所成的角,垂直的定义,平角的定义,掌握垂直的定义是解题的关键.
2、50°
【分析】
三角形的外角等于不相邻的两个内角和,同位角相等可得出,从而得到的值.
【详解】
解:如图
故答案为:.
【点睛】
本题考察了三角形的外角,平行线的性质.解题的关键在于角度之间的转化和等量关系.
3、120
【分析】
由题意根据对顶角相等得出∠BOC=∠AOD进而结合∠AOD+∠BOC=240°即可求出∠BOC的度数.
【详解】
解:∵∠AOD+∠BOC=240°,∠BOC=∠AOD,
∴∠BOC=120°.
故答案为:120.
【点睛】
本题考查的是对顶角的性质,熟练掌握对顶角相等是解题的关键.
4、34°
【分析】
根据角平分线的性质可求出的度数,然后由平行线的判定与性质即可得出的度数.
【详解】
解:平分,
又
故答案为
【点睛】
本题主要考查了平行线的判定与性质、角平分线的性质,灵活应用平行线的判定与性质是解题的关键.
5、65
【分析】
由平行线的性质先求解再利用角平分线的定义可得答案.
【详解】
解: , ,
CE平分,
故答案为:
【点睛】
本题考查的是角平分线的定义,平行线的性质,掌握“两直线平行,同旁内角互补”是解本题的关键.
三、解答题
1、(1)平行于同一条直线的两条直线平行,两直线平行,内错角相等,∠1,∠2,∠AEC=∠BAE+∠DCE;(2)①37°;②52°
【分析】
(1)结合图形利用平行线的性质填空即可;
(2)①过F作FG∥AB,由(1)得:∠AEC=∠BAE+∠DCE,根据AB∥CD,FG∥AB,CD∥FG,得出∠AFC=∠AFG+∠GFC=∠BAF+∠DCF,根据AF平分∠BAE,CF平分∠DCE,可得∠BAF=∠BAE,∠DCF=∠DCE,根据角的和差∠AFC=∠BAF+∠DCF=∠AEC即可;
②由①得:∠AEC=2∠AFC,可求∠AFC=42°,∠AEC=82°,根据CG⊥AF,求出∠GCF=90-∠AFC=48°,根据角平分线计算得出∠GCF=3∠DCF,求出∠DCF=16°即可.
【详解】
解:(1)平行于同一条直线的两条直线平行,
两直线平行,内错角相等,
∠1,∠2,
∠AEC=∠BAE+∠DCE,
故答案为:平行于同一条直线的两条直线平行,两直线平行,内错角相等,∠1,∠2,∠AEC=∠BAE+∠DCE,
(2)①过F作FG∥AB,
由(1)得:∠AEC=∠BAE+∠DCE,
∵AB∥CD,FG∥AB,
∴CD∥FG,
∴∠BAF=∠AFG,∠DCF=∠GFC,
∴∠AFC=∠AFG+∠GFC=∠BAF+∠DCF,
∵AF平分∠BAE,CF平分∠DCE,
∴∠BAF=∠BAE,∠DCF=∠DCE,
∴∠AFC=∠BAF+∠DCF,
=∠BAE+∠DCE,
=(∠BAE+∠DCE),
=∠AEC,
=×74°,
=37°;
②由①得:∠AEC=2∠AFC,
∵∠AEC+∠AFC=126°,
∴2∠AFC+∠AFC=126°
∴3∠AFC=126°,
∴∠AFC=42°,∠AEC=84°,
∵CG⊥AF,
∴∠CGF=90°,
∴∠GCF=90-∠AFC=48°,
∵CE平分∠DCG,
∴∠GCE=∠ECD,
∵CF平分∠DCE,
∴∠DCE=2∠DCF=2∠ECF,
∴∠GCF=3∠DCF,
∴∠DCF=16°,
∴∠DCE=32°,
∴∠BAE=∠AEC﹣∠DCE=52°.
【点睛】
本题考查平行线性质,角平分线有关的计算,垂直定义,角的和差倍分,简单一元一次方程,掌握平行线性质,角平分线有关的计算,垂直定义,角的和差倍分,简单一元一次方程是解题关键.
2、(1)∠AOF的余角是:∠COE或∠BOC或∠AOD;∠AOF的补角是∠BOF;(2)30°;(3)∠AOF=∠EOF,理由见解析
【分析】
(1)由OC⊥CD,可得∠DOF=90°,则∠AOF+∠AOD=90°,由对顶角相等得∠BOC=∠AOD,则∠AOF+∠BOC=90°,由OC平分∠BOE,可得∠COE=∠BOC,∠AOF+∠COE=90°;由∠AOF+∠BOF=180°,可得∠AOF的补角是∠BOF;
(2)由OC平分∠BOE,∠BOE=60°,可得∠BOC=30°,再由∠AOD=∠BOC,即可得到∠AOD=30°;
(3)由(1)可得∠AOD=∠BOC=∠COE,再由OF⊥OC,得到∠DOF=∠COF=90°,则∠AOD+∠AOF=∠EOF+∠COE=90°,即可推出∠AOF=∠EOF.
【详解】
解:(1)∵OC⊥CD,
∴∠DOF=90°,
∴∠AOF+∠AOD=90°,
又∵∠BOC=∠AOD,
∴∠AOF+∠BOC=90°,
∵OC平分∠BOE,
∴∠COE=∠BOC,
∴∠AOF+∠COE=90°;
∴∠AOF的余角是,∠COE,∠BOC,∠AOD;
∵∠AOF+∠BOF=180°,
∴∠AOF的补角是∠BOF;
(2)∵OC平分∠BOE,∠BOE=60°,
∴∠BOC=30°,
又∵∠AOD=∠BOC,
∴∠AOD=30°;
(3)∠AOF=∠EOF,理由如下:
由(1)可得∠AOD=∠BOC=∠COE,
∵OF⊥OC,
∴∠DOF=∠COF=90°,
∴∠AOD+∠AOF=∠EOF+∠COE=90°,
∴∠AOF=∠EOF.
【点睛】
本题主要考查了与余角、补角有关的计算,等角的余角相等,垂线的定义,解题的关键在于熟知余角与补角的定义:如果两个角的相加的度数为90度,那么这两个角互余,如果两个角相加的度数为180度,那么这两个角互补.
3、见解析
【分析】
由AB∥CD∥EF可得,,,即可证明.
【详解】
证明:∵AB∥CD(已知)
∴(两直线平行,内错角相等)
又 ∵CD∥EF(已知)
∴(两直线平行,内错角相等)
∵(已知)
∴(等式性质)
【点睛】
本题主要考查平行线的性质,准确观察图形,推出角之间的关系是解题关键.
4、(1)证明见解析;(2)证明见解析.
【分析】
(1)由∠AGB=∠1,∠AGB=∠EHF,可得∠1=∠EHF,则BD∥CE;
(2)由BD∥CE,可得∠D=∠2,则∠2=∠C,推出AC∥DF,则∠A=∠F.
【详解】
证明:(1)∵∠AGB=∠1,∠AGB=∠EHF,
∴∠1=∠EHF,
∴BD∥CE;
(2)∵BD∥CE,
∴∠D=∠2,
∵∠D=∠C,
∴∠2=∠C,
∴AC∥DF,
∴∠A=∠F.
【点睛】
本题主要考查了平行线的性质与判定,对顶角相等,熟练掌握平行线的性质与判定条件是解题的关键.
5、3.15
【分析】
根据跳远的距离应该是起跳板到P点的垂线段的长度进行求解即可
【详解】
解:由图形可知,小明的跳远成绩应该为PN的长度,即3.15米,
故答案为:3.15.
【点睛】
本题主要考查了点到直线的距离,熟练掌握点到直线的距离的定义是解题的关键.
6、基础问题:平行于同一条直线的两条直线平行;∠AGM;两直线平行,内错角相等;∠DGM,两直线平行,内错角相等;类比探究:∠AGD=∠A-∠D;应用拓展:42°.
【分析】
基础问题:由MN∥AB,可得∠A=∠AGM,由MN∥CD,可得∠D=∠DGM,则∠AGD=∠AGM+∠DGM=∠A+∠D;
类比探究:如图所示,过点G作直线MN∥AB,同理可得∠A=∠AGM,∠D=∠DGM,则∠AGD=∠AGM-∠DGM=∠A-∠D.
应用拓展:如图所示,过点G作直线MN∥AB,过点H作直线PQ∥AB,由MN∥AB,PQ∥AB,得到∠BAG=∠AGM,∠BAH=∠AHP,由MN∥CD,PQ∥CD,得到∠CDG=∠DGM,∠CDH=∠DHP,再由∠GDH=2∠HDC,∠HDC=22°,∠AHD=32°,可得∠GDH=44°,∠DHP=22°,则∠CDG=66°,∠AHP=54°,∠DGM=66°,∠BAH=54°,再由AH平分∠BAG,即可得到∠AGM=108°,则∠AGD=∠AGM-∠DGM=42°.
【详解】
解:基础问题:过点G作直线MN∥AB,
又∵AB∥CD,
∴MN∥CD(平行于同一条直线的两条直线平行),
∵MN∥AB,
∴∠A=∠AGM(两直线平行,内错角相等),
∵MN∥CD,
∴∠D=∠DGM(两直线平行,内错角相等),
∴∠AGD=∠AGM+∠DGM=∠A+∠D.
故答案为:平行于同一条直线的两条直线平行;∠AGM;两直线平行,内错角相等;∠DGM,两直线平行,内错角相等;
类比探究:如图所示,过点G作直线MN∥AB,
又∵AB∥CD,
∴MN∥CD,
∵MN∥AB,
∴∠A=∠AGM,
∵MN∥CD,
∴∠D=∠DGM,
∴∠AGD=∠AGM-∠DGM=∠A-∠D.
应用拓展:如图所示,过点G作直线MN∥AB,过点H作直线PQ∥AB,
又∵AB∥CD,
∴MN∥CD,PQ∥CD
∵MN∥AB,PQ∥AB,
∴∠BAG=∠AGM,∠BAH=∠AHP,
∵MN∥CD,PQ∥CD,
∴∠CDG=∠DGM,∠CDH=∠DHP,
∵∠GDH=2∠HDC,∠HDC=22°,∠AHD=32°,
∴∠GDH=44°,∠DHP=22°,
∴∠CDG=66°,∠AHP=54°,
∴∠DGM=66°,∠BAH=54°,
∵AH平分∠BAG,
∴∠BAG=2∠BAH=108°,
∴∠AGM=108°,
∴∠AGD=∠AGM-∠DGM=42°.
【点睛】
本题主要考查了平行线的性质,平行公理,解题的关键在于能够熟练掌握平行线的性质.
7、AC,同位角相等,两直线平行;两直线平行,内错角相等;同旁内角互补,两直线平行;EFC,两直线平行,同位角相等;垂直定义
【分析】
根据平行线的判定与性质以及垂直的定义即可完成填空.
【详解】
解:如图,
∵∠1=∠C,(已知)
∴,(同位角相等,两直线平行)
∴∠2=∠DAC,(两直线平行,内错角相等)
∵∠2+∠3=180°,(已知)
∴∠DAC+∠3=180°,(等量代换)
∴,(同旁内角互补,两直线平行)
∴∠ADC=∠EFC,(两直线平行,同位角相等)
∵EF⊥BC,(已知)
∴∠EFC=90°,(垂直的定义)
∴∠ADC=90°.(等量代换)
【点睛】
本题考查平行线的判定与性质,掌握平行线的判定定理以及性质是解题的关键.
8、∠FEC;等量代换;EF;同位角相等,两直线平行;内错角相等,两直线平行;CD;平行于同一条直线的两直线互相平行;两直线平行,内错角相等
【分析】
利用平行线的判定,由已知得AB∥EF、AB∥CD,可推出EF∥CD,利用平行线的性质得结论
【详解】
解:∵∠A=120°,∠FEC=120°(已知),
∴∠A=∠FEC(等量代换),
∴AB∥EF(同位角相等,两直线平行),
又∵∠1=∠2(已知),
∴AB∥CD(内错角相等,两直线平行),
∴EF∥CD(平行于同一条直线的两直线互相平行),
∴∠FDG=∠EFD(两直线平行,内错角相等),
故答案为:∠FEC;等量代换;EF;同位角相等,两直线平行;内错角相等,两直线平行;CD;平行于同一条直线的两直线互相平行;两直线平行,内错角相等.
【点睛】
本题考查了平行线的性质和判定,学会分析,正确的利用平行线的性质和判定是解决本题的关键.
9、(1)40°;(2)见解析;(3)70°
【分析】
(1)过点F作FN∥AB,由∠FEB=150°,可计算出∠EFN的度数,由∠EFG=90°,可计算出∠NFG的度数,由平行线的性质即可得出答案;
(2)根据题目补充理由和相关结论即可;
(3)类似(2)中的方法求解即可.
【详解】
解:(1)过点F作FN∥AB,
∵FN∥AB,∠FEB=130°,
∴∠EFN+∠FEB=180°,
∴∠EFN=180°﹣∠FEB=180°﹣130°=50°,
∵∠EFG=90°,
∴∠NFG=∠EFG﹣∠EFN=90°﹣50°=40°,
∵AB∥CD,
∴FN∥CD,
∴∠FGC=∠NFG=40°.
故答案为:40°;
(2)如图②,过点E作EM∥FG,交CD于点M.
∵AB∥CD(已知)
∴∠BEM=∠EMC(两直线平行,内错角相等)
又∵EM∥FG
∴∠FGC=∠EMC(两直线平行,同位角相等)
∠EFG+∠FEM=180°(两直线平行,同旁内角互补)
即∠FGC=(∠BEM)(等量代换)
∴∠FEB﹣∠FGC=∠FEB﹣∠BEM=(∠FEM)
又∵∠EFG=90°
∴∠FEM=90°
∴∠FEB﹣∠FGC=90°
故答案为:两直线平行,内错角相等,两直线平行,同位角相等,两直线平行,同旁内角互补,∠BEM,∠FEM,90°
(3)过点E作EH∥FG,交CD于点H.
∵AB∥CD
∴∠BEH=∠EHC
又∵EM∥FG
∴∠FGC=∠EHC
∠EFG+∠FEH=180°
即∠FGC=∠BEH
∴∠FEB﹣∠FGC=∠FEB﹣∠BEH=∠FEH
又∵∠EFG=110°
∴∠FEH=70°
∴∠FEB﹣∠FGC=70°
故答案为:70°.
【点睛】
本题主要考查了平行线的判定与性质,熟练掌握平行线的判定与性质进行求解是解决本题的关键.
10、(1)见解析;(2)150°
【分析】
(1)根据画角平分线的方法,画出角平分线即可;
(2)先求出的度数,然后由角平分线的定义,即可求出答案.
【详解】
解:(1)如图,OD即为平分线
(2)解:∵,
∴,
,
∴;
【点睛】
本题考查了角平分线的定义,画角平分线,解题的关键是掌握角平分线的定义进行解题.
相关试卷
这是一份初中数学沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试同步达标检测题,共32页。试卷主要包含了如图木条a,在下列各题中,属于尺规作图的是等内容,欢迎下载使用。
这是一份初中数学沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试同步达标检测题,共28页。
这是一份2021学年第十三章 相交线 平行线综合与测试一课一练,共26页。试卷主要包含了下列关于画图的语句正确的是.,如图,能判定AB∥CD的条件是等内容,欢迎下载使用。