终身会员
搜索
    上传资料 赚现金

    难点解析沪教版(上海)七年级数学第二学期第十三章相交线 平行线定向攻克试题(无超纲)

    立即下载
    加入资料篮
    难点解析沪教版(上海)七年级数学第二学期第十三章相交线 平行线定向攻克试题(无超纲)第1页
    难点解析沪教版(上海)七年级数学第二学期第十三章相交线 平行线定向攻克试题(无超纲)第2页
    难点解析沪教版(上海)七年级数学第二学期第十三章相交线 平行线定向攻克试题(无超纲)第3页
    还剩27页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    七年级下册第十三章 相交线 平行线综合与测试测试题

    展开

    这是一份七年级下册第十三章 相交线 平行线综合与测试测试题,共30页。试卷主要包含了下列说法中,正确的是等内容,欢迎下载使用。
    七年级数学第二学期第十三章相交线 平行线定向攻克
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、下列说法:
    (1)两条不相交的直线是平行线;
    (2)过一点有且只有一条直线与已知直线平行;
    (3)在同一平面内两条不相交的线段一定平行;
    (4)过一点有且只有一条直线与已知直线垂直;
    (5)两点之间,直线最短;
    其中正确个数是(   )
    A.0个 B.1个 C.2个 D.3个
    2、在如图中,∠1和∠2不是同位角的是(  )
    A. B.
    C. D.
    3、下列语句中:
    ①有公共顶点且相等的角是对顶角;②直线外一点到这条直线的垂线段,叫做点到直线的距离;③互为邻补角的两个角的平分线互相垂直;④经过一点有且只有一条直线与已知直线垂直;其中正确的个数有( )
    A.1个 B.2个 C.3个 D.4个
    4、如图,一条公路经过两次转弯后又回到原来的方向,如果第一次的拐角为150°,则第二次的拐角为(  )

    A.40° B.50° C.140° D.150°
    5、下列图形中,∠1与∠2不是对顶角的有(  )

    A.1个 B.2个 C.3个 D.0个
    6、下列说法中,正确的是(  )
    A.从直线外一点到这条直线的垂线段,叫做这个点到这条直线的距离
    B.互相垂直的两条直线不一定相交
    C.直线AB外一点P与直线上各点连接而成的所有线段中最短线段的长是7cm,则点P到直线AB的距离是7cm
    D.过一点有且只有一条直线垂直于已知直线
    7、如图,下列条件能判断直线l1//l2的有( )
    ①;②;③;④;⑤

    A.1个 B.2个 C.3个 D.4个
    8、如图,O为直线AB上一点,∠COB=36°12',则∠AOC的度数为(  )

    A.164°12' B.136°12' C.143°88' D.143°48'
    9、一副直角三角板如图放置,点C在FD的延长线上,AB∥CF,∠F=∠ACB=90°,∠A=60°,则∠DBC的度数为( )

    A.45° B.25° C.15° D.20°
    10、下列说法中正确的有( )
    ①一条直线的平行线只有一条.
    ②过一点与已知直线平行的直线只有一条.
    ③因为a∥b,c∥d,所以a∥d.
    ④经过直线外一点有且只有一条直线与已知直线平行.
    A.1个 B.2个 C.3个 D.4个
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、小军在一张纸上画一条直线,再画这条直线的平行线,然后依次画前一条直线的平行线,当他画到第十条直线时,第十条直线与第一条直线的位置关系是________.
    2、已知三条不同的直线a,b,c在同一平面内,下列四个命题:
    ①如果ab,a⊥c,那么b⊥c;
    ②如果ba,ca,那么bc;
    ③如果b⊥a,c⊥a,那么b⊥c; 
    ④如果b⊥a,c⊥a,那么bc.
    其中正确的是__.(填写序号)
    3、如图,AD是∠EAC的平分线,AD∥BC,∠B=40°,则∠DAC的度数为____.

    4、在体育课上某同学跳远的情况如图所示,直线表示起跳线,经测量,PB=3.3米,PC=3.1米,PD=3.5米,则该同学的实际立定跳远成绩是___________米;

    5、已知直线AB、CD相交于点O,且A、B和C、D分别位于点O两侧,OE⊥AB,,则____________.
    三、解答题(10小题,每小题5分,共计50分)
    1、如图所示,直线AB、CD相交于点O,∠1=65°,求∠2、∠3、∠4的度数

    2、如图,已知∠A=120°,∠FEC=120°,∠1=∠2,试说明∠FDG=∠EFD.请补全证明过程,即在下列括号内填上结论或理由.

    解:∵∠A=120°,∠FEC=120°(已知),
    ∴∠A=  (   ).
    ∴AB∥  (   ).
    又∵∠1=∠2(已知),
    ∴AB∥CD (   ).
    ∴EF∥   (   ).
    ∴∠FDG=∠EFD (   ).
    3、直线AB//CD,直线EF分别交AB、CD于点M、N,NP平分∠MND.

    (1)如图1,若MR平分∠EMB,则MR与NP的位置关系是 .
    (2)如图2,若MR平分∠AMN,则MR与NP有怎样的位置关系?请说明理由.
    (3)如图3,若MR平分∠BMN,则MR与NP有怎样的位置关系?请说明理由.
    4、如图,在边长为1的正方形网格中,点A、B、C、D都在格点上.按要求画图:
    (1)如图a,在线段AB上找一点P,使PC+PD最小.
    (2)如图b,在线段AB上找一点Q,使CQ⊥AB,画出线段CQ.
    (3)如图c,画线段CM∥AB.要求点M在格点上.

    5、如图,已知,平分,平分,求证.

    证明:∵平分(已知),
    ∴ ( ),
    同理 ,
    ∴ ,
    又∵(已知)
    ∴ ( ),
    ∴.
    6、已知:如图,ABCDEF,点G、H、M分别在AB、CD、EF上.求证:.

    7、如图所示,从标有数字的角中找出:
    (1)直线CD和AB被直线AC所截构成的内错角.
    (2)直线CD和AC被直线AD所截构成的同位角.
    (3)直线AC和AB被直线BC所截构成的同旁内角.

    8、小明同学遇到这样一个问题:
    如图①,已知:AB∥CD,E为AB、CD之间一点,连接BE,ED,得到∠BED.
    求证:∠BED=∠B+∠D.
    小亮帮助小明给出了该问的证明.
    证明:
    过点E作EF∥AB
    则有∠BEF=∠B
    ∵AB∥CD
    ∴EF∥CD
    ∴∠FED=∠D
    ∴∠BED=∠BEF+∠FED=∠B+∠D
    请你参考小亮的思考问题的方法,解决问题:
    (1)直线l1∥l2,直线EF和直线l1、l2分别交于C、D两点,点A、B分别在直线l1、l2上,猜想:如图②,若点P在线段CD上,∠PAC=15°,∠PBD=40°,求∠APB的度数.
    (2)拓展:如图③,若点P在直线EF上,连接PA、PB(BD<AC),直接写出∠PAC、∠APB、∠PBD之间的数量关系.

    9、如图1,在平面直角坐标系中,,,且满足,过作轴于.

    (1)求,的值;
    (2)在轴上是否存在点P,使得和的面积相等,若存在,求出点P坐标,若不存在,试说明理由.
    (3)若过作交轴于,且,分别平分,,如图2,图3,
    ①求:的度数;
    ②求:的度数.
    10、补全下列推理过程:
    如图,,,,试说明.

    解:,(已知),
    (垂直的定义).
    ( ).
    ( ).
    (已知),
    (等量代换).
    ( ).

    -参考答案-
    一、单选题
    1、B
    【分析】
    根据平面内相交线和平行线的基本性质逐项分析即可.
    【详解】
    解:(1)在同一平面内,两条不相交的直线是平行线,故原说法错误;
    (2)过直线外一点有且只有一条直线与已知直线平行,故原说法错误;
    (3)在同一平面内两条不相交的线段不一定平行,故原说法错误;
    (4)过一点有且只有一条直线与已知直线垂直,故原说法正确;
    (5)两点之间,线段最短,故原说法错误;
    故选:B.
    【点睛】
    本题考查平面内两直线的关系,及其推论等,掌握基本概念和推论是解题关键.
    2、D
    【分析】
    同位角的定义:两条直线a,b被第三条直线c所截,在截线c的同侧,被截两直线a,b的同一方向的两个角,我们把这样的两个角称为同位角,依此即可求解.
    【详解】
    解:A、∠1与∠2有一条边在同一条直线上,另一条边在被截线的同一方,是同位角,不符合题意;
    B、∠1与∠2有一条边在同一条直线上,另一条边在被截线的同一方,是同位角,不符合题意;
    C、∠1与∠2有一条边在同一条直线上,另一条边在被截线的同一方,是同位角,不符合题意;
    D、∠1与∠2的一边不在同一条直线上,不是同位角,符合题意.
    故选:D.
    【点睛】
    本题题考查三线八角中的同位角识别,解题关键在于掌握判断是否是同位角,必须符合三线八角中,在截线的同侧,并且在被截线的同一方的两个角是同位角.
    3、A
    【分析】
    根据对顶角,点到直线的距离,邻补角,角平分线以及垂直的定义分别判断.
    【详解】
    解:①有公共顶点且相等的角不一定是对顶角,故错误;
    ②直线外一点到这条直线的垂线段的长度,叫做点到直线的距离,故错误
    ③互为邻补角的两个角的平分线互相垂直,故正确;
    ④同一平面内,经过一点有且只有一条直线与已知直线垂直,故错误;
    故选A.
    【点睛】
    本题考查了对顶角,点到直线的距离,邻补角,角平分线以及垂直的定义,属于基础知识,要注意理解概念,抓住易错点.
    4、D
    【分析】
    由于拐弯前、后的两条路平行,可考虑用平行线的性质解答.
    【详解】
    解:∵拐弯前、后的两条路平行,
    ∴∠B=∠C=150°(两直线平行,内错角相等).
    故选:D.
    【点睛】
    本题考查平行线的性质,解答此题的关键是将实际问题转化为几何问题,利用平行线的性质求解.
    5、C
    【分析】
    根据对顶角的定义:有公共顶点且两条边都互为反向延长线的两个角称为对顶角,逐一判断即可.
    【详解】
    解:①中∠1和∠2的两边不互为反向延长线,故①符合题意;
    ②中∠1和∠2是对顶角,故②不符合题意;
    ③中∠1和∠2的两边不互为反向延长线,故③符合题意;
    ④中∠1和∠2没有公共点,故④符合题意.
    ∴∠1 和∠2 不是对顶角的有3个,
    故选C.
    【点睛】
    此题考查的是对顶角的识别,掌握对顶角的定义是解决此题的关键.
    6、C
    【分析】
    根据点到直线距离的定义分析,可判断选项A和C;根据相交线的定义分析,可判断选项B,根据垂线的定义分析,可判断选项D,从而完成求解.
    【详解】
    从直线外一点到这条直线的垂线段的长度,叫做这个点到这条直线的距离,即选项A错误;
    在同一平面内,互相垂直的两条直线一定相交,即选项B错误;
    直线AB外一点P与直线上各点连接而成的所有线段中最短线段的长是7cm,则点P到直线AB的距离是7cm,即选项C正确;
    在同一平面内,过一点有且只有一条直线垂直于已知直线,即选项D错误;
    故选:C.
    【点睛】
    本题考查了点和直线的知识;解题的关键是熟练掌握点到直线距离、相交线、垂线的性质,从而完成求解.
    7、D
    【分析】
    根据平行线的判定定理进行依次判断即可.
    【详解】
    ①∵∠1,∠3互为内错角,∠1=∠3,∴;
    ②∵∠2,∠4互为同旁内角,∠2+∠4=180° ,∴;
    ③∠4,∠5互为同位角,∠4=∠5,∴;
    ④∠2,∠3没有位置关系,故不能证明 ,
    ⑤,,
    ∴∠1=∠3,
    ∴,
    故选D.
    【点睛】
    此题主要考查平行线的判定,解题的关键是熟知平行线的判定定理.
    8、D
    【分析】
    根据邻补角及角度的运算可直接进行求解.
    【详解】
    解:由图可知:∠AOC+∠BOC=180°,
    ∵∠COB=36°12',
    ∴∠AOC=180°-∠BOC=143°48',
    故选D.
    【点睛】
    本题主要考查邻补角及角度的运算,熟练掌握邻补角及角度的运算是解题的关键.
    9、C
    【分析】
    直接利用三角板的特点,结合平行线的性质得出∠ABD=45°,进而得出答案.
    【详解】
    解:由题意可得:∠EDF=45°,∠ABC=30°,
    ∵AB∥CF,
    ∴∠ABD=∠EDF=45°,
    ∴∠DBC=45°-30°=15°.
    故选:C.
    【点睛】
    此题主要考查了平行线的性质,根据题意得出∠ABD的度数是解题关键.
    10、A
    【分析】
    根据平行线的性质,平行线的判定判断即可.
    【详解】
    ∵一条直线的平行线有无数条,
    ∴①的说法不正确;
    ∵经过直线外一点有且只有一条直线与已知直线平行,
    ∴②的说法不正确,④的说法正确;
    ∵a∥b,c∥d,无法判定a∥d
    ∴③的说法不正确.
    只有一个是正确的,
    故选A.
    【点睛】
    本题考查了平行线的性质,平行线的判定,熟练掌握性质,灵活运用平行线的判定定理是解题的关键.
    二、填空题
    1、平行
    【分析】
    根据平行线的推论:平行于同一直线的两条直线互相平行,进行解答即可.
    【详解】
    解:小军在一张纸上画一条直线,再画这条直线的平行线,
    然后依次画前一条直线的平行线,当他画到第十条直线时,
    第十条直线与第一条直线的位置关系是:平行,
    故答案为:平行.
    【点睛】
    本题考查了平行线的推论,熟知平行于同一直线的两条直线互相平行是解本题的关键.
    2、①②④
    【分析】
    根据两直线的位置关系一一判断即可.
    【详解】
    解:在同一个平面内,①如果ab,a⊥c,那么b⊥c,正确;
    ②如果ba,ca,那么bc,正确;
    ③如果b⊥a,c⊥a,那么bc,错误;
    ④如果b⊥a,c⊥a,那么bc,正确;
    故答案为:①②④.
    【点睛】
    本题考查两直线的位置关系,解题的关键是掌握垂直于同一直线的两条直线平行,平行于同一直线的两条直线平行.
    3、40°
    【分析】
    根据平行线的性质可得∠EAD=∠B,根据角平分线的定义可得∠DAC=∠EAD,即可得答案.
    【详解】
    ∵AD∥BC,∠B=40°,
    ∴∠EAD=∠B=40°,
    ∵AD是∠EAC的平分线,
    ∴∠DAC=∠EAD=40°,
    故答案为:40°
    【点睛】
    本题考查平行线的性质及角平分线的定义,两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补;熟练掌握平行线的性质是解题关键.
    4、3.1
    【分析】
    根据点到直线,垂线段最短,即可求解.
    【详解】
    解:根据题意得:该同学的实际立定跳远成绩是PC=3.1米.
    故答案为:3.1
    【点睛】
    本题主要考查了点与直线的位置关系,熟练掌握点到直线,垂线段最短是解题的关键.
    5、130°或50°
    【分析】
    根据题意作出图形,根据垂直的定义,互余与互补的定义,分类讨论即可
    【详解】
    ①如图,






    ②如图,






    综上所述,或
    故答案为:130°或50°
    【点睛】
    本题考查了相交线所成角,对顶角相等,垂直的定义,求一个角的余角,补角,分类讨论是解题的关键.
    三、解答题
    1、∠2=115°,∠3=65°,∠4=115°
    【分析】
    根据对顶角相等和邻补角定义可求出各个角.
    【详解】
    解:∵∠1=65°,∠1=∠3,
    ∴∠3=65°,
    ∵∠1=65°,∠1+∠2=180°,
    ∴∠2=180°-65°=115°,
    又∵∠2=∠4,
    ∴∠4=115°.
    【点睛】
    本题考核知识点:对顶角,邻补角,解题关键是掌握对顶角,邻补角的定义和性质.
    2、∠FEC;等量代换;EF;同位角相等,两直线平行;内错角相等,两直线平行;CD;平行于同一条直线的两直线互相平行;两直线平行,内错角相等
    【分析】
    利用平行线的判定,由已知得AB∥EF、AB∥CD,可推出EF∥CD,利用平行线的性质得结论
    【详解】
    解:∵∠A=120°,∠FEC=120°(已知),
    ∴∠A=∠FEC(等量代换),
    ∴AB∥EF(同位角相等,两直线平行),
    又∵∠1=∠2(已知),
    ∴AB∥CD(内错角相等,两直线平行),
    ∴EF∥CD(平行于同一条直线的两直线互相平行),
    ∴∠FDG=∠EFD(两直线平行,内错角相等),
    故答案为:∠FEC;等量代换;EF;同位角相等,两直线平行;内错角相等,两直线平行;CD;平行于同一条直线的两直线互相平行;两直线平行,内错角相等.
    【点睛】
    本题考查了平行线的性质和判定,学会分析,正确的利用平行线的性质和判定是解决本题的关键.
    3、(1)MR//NP;(2)MR//NP,理由见解析;(3)MR⊥NP,理由见解析
    【分析】
    (1)根据AB∥CD,得出∠EMB=∠END,根据MR平分∠EMB,NP平分∠EBD,得出,可证∠EMR=∠ENP即可;
    (2)根据AB∥CD,可得∠AMN=∠END,根据MR平分∠AMN,NP平分∠EBD,可得,得出∠RMN=∠ENP即可;
    (3设MR,NP交于点Q,过点Q作QG∥AB,根据AB∥CD,可得∠BMN+∠END=180°,根据MR平分∠BMN,NP平分∠EBD,得出,计算两角和∠BMR+∠NPD=,根据GQ∥AB,AB∥CD,得出∠BMQ=∠GQM,∠GQN=∠PND,得出∠MQN=∠GQM+∠GQN=∠BMQ+∠PND=90°即可.
    【详解】
    证明:(1)结论为MR∥NP.
    如题图1∵AB∥CD,
    ∴∠EMB=∠END,
    ∵MR平分∠EMB,NP平分∠EBD,
    ∴,
    ∴∠EMR=∠ENP,
    ∴MR∥BP;
    故答案为MR∥BP;
    (2)结论为:MR∥NP.
    如题图2,∵AB∥CD,
    ∴∠AMN=∠END,
    ∵MR平分∠AMN,NP平分∠EBD,

    ∴∠RMN=∠ENP,
    ∴MR∥NP;
    (3)结论为:MR⊥NP.
    如图,设MR,NP交于点Q,过点Q作QG∥AB,

    ∵AB∥CD,
    ∴∠BMN+∠END=180°,
    ∵MR平分∠BMN,NP平分∠EBD,
    ∴,
    ∴∠BMR+∠NPD=,
    ∵GQ∥AB,AB∥CD,
    ∴GQ∥CD∥AB,
    ∴∠BMQ=∠GQM,∠GQN=∠PND,
    ∴∠MQN=∠GQM+∠GQN=∠BMQ+∠PND=90°,
    ∴MR⊥NP,
    【点睛】
    本题考查平行线性质与判定,角平分线定义,角的和差,掌握平行线性质与判定,角平分线定义,角的和差是解题关键.
    4、(1)见解析;(2)见解析;(3)见解析
    【分析】
    (1)根据两点之间线段最短即连接CD,则CD与线段AB交于点P,此时PC+PD最小;
    (2)根据图b可知∠B=45°,然后可在线段AB上找一点Q,使∠QCB=45°,则有CQ⊥AB,画出线段CQ;
    (3)根据网格图c可知∠A=45°,然后再格点中找到∠MCA=45°,则有∠A=∠MCA=45°,进而可知CM∥AB.
    【详解】
    解:(1)如图a,点P即为所求;

    (2)如图b,点Q和线段CQ即为所求;


    (3)如图c,线段CM即为所求.
    【点睛】
    本题主要考查格点作图及结合了垂直的定义、平行线的性质等知识点,熟练掌握格点作图是解题的关键.
    5、∠ABC;角平分线的定义;∠BCD;(∠ABC+∠BCD);180°;两直线平行,同旁内角互补
    【分析】
    由平行线的性质可得到∠BAC+∠ACD=180°,再结合角平分线的定义可求得∠1+∠2=90°,可得出结论,据此填空即可.
    【详解】
    证明:∵BE平分∠ABC(已知),
    ∴∠2=∠ABC(角平分线的定义),
    同理∠1=∠BCD,
    ∴∠1+∠2=(∠ABC+∠BCD),
    又∵AB∥CD(已知)
    ∴∠ABC+∠BCD=180°(两直线平行,同旁内角互补 ),
    ∴∠1+∠2=90°.
    故答案为:∠ABC;角平分线的定义;∠BCD;(∠ABC+∠BCD);180°;两直线平行,同旁内角互补.
    【点睛】
    本题考查了平行线的性质,角平分线的定义,是基础题,熟记性质是解题的关键.
    6、见解析
    【分析】
    由AB∥CD∥EF可得,,,即可证明.
    【详解】
    证明:∵AB∥CD(已知)
    ∴(两直线平行,内错角相等)
    又 ∵CD∥EF(已知)
    ∴(两直线平行,内错角相等)
    ∵(已知)
    ∴(等式性质)

    【点睛】
    本题主要考查平行线的性质,准确观察图形,推出角之间的关系是解题关键.
    7、 (1)直线CD和AB被直线AC所截构成的内错角是∠2和∠5; (2)直线CD和AC被直线AD所截构成的同位角是∠1和∠7;(3)直线AC和AB被直线BC所截构成的同旁内角是∠3和∠4
    【分析】
    根据两条直线被第三条直线所截,所形成的角中,两角在两条直线的中间,第三条直线的两旁,可得内错角,两角在两直线的中间,第三条直线的同侧,可得同旁内角,两角在两条直线的同侧,第三条直线的同侧,可得同位角.
    【详解】
    解:(1)直线CD和AB被直线AC所截构成的内错角是∠2和∠5.
    (2)直线CD和AC被直线AD所截构成的同位角是∠1和∠7.
    (3)直线AC和AB被直线BC所截构成的同旁内角是∠3和∠4.
    【点睛】
    此题主要考查了三线八角,关键是掌握同位角的边构成F形,内错角的边构成Z形,同旁内角的边构成U形.
    8、(1)55°;(2)当P在线段CD上时,∠APB=∠PAC +∠PBD;当P在DC延长线上时,∠APB=∠PBD-∠PAC;当P在CD延长线上时,∠APB=∠PAC-∠PBD;
    【分析】
    (1)过点P作PG∥l1,可得∠APG=∠PAC=15°,由l1∥l2,可得PG∥l2,则∠BPG=∠PBD=40°,即可得到∠APB=∠APG+∠BPG=55°;
    (2)分当P在线段CD上时;当P在DC延长线上时;当P在CD延长线上时,三种情况讨论求解即可.
    【详解】
    解:(1)如图所示,过点P作PG∥l1,
    ∴∠APG=∠PAC=15°,
    ∵l1∥l2,
    ∴PG∥l2,
    ∴∠BPG=∠PBD=40°,
    ∴∠APB=∠APG+∠BPG=55°;

    (2)由(1)可得当P在线段CD上时,∠APB=∠PAC +∠PBD;
    如图1所示,当P在DC延长线上时,过点P作PG∥l1,
    ∴∠APG=∠PAC,
    ∵l1∥l2,
    ∴PG∥l2,
    ∴∠BPG=∠PBD=40°,
    ∴∠APB=∠BPG-∠APG=∠PBD-∠PAC;

    如图2所示,当P在CD延长线上时,过点P作PG∥l1,
    ∴∠APG=∠PAC,
    ∵l1∥l2,
    ∴PG∥l2,
    ∴∠BPG=∠PBD=40°,
    ∴∠APB=∠APG-∠BPG=∠PAC-∠PBD;
    ∴综上所述,当P在线段CD上时,∠APB=∠PAC +∠PBD;当P在DC延长线上时,∠APB=∠PBD-∠PAC;当P在CD延长线上时,∠APB=∠PAC-∠PBD.

    【点睛】
    本题主要考查了平行线的性质,平行公理的应用,解题的关键在于能够熟练掌握平行线的性质.
    9、(1),;(2)存在,或;(3)①;②
    【分析】
    (1)根据非负数的和为零,则每一个数为零,列等式计算即可;
    (2)设点P的坐标为(n,0),根据题意,等高等底的两个三角形的面积相等,确定OP=AB=8即|n|=8,化简绝对值即可;
    (3)①利用平行线性质,得内错角相等,运用直角三角形的两个锐角互余求解;
    ②作,利用平行线的性质,角的平分线的定义,计算即可.
    【详解】
    解:(1)∵,
    ∴m+4=0,n-4=0,
    ∴,.
    (2)存在,
    设点P的坐标为(n,0),则OP=|n|,
    ∵A(-4,0),C(4,4),
    ∴B(4,0),AB=4-(-4)=8,
    ∵,,且和的面积相等,
    ∴,
    ∴OP=AB=8,
    ∴|n|=8,
    ∴n=8或n=-8,
    ∴或;
    (3)①∵,
    ∴,
    又∵,
    ∴.
    ②作,如图,

    ∵,
    ∴,
    ∴,,
    ∴,
    ∵,分别平分,,
    ∴,,
    ∴,
    即.
    【点睛】
    本题考查了非负数的性质,平行线的性质,互余即两个角的和为90°,角的平分线即把从角的顶点引一条射线,把这个角分成相等的两个角;坐标的意义,熟练掌握平行线的性质,是解题的关键.
    10、同位角相等,两直线平行;;两直线平行,同位角相等;;内错角相等,两直线平行
    【分析】
    根据题意读懂推理过程中每一步的推理依据即可完成解答.
    【详解】
    ,(已知),
    (垂直的定义),
    (同位角相等,两直线平行),
    (两直线平行,同位角相等),
    (已知),
    (等量代换),
    (内错角相等,两直线平行).
    故答案为:同位角相等,两直线平行;;两直线平行,同位角相等;;内错角相等,两直线平行.
    【点睛】
    本题主要考查了平行线的判定与性质、垂直的定义等知识,关键是读懂推理过程,明确每一步的根据.

    相关试卷

    初中数学沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试同步测试题:

    这是一份初中数学沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试同步测试题,共29页。试卷主要包含了下列语句中,如图,已知,,平分,则等内容,欢迎下载使用。

    七年级下册第十三章 相交线 平行线综合与测试同步练习题:

    这是一份七年级下册第十三章 相交线 平行线综合与测试同步练习题,共31页。

    初中数学沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试课后测评:

    这是一份初中数学沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试课后测评,共29页。试卷主要包含了下列说法,在下列各题中,属于尺规作图的是,下列说法中正确的有个等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map