搜索
    上传资料 赚现金
    英语朗读宝

    精品试题沪教版(上海)七年级数学第二学期第十三章相交线 平行线综合训练试卷(精选含详解)

    精品试题沪教版(上海)七年级数学第二学期第十三章相交线 平行线综合训练试卷(精选含详解)第1页
    精品试题沪教版(上海)七年级数学第二学期第十三章相交线 平行线综合训练试卷(精选含详解)第2页
    精品试题沪教版(上海)七年级数学第二学期第十三章相交线 平行线综合训练试卷(精选含详解)第3页
    还剩26页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2020-2021学年第十三章 相交线 平行线综合与测试综合训练题

    展开

    这是一份2020-2021学年第十三章 相交线 平行线综合与测试综合训练题,共29页。试卷主要包含了如图,∠1与∠2是同位角的是,下列说法中正确的有,如图,在,下列说法中正确的是等内容,欢迎下载使用。
    七年级数学第二学期第十三章相交线 平行线综合训练
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、如图,一辆快艇从P处出发向正北航行到A处时向左转50°航行到B处,再向右转80°继续航行,此时航行方向为(  )

    A.西偏北50° B.北偏西50° C.东偏北30° D.北偏东30°
    2、下列说法:
    ①和为180°且有一条公共边的两个角是邻补角;
    ②过一点有且只有一条直线与已知直线垂直;
    ③同位角相等;
    ④经过直线外一点,有且只有一条直线与这条直线平行,
    其中正确的有( )
    A.0个 B.1个 C.2个 D.3个
    3、若∠1与∠2是内错角,则它们之间的关系是 ( )
    A.∠1=∠2 B.∠1>∠2 C.∠1<∠2 D.∠1=∠2或∠1>∠2或∠1<∠2
    4、如图,∠1与∠2是同位角的是( )

    ① ② ③ ④
    A.① B.② C.③ D.④
    5、如图,∠1=35°,∠AOC=90°,点B,O,D在同一条直线上,则∠2的度数为 ( )

    A.125° B.115° C.105° D.95°
    6、如果两个角的一边在同一直线上,另一边互相平行,则这两个角( )
    A.相等 B.互补 C.互余 D.相等或互补
    7、下列说法中正确的有( )
    ①一条直线的平行线只有一条.
    ②过一点与已知直线平行的直线只有一条.
    ③因为a∥b,c∥d,所以a∥d.
    ④经过直线外一点有且只有一条直线与已知直线平行.
    A.1个 B.2个 C.3个 D.4个
    8、如图,在、两地之间要修条笔直的公路,从地测得公路走向是北偏东,,两地同时开工,若干天后公路准确接通,若公路长千米,另一条公路长是千米,且从地测得公路的走向是北偏西,则地到公路的距离是( )

    A.千米 B.千米 C.千米 D.千米
    9、下列说法中正确的是(  )
    A.锐角的2倍是钝角 B.两点之间的所有连线中,线段最短
    C.相等的角是对顶角 D.若AC=BC,则点C是线段AB的中点
    10、已知∠α的两边分别平行于∠β的两边.若∠α=60°,则∠β的大小为(  )
    A.30° B.60° C.30°或60° D.60°或120°
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、如图将一条两边互相平行的纸带按如图折叠,若∠EFG+∠EGD=150°,则∠EGD=_____

    2、如图,直线AB、CD相交于点O,∠AOD+∠BOC=240°,则∠BOC的度数为__________°.

    3、已知:如图,在三角形ABC中,于点D,连接DE,当时,求证:DEBC.
    证明:∵(已知),
    ∴(垂直的定义).
    ∴________,
    ∵(已知),
    ∴________(依据1:________),
    ∴(依据2:________).

    4、如图,直线AB,CD相交于点O, 过O点作EF⊥AB,若∠1=35º,则∠2=_____ º.

    5、如图,点E是BA延长线上一点,下列条件中:①∠1=∠3;②∠5=∠D;③∠2=∠4;④∠B+∠BCD=180°,能判定ABCD的有___.(填序号)

    三、解答题(10小题,每小题5分,共计50分)
    1、如图,点O在直线AB上,过点O作射线OC,OP平分∠AOC,ON平分∠POB.∠AOC=38°,求∠CON的度数.

    2、已知AB∥CD,点是AB,CD之间的一点.
    (1)如图1,试探索∠AEC,∠BAE,∠DCE之间的数量关系;
    以下是小明同学的探索过程,请你结合图形仔细阅读,并完成填空(理由或数学式):
    解:过点E作PE∥AB(过直线外一点有且只有一条直线与这条直线平行).
    ∵AB∥CD(已知),
    ∴PE∥CD(    ),
    ∴∠BAE=∠1,∠DCE=∠2(    ),
    ∴∠BAE+∠DCE=   +   (等式的性质).
    即∠AEC,∠BAE,∠DCE之间的数量关系是    .
    (2)如图2,点F是AB,CD之间的一点,AF平分∠BAE,CF平分∠DCE.
    ①若∠AEC=74°,求∠AFC的大小;
    ②若CG⊥AF,垂足为点G,CE平分∠DCG,∠AEC+∠AFC=126°,求∠BAE的大小.

    3、请把下列证明过程及理由补充完整(填在横线上):
    4、如图,直线AB、CD相交于点O,已知OE平分∠BOD,且∠AOC:∠AOD=3:7.
    (1)求∠DOE的度数;
    (2)若∠EOF是直角,求∠COF的度数.

    5、如图,直线AB、CD相交于点O,OE平分∠BOC,∠FOE=90°,若∠AOD=70°,求∠AOF度数

    6、如图,点A、B、C在8×5网格的格点上,每小方格是边长为1个单位长度的正方形.请按要求画图,并回答问题:
    (1)延长线段AB到点D,使BD=AB;
    (2)过点C画CE⊥AB,垂足为E;
    (3)点C到直线AB的距离是    个单位长度;
    (4)通过测量    =   ,并由此结论可猜想直线BC与AF的位置关系是    .

    7、如图,∠AGB=∠EHF,∠C=∠D.
    (1)求证:BD∥CE;
    (2)求证:∠A=∠F.

    8、如图,AB∥DG,∠1+∠2=180°.

    (1)试说明:AD∥EF;
    (2)若DG是∠ADC的平分线,∠2=142°,求∠B的度数.
    9、如图,AE=AF,以AE为直径作⊙O交EF点D,过点D作BC⊥AF,交AE的延长线于点B.
    (1)判断直线BC与⊙O的位置关系,并说明理由;
    (2)若AE=5,AC=4,求BE的长.

    10、填空,完成下列说理过程:如图,直线EF和CD相交于点O,∠AOB=90°,OC平分∠AOF,∠AOE=40°.求∠BOD的度数.
    解:∵∠AOE=40°(已知)
    ∴∠AOF=180°﹣ (邻补角定义)
    =180°﹣ °
    = °
    ∵OC平分∠AOF(已知)
    ∴∠AOC∠AOF( )
    ∵∠AOB=90°(已知)
    ∴∠BOD=180°﹣∠AOB﹣∠AOC( )
    =180°﹣90°﹣ °
    = °


    -参考答案-
    一、单选题
    1、D
    【分析】
    由,证明,再利用角的和差求解 从而可得答案.
    【详解】
    解:如图,标注字母, ,

    ∴,

    此时的航行方向为北偏东30°,
    故选:D.
    【点睛】
    本题考查的是平行线的性质,角的和差运算,掌握“两直线平行,同位角相等”是解本题的关键.
    2、B
    【分析】
    根据举反例可判断①,根据垂线的定义可判断②,根据举反例可判断③,根据平行线的基本事实可判断④.
    【详解】
    解:①如图∠AOC=∠2=150°,∠BOC=∠1=30°,满足∠1+∠2=180°,射线OC是两角的共用边,但∠1与∠2不是邻补角,故①不正确;

    ②在同一个面内,过一点有且只有一条直线与已知直线垂直,故②不正确;
    ③如图直线a、b被直线c所截,∠1与∠2是同位角,但∠1>∠2,故③不正确;

    ④经过直线外一点,有且只有一条直线与这条直线平行,是基本事实,故④正确;
    其中正确的有④一共1个.
    故选择B.
    【点睛】
    本题考查基本概念的理解,掌握基本概念是解题关键.
    3、D
    【分析】
    根据内错角角的定义和平行线的性质判断即可.
    【详解】
    解:∵只有两直线平行时,内错角才可能相等,
    ∴根据已知∠1与∠2是内错角可以得出∠1=∠2或∠1>∠2或∠1<∠2,
    三种情况都有可能,
    故选D.
    【点睛】
    本题考查了内错角和平行线的性质,能理解内错角的定义是解此题的关键.
    4、B
    【分析】
    同位角就是两个角都在截线的同旁,又分别处在被截线的两条直线的同侧位置的角.
    【详解】
    根据同位角的定义可知②中的∠1与∠2是同位角;
    故选B.
    【点睛】
    本题主要考查了同位角的判断,准确分析判断是解题的关键.
    5、A
    【分析】
    利用互余角的概念与邻补角的概念解答即可.
    【详解】
    解:∵∠1=35°,∠AOC=90°,
    ∴∠BOC=∠AOC−∠1=55°.
    ∵点B,O,D在同一条直线上,
    ∴∠2=180°−∠BOC=125°.
    故选:A.
    【点睛】
    本题主要考查了角的和差运算,互余角的关系以及邻补角的关系.准确使用邻补角的关系是解题的关键.
    6、D
    【分析】
    根据平行线的性质,结合图形解答即可.
    【详解】
    如图,当AE∥BD时,∠EAB与∠DBC符合题意,
    ∴∠EAB=∠DBC;

    如图,当AE∥BD时,∠EAF与∠DBC符合题意,
    ∵∠EAB+∠EAF=180°,∠EAB=∠DBC,
    ∴∠DBC +∠EAF=180°,
    故选D.
    【点睛】
    本题考查了平行线的性质,熟练掌握平行线的性质,灵活运用属性结合是解题的关键.
    7、A
    【分析】
    根据平行线的性质,平行线的判定判断即可.
    【详解】
    ∵一条直线的平行线有无数条,
    ∴①的说法不正确;
    ∵经过直线外一点有且只有一条直线与已知直线平行,
    ∴②的说法不正确,④的说法正确;
    ∵a∥b,c∥d,无法判定a∥d
    ∴③的说法不正确.
    只有一个是正确的,
    故选A.
    【点睛】
    本题考查了平行线的性质,平行线的判定,熟练掌握性质,灵活运用平行线的判定定理是解题的关键.
    8、B
    【分析】
    根据方位角的概念,图中给出的信息,再根据已知转向的角度求解.
    【详解】
    解:根据两直线平行,内错角相等,可得∠ABG=48°,
    ∵∠ABC=180°−∠ABG−∠EBC=180°−48°−42°=90°,
    ∴AB⊥BC,
    ∴A地到公路BC的距离是AB=8千米,
    故选B.
    【点睛】
    此题是方向角问题,结合生活中的实际问题,将解三角形的相关知识有机结合,体现了数学应用于实际生活的思想.
    9、B
    【分析】
    根据锐角和钝角的概念、线段的性质、对顶角的定义以及中点的性质,即可得到正确结论.
    【详解】
    解:A.锐角的2倍不一定是钝角,例如:锐角20°的2倍是40°是锐角,故不符合题意;
    B.两点之间的所有连线中,线段最短,正确;
    C.相等的角不一定是对顶角,故不符合题意;
    D.当点C在线段AB上,若AC=BC,则点C是线段AB的中点,故不符合题意;
    故选:B.
    【点睛】
    本题考查了锐角和钝角的概念、线段的性质、对顶角的定义以及中点的性质,解题的关键是:熟练掌握这些性质.
    10、D
    【分析】
    根据题意画图如图(1),根据平行线性质两直线平行,同位角相等,即可得出∠α=∠1=∠β,即可得出答案,如图(2)根据平行线性质,两直线平行,同旁内角互补,∠α+∠2=180°,再根据两直线平行,内错角相等,∠2=∠β,即可得出答案.
    【详解】
    解:如图1,
    ∵a∥b,
    ∴∠1=∠α,
    ∵c∥d,
    ∴∠β=∠1=∠α=60°;
    如图(2),
    ∵a∥b,
    ∴∠α+∠2=180°,
    ∵c∥d,
    ∴∠2=∠β,
    ∴∠β+∠α=180°,
    ∵∠α=60°,
    ∴∠β=120°.
    综上,∠β=60°或120°.
    故选:D.

    【点睛】
    本题主要考查了平行线的性质,熟练掌握相关性质进行计算是解决本题的关键.
    二、填空题
    1、
    【分析】
    先根据平行线的性质得到,结合已知∠EFG+∠EGD=150°,解得∠EGD=,再根据折叠的性质解得,结合两直线平行,同旁内角互补得到,据此整理得,进而解题.
    【详解】
    解:

    ∠EFG+∠EGD=150°,
    ∠EGD=
    折叠







    故答案为:.
    【点睛】
    本题考查折叠的性质、平行线的性质等知识,两直线平行,同旁内角互补,掌握相关知识是解题关键.
    2、120
    【分析】
    由题意根据对顶角相等得出∠BOC=∠AOD进而结合∠AOD+∠BOC=240°即可求出∠BOC的度数.
    【详解】
    解:∵∠AOD+∠BOC=240°,∠BOC=∠AOD,
    ∴∠BOC=120°.
    故答案为:120.
    【点睛】
    本题考查的是对顶角的性质,熟练掌握对顶角相等是解题的关键.
    3、 同角的余角相等 内错角相等,两直线平行
    【分析】
    根据垂直的定义及平行线的判定定理即可填空.
    【详解】
    ∵(已知),
    ∴(垂直的定义).
    ∴,
    ∵(已知),
    ∴(同角的余角相等),
    ∴(内错角相等,两直线平行).
    故答案为:;;同角的余角相等;内错角相等,两直线平行.
    【点睛】
    此题考查了平行线的判定与性质,熟记 “内错角相等,两直线平行”是解题的关键.
    4、55
    【分析】
    由已知可得,,进而根据,∠1=35º,即可求得.
    【详解】
    EF⊥AB,

    ,∠1=35º,

    故答案为:55
    【点睛】
    本题考查了两条相交线所成的角,垂直的定义,平角的定义,掌握垂直的定义是解题的关键.
    5、②③④
    【分析】
    根据平行线的判定方法分别判定得出答案.
    【详解】
    解:①中,∵∠1=∠3,∴AD//BC(内错角相等,两直线平行),故此选项不符合题意;
    ②中,∵∠5=∠D,∴AB//CD(内错角角相等,两直线平行),故此选项符合题意;
    ③中,∵∠2=∠4,∴AB//CD(内错角角相等,两直线平行)),故此选项符合题意;
    ④中,∠B+∠BCD=180°,∴AB//CD (同旁内角互补,两直线平行),故此选项符合题意;
    故答案为:②③④.
    【点睛】
    此题主要考查了平行线的判定,正确掌握平行线的判定方法是解题关键.
    三、解答题
    1、61.5°
    【分析】
    由题意易得∠AOP=∠COP=∠AOC=19°,然后根据邻补角可得∠BOP=161°,进而根据角的和差关系可求解.
    【详解】
    解:∵OP平分∠AOC,∠AOC=38°,
    ∴∠AOP=∠COP=∠AOC=×38°=19°,
    ∴∠BOP=180°﹣∠AOP=180°﹣19°=161°,
    ∵ON平分∠POB
    ∴∠PON=∠BOP=×161°=80.5°,
    ∴∠CON=∠PON﹣∠COP=80.5°﹣19°=61.5°.
    【点睛】
    本题主要考查角平分线的定义、邻补角及角的和差关系,熟练掌握角平分线的定义、邻补角及角的和差关系是解题的关键.
    2、(1)平行于同一条直线的两条直线平行,两直线平行,内错角相等,∠1,∠2,∠AEC=∠BAE+∠DCE;(2)①37°;②52°
    【分析】
    (1)结合图形利用平行线的性质填空即可;
    (2)①过F作FG∥AB,由(1)得:∠AEC=∠BAE+∠DCE,根据AB∥CD,FG∥AB,CD∥FG,得出∠AFC=∠AFG+∠GFC=∠BAF+∠DCF,根据AF平分∠BAE,CF平分∠DCE,可得∠BAF=∠BAE,∠DCF=∠DCE,根据角的和差∠AFC=∠BAF+∠DCF=∠AEC即可;
    ②由①得:∠AEC=2∠AFC,可求∠AFC=42°,∠AEC=82°,根据CG⊥AF,求出∠GCF=90-∠AFC=48°,根据角平分线计算得出∠GCF=3∠DCF,求出∠DCF=16°即可.
    【详解】
    解:(1)平行于同一条直线的两条直线平行,
    两直线平行,内错角相等,
    ∠1,∠2,
    ∠AEC=∠BAE+∠DCE,
    故答案为:平行于同一条直线的两条直线平行,两直线平行,内错角相等,∠1,∠2,∠AEC=∠BAE+∠DCE,
    (2)①过F作FG∥AB,
    由(1)得:∠AEC=∠BAE+∠DCE,
    ∵AB∥CD,FG∥AB,
    ∴CD∥FG,
    ∴∠BAF=∠AFG,∠DCF=∠GFC,
    ∴∠AFC=∠AFG+∠GFC=∠BAF+∠DCF,
    ∵AF平分∠BAE,CF平分∠DCE,
    ∴∠BAF=∠BAE,∠DCF=∠DCE,
    ∴∠AFC=∠BAF+∠DCF,
    =∠BAE+∠DCE,
    =(∠BAE+∠DCE),
    =∠AEC,
    =×74°,
    =37°;

    ②由①得:∠AEC=2∠AFC,
    ∵∠AEC+∠AFC=126°,
    ∴2∠AFC+∠AFC=126°
    ∴3∠AFC=126°,
    ∴∠AFC=42°,∠AEC=84°,
    ∵CG⊥AF,
    ∴∠CGF=90°,
    ∴∠GCF=90-∠AFC=48°,
    ∵CE平分∠DCG,
    ∴∠GCE=∠ECD,
    ∵CF平分∠DCE,
    ∴∠DCE=2∠DCF=2∠ECF,
    ∴∠GCF=3∠DCF,
    ∴∠DCF=16°,
    ∴∠DCE=32°,
    ∴∠BAE=∠AEC﹣∠DCE=52°.

    【点睛】
    本题考查平行线性质,角平分线有关的计算,垂直定义,角的和差倍分,简单一元一次方程,掌握平行线性质,角平分线有关的计算,垂直定义,角的和差倍分,简单一元一次方程是解题关键.
    3、∠CAD;两直线平行,内错角相等;∠CAD;等量代换;等式的性质;∠CAD;等量代换;同位角相等,两直线平行
    【分析】
    根据AD∥BC,可得∠3=∠CAD,从而得到∠4=∠CAD,再由∠1=∠2,可得∠BAF=∠CAD.从而得到∠4=∠BAF.即可求证.
    【详解】
    证明:∵AD∥BC(已知),
    ∴∠3=∠CAD(两直线平行,内错角相等).
    ∵∠3=∠4(已知),
    ∴∠4=∠CAD(等量代换).
    ∵∠1=∠2(已知),
    ∴∠1+∠CAF=∠2+∠CAF(等式的性质).
    即∠BAF=∠CAD.
    ∴∠4=∠BAF.(等量代换).
    ∴AB∥CD(同位角相等,两直线平行).
    【点睛】
    本题主要考查了平行线的性质和判定,熟练掌握平行线的性质和判定定理是解题的关键.
    4、(1);(2)
    【分析】
    (1)由∠AOC:∠AOD=3:7,先求解 再利用对顶角相等求解 结合角平分线的定义可得答案;
    (2)先求解 再利用平角的定义可得答案.
    【详解】
    解:(1) ∠AOC:∠AOD=3:7,


    OE平分∠BOD,

    (2)


    【点睛】
    本题考查的是角平分线的定义,对顶角的性质,平角的定义,垂直的定义,角的和差运算,掌握“几何图形中角的和差关系”是解本题的关键.
    5、55°
    【分析】
    由题意利用对顶角可得∠COB=∠AOD=70°,再根据角平分线性质可得∠EOB=∠EOC=35°,进而利用邻补角的性质得出∠AOF=180°-∠EOB-∠FOE即可求得答案.
    【详解】
    解:∵∠AOD=70°,
    ∴∠COB=∠AOD=70°,
    ∵OE平分∠BOC,
    ∴∠EOB=∠EOC=35°,
    ∵∠FOE=90°,
    ∴∠AOF=180°-∠EOB-∠FOE=55°.
    【点睛】
    本题考查角的运算,熟练掌握对顶角、邻补角的性质以及角平分线的定义,掌握对顶角相等、邻补角之和等于180°是解题的关键.
    6、(1)见解析;(2)见解析;(3)2;(4),平行
    【分析】
    (1)根据网格的特点和题意,延长到,使;
    (2)根据网格是正方形,垂线的定义,画出,垂足为,点在线段的延长线上,
    (3)点C到直线AB的距离即的长,网格的特点即可数出的长;
    (4)根据同位角相等,两直线平行,或内错角相等,两直线平行即可得,即可知测量的角度
    【详解】
    解:(1)(2)如图所示,

    (3)由网格可知
    即点C到直线AB的距离是个单位长度
    故答案为:2
    (4)通过测量,可知
    故答案为:,平行
    【点睛】
    本题考查了画线段,画垂线,平行线的性质与判定,点到直线的距离,掌握以上知识是解题的关键.
    7、(1)证明见解析;(2)证明见解析.
    【分析】
    (1)由∠AGB=∠1,∠AGB=∠EHF,可得∠1=∠EHF,则BD∥CE;
    (2)由BD∥CE,可得∠D=∠2,则∠2=∠C,推出AC∥DF,则∠A=∠F.
    【详解】
    证明:(1)∵∠AGB=∠1,∠AGB=∠EHF,
    ∴∠1=∠EHF,
    ∴BD∥CE;
    (2)∵BD∥CE,
    ∴∠D=∠2,
    ∵∠D=∠C,
    ∴∠2=∠C,
    ∴AC∥DF,
    ∴∠A=∠F.

    【点睛】
    本题主要考查了平行线的性质与判定,对顶角相等,熟练掌握平行线的性质与判定条件是解题的关键.
    8、(1)见解析;(2)∠B=38°.
    【分析】
    (1)由AB∥DG,得到∠BAD=∠1,再由∠1+∠2=180°,得到∠BAD+∠2=180°,由此即可证明;
    (2)先求出∠1=38°,由DG是∠ADC的平分线,得到∠CDG=∠1=38°,再由AB∥DG,即可得到∠B=∠CDG=38°.
    【详解】
    (1)∵AB∥DG,
    ∴∠BAD=∠1,
    ∵∠1+∠2=180°,
    ∴∠BAD+∠2=180°.
    ∵AD∥EF .
    (2)∵∠1+∠2=180°且∠2=142°,
    ∴∠1=38°,
    ∵DG是∠ADC的平分线,
    ∴∠CDG=∠1=38°,
    ∵AB∥DG,
    ∴∠B=∠CDG=38°.
    【点睛】
    本题主要考查了平行线的性质与判定,角平分线的定义,熟知平行线的性质与判定条件是解题的关键.
    9、(1)BC与⊙O相切,见解析;(2).
    【分析】
    (1)连接OD,根据等腰三角形的性质得到∠OED=∠ODE,∠OED=∠F,求得∠ODE=∠F,根据平行线的判定得到OD∥AC,根据平行线的性质得到∠ODB=∠ACB,推出OD⊥BC,根据切线的判定定理即可得到结论;
    (2)根据平行线分线段成比例定理得到,于是得到结论.
    【详解】
    解:(1)BC与⊙O相切,
    理由:连接OD,
    ∵OE=OD,
    ∴∠OED=∠ODE,
    ∵AE=AF,
    ∴∠OED=∠F,
    ∴∠ODE=∠F,
    ∴OD∥AC,
    ∴∠ODB=∠ACB,
    ∵DC⊥AF,
    ∴∠ACB=90°,
    ∴∠ODB=90°,
    ∴OD⊥BC,
    ∵OD是⊙O的半径,
    ∴BC与⊙O相切;
    (2)∵OD∥AC,
    ∴,
    ∵AE=5,AC=4,
    即,
    ∴BE=.

    【点睛】
    本题考查等腰三角形的性质、切线的判定与性质、平行线的判定与性质等知识,是重要考点,掌握相关知识是解题关键.
    10、角平分线的定义,平角的定义,
    【分析】
    先利用邻补角的含义求解 再利用角平分线的含义证明:∠AOC∠AOF,再利用平角的定义结合角的和差关系可得答案.
    【详解】
    解:∵∠AOE=40°(已知)
    ∴∠AOF=180°﹣(邻补角定义)
    =180°﹣40°
    =140°
    ∵OC平分∠AOF(已知)
    ∴∠AOC∠AOF(角平分线的定义)
    ∵∠AOB=90°(已知)
    ∴∠BOD=180°﹣∠AOB﹣∠AOC(平角的定义)
    =180°﹣90°﹣70°
    =20°
    故答案为:角平分线的定义,平角的定义,
    【点睛】
    本题考查的是平角的定义,邻补角的含义,角平分线的定义,角的和差运算,掌握“几何图形中角的和差关系”是解本题的关键.

    相关试卷

    2020-2021学年第十三章 相交线 平行线综合与测试课后测评:

    这是一份2020-2021学年第十三章 相交线 平行线综合与测试课后测评,共28页。试卷主要包含了如图所示,下列说法错误的是,如图所示,直线l1∥l2,点A,如图,,交于点,,,则的度数是,下列说法等内容,欢迎下载使用。

    初中数学沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试课后作业题:

    这是一份初中数学沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试课后作业题,共28页。

    初中数学第十三章 相交线 平行线综合与测试同步训练题:

    这是一份初中数学第十三章 相交线 平行线综合与测试同步训练题,共31页。试卷主要包含了在下列各题中,属于尺规作图的是,下列说法中,正确的是,下列说法中正确的个数是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map