初中数学沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试精练
展开
这是一份初中数学沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试精练,共28页。试卷主要包含了如图木条a,如图,直线AB等内容,欢迎下载使用。
七年级数学第二学期第十三章相交线 平行线专项测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,点D是AB上的一点,点E是AC边上的一点,且∠B=70°,∠ADE=70°,∠DEC=100°,则∠C是( )A.70° B.80° C.100° D.110°2、如图,∠1=35°,∠AOC=90°,点B,O,D在同一条直线上,则∠2的度数为 ( )A.125° B.115° C.105° D.95°3、如图,在、两地之间要修条笔直的公路,从地测得公路走向是北偏东,,两地同时开工,若干天后公路准确接通,若公路长千米,另一条公路长是千米,且从地测得公路的走向是北偏西,则地到公路的距离是( )A.千米 B.千米 C.千米 D.千米4、如图,AB∥CD,AE∥CF,∠C=131°,则∠A=( )A.39° B.41° C.49° D.51°5、如图木条a、b、c用螺丝固定在木板a上,且,将木条a、木条b、木条c看作是在同一平面a内的三条直线AC、DF、MN,若使直线AC、直线DF达到平行的位置关系则下列描述错误的是( )A.木条b、c固定不动,木条a绕点B顺时针旋转20°B.木条b、c固定不动,木条a绕点B逆时针旋转160°C.木条a、c固定不动,木条b绕点E逆时针旋转20°D.木条a、c固定不动,木条b绕点E顺时针旋转110°6、在如图中,∠1和∠2不是同位角的是( )A. B.C. D.7、如图,直线a∥b,Rt△ABC的直角顶点C在直线b上.若∠1=50°,则∠2的度数为( )A.30° B.40° C.50° D.60°8、如图,直线AB、CD相交于点O,EO⊥AB于点O,∠EOC=35°,则∠AOD的度数为( )A.55° B.125° C.65° D.135°9、如图,直线AB、CD相交于点O,OE平分∠BOC,若∠BOD:∠BOE=1:2,则∠AOE的大小为( )A.72° B.98°C.100° D.108°10、下列说法:①两直线平行,同旁内角互补;②内错角相等,两直线平行;③同位角相等,两直线平行;④垂直于同一条直线的两条直线平行,其中是平行线的性质的是( )A.① B.②和③ C.④ D.①和④第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,直线AB与CD被直线AC所截得的内错角是 ___.2、如图,直线,三角尺(30°,60,90°)如图摆放,若∠1=52°,则∠2的度数为 _____.3、如图,小明同学在练习本上的相互平行的横格上先画了直线,度量出∠1=112°,接着他准备在点A处画直线.若要使∥,则∠2的度数为_____度.4、如图,直线AB和CD交于O点,OD平分∠BOF,OE ⊥CD于点O,∠AOC=40,则∠EOF=_______.5、如图,在四边形ABCD中,AB∥CD,AD∥BC,点F在BC的延长线上,CE平分∠DCF交AD的延长线于点E,已知∠E=35°,则∠A=___.三、解答题(10小题,每小题5分,共计50分)1、如图,∠ENC+∠CMG=180°,AB∥CD.(1)求证:∠2=∠3.(2)若∠A=∠1+70°,∠ACB=42°,则∠B的大小为______.2、如图,在由相同小正方形组成的网格中,点A、B、C、O都在网格的格点上,∠AOB=90°,射线OC在∠AOB的内部.(1)用无刻度的直尺作图:①过点A作ADOC;②在∠AOB的外部,作∠AOE,使∠AOE=∠BOC;(2)在(1)的条件下,探究∠AOC与∠BOE之间的数量关系,并说明理由.3、如图,在边长为1的正方形网格中,点A、B、C、D都在格点上.按要求画图:(1)如图a,在线段AB上找一点P,使PC+PD最小.(2)如图b,在线段AB上找一点Q,使CQ⊥AB,画出线段CQ.(3)如图c,画线段CM∥AB.要求点M在格点上.4、如图,∠AGB=∠EHF,∠C=∠D.(1)求证:BD∥CE;(2)求证:∠A=∠F.5、直线、相交于点,平分,,,求与的度数.6、如图,己知AB∥DC,AC⊥BC,AC平分∠DAB,∠B=50°,求∠D的大小.阅读下面的解答过程,并填括号里的空白(理由或数学式).解:∵AB∥DC( ),∴∠B+∠DCB=180°( ).∵∠B=( )(已知),∴∠DCB=180°﹣∠B=180°﹣50°=130°.∵AC⊥BC(已知),∴∠ACB=( )(垂直的定义).∴∠2=( ).∵AB∥DC(已知),∴∠1=( )( ).∵AC平分∠DAB(已知),∴∠DAB=2∠1=( )(角平分线的定义).∵AB∥DC(己知),∴( )+∠DAB=180°(两条直线平行,同旁内角互补).∴∠D=180°﹣∠DAB= .7、如图,点A、B、C在8×5网格的格点上,每小方格是边长为1个单位长度的正方形.请按要求画图,并回答问题:(1)延长线段AB到点D,使BD=AB;(2)过点C画CE⊥AB,垂足为E;(3)点C到直线AB的距离是 个单位长度;(4)通过测量 = ,并由此结论可猜想直线BC与AF的位置关系是 . 8、如图,AB∥DG,∠1+∠2=180°.(1)试说明:AD∥EF;(2)若DG是∠ADC的平分线,∠2=142°,求∠B的度数.9、如图,OB⊥OD,OC平分∠AOD,∠BOC=35°,求∠AOD和∠AOB的大小.10、如图,直线AB、CD相交于点O,∠EOC=90°,OF是∠AOE的角平分线,∠COF=34°,求∠BOD的度数. -参考答案-一、单选题1、B【分析】先证明DEBC,根据平行线的性质求解.【详解】解:因为∠B=∠ADE=70°所以DEBC,所以∠DEC+∠C=180°,所以∠C=80°.故选:B.【点睛】此题主要考查平行线的判定与性质,解题的关键是熟知同位角相等,两直线平行.2、A【分析】利用互余角的概念与邻补角的概念解答即可.【详解】解:∵∠1=35°,∠AOC=90°,∴∠BOC=∠AOC−∠1=55°.∵点B,O,D在同一条直线上,∴∠2=180°−∠BOC=125°.故选:A.【点睛】本题主要考查了角的和差运算,互余角的关系以及邻补角的关系.准确使用邻补角的关系是解题的关键.3、B【分析】根据方位角的概念,图中给出的信息,再根据已知转向的角度求解.【详解】解:根据两直线平行,内错角相等,可得∠ABG=48°,∵∠ABC=180°−∠ABG−∠EBC=180°−48°−42°=90°,∴AB⊥BC,∴A地到公路BC的距离是AB=8千米,故选B.【点睛】此题是方向角问题,结合生活中的实际问题,将解三角形的相关知识有机结合,体现了数学应用于实际生活的思想.4、C【分析】由题意直接根据平行线的性质进行分析计算即可得出答案.【详解】解:如图,∵AB∥CD,∠C=131°,∴∠1 =180°-∠C=49°(两直线平行,同旁内角互补),∵AE∥CF,∴∠A=∠C=49°(两直线平行,同位角相等).故选:C.【点睛】本题主要考查平行线的性质,熟练掌握平行线的性质即两直线平行,同旁内角互补和两直线平行,同位角相等以及两直线平行,内错角相等是解答此题的关键.5、D【分析】根据同位角相等,两直线平行,逐项判断即可.【详解】解:A、木条b、c固定不动,木条a绕点B顺时针旋转20°,此时 ,则 ,有 ,故本选项正确,不符合题意;B、木条b、c固定不动,木条a绕点B逆时针旋转160°,此时 ,则 ,有 ,故本选项正确,不符合题意;C、木条a、c固定不动,木条b绕点E逆时针旋转20°,此时 ,则 ,有 ,故本选项正确,不符合题意;D、木条a、c固定不动,木条b绕点E顺时针旋转110°,木条b、c重合,则 ,故本选项错误,符合题意.故选:D.【点睛】本题主要考查了平行线的判定,图形的旋转,熟练掌握同位角相等,两直线平行是解题的关键.6、D【分析】同位角的定义:两条直线a,b被第三条直线c所截,在截线c的同侧,被截两直线a,b的同一方向的两个角,我们把这样的两个角称为同位角,依此即可求解.【详解】解:A、∠1与∠2有一条边在同一条直线上,另一条边在被截线的同一方,是同位角,不符合题意;B、∠1与∠2有一条边在同一条直线上,另一条边在被截线的同一方,是同位角,不符合题意;C、∠1与∠2有一条边在同一条直线上,另一条边在被截线的同一方,是同位角,不符合题意;D、∠1与∠2的一边不在同一条直线上,不是同位角,符合题意.故选:D.【点睛】本题题考查三线八角中的同位角识别,解题关键在于掌握判断是否是同位角,必须符合三线八角中,在截线的同侧,并且在被截线的同一方的两个角是同位角.7、B【分析】由平角的定义可求得∠BCD的度数,再利用平行线的性质即可求得∠2的度数.【详解】解:如图所示:∵∠1=50°,∠ACB=90°,∴∠BCD=180°﹣∠1﹣∠BCD=40°,∵a∥b,∴∠2=∠BCD=40°.故选:B.【点睛】本题主要考查平行线的性质,解答的关键是熟记平行线的性质:两直线平行,同位角相等.8、B【分析】先根据余角的定义求得,进而根据邻补角的定义求得即可.【详解】EO⊥AB,∠EOC=35°,,.故选:B.【点睛】本题考查了垂直的定义,求一个角的余角、补角,掌握求一个角的余角与补角是解题的关键.9、D【分析】根据角平分线的定义得到∠COE=∠BOE,根据邻补角的定义列出方程,解方程求出∠BOD,根据对顶角相等求出∠AOC,结合图形计算,得到答案.【详解】解:设∠BOD=x,∵∠BOD:∠BOE=1:2,∴∠BOE=2x,∵OE平分∠BOC,∴∠COE=∠BOE=2x,∴x+2x+2x=180°,解得,x=36°,即∠BOD=36°,∠COE=72°,∴∠AOC=∠BOD=36°,∴∠AOE=∠COE+∠AOC=108°,故选:D.【点睛】本题考查的是对顶角、邻补角的概念,掌握对顶角相等、邻补角之和为180°是解题的关键.10、A【分析】利用平行线的性质逐一判断即可.【详解】①是平行线的性质,故符合题意;②是平行线的判定,故不符合题意;③是平行线的判定,故不符合题意;④是平行线的判定,故不符合题意;故选:A.【点睛】本题主要考查平行线的性质,掌握平行线的性质和判定的区别是关键.二、填空题1、∠2与∠4【分析】根据内错角的特点即可求解.【详解】由图可得直线AB与CD被直线AC所截得的内错角是∠2与∠4故答案为:∠2与∠4.【点睛】此题主要考查内错角的识别,解题的关键是熟知内错角的特点.2、##【分析】如图,标注字母,过作 再证明证明从而可得答案.【详解】解:如图,标注字母,过作 ∠1=52°, 故答案为:【点睛】本题考查的是平行公理的应用,平行线的性质,掌握“两直线平行,内错角相等”是解本题的关键.3、68【分析】根据平行线的性质,得出,根据平行线的判定,得出,即可得到,进而得到的度数.【详解】解:∵练习本的横隔线相互平行,,∵要使,∴,又,,即, 故答案为:68.【点睛】本题主要考查了平行线的性质与判定条件,解题时注意:两直线平行,同位角相等;同旁内角互补,两直线平行.4、130°【分析】根据对顶角性质可得∠BOD=∠AOC=40°.根据OD平分∠BOF,可得∠DOF=∠BOD=40°,根据OE⊥CD,得出∠EOD=90°,利用两角和得出∠EOF=∠EOD+∠DOF=130°即可.【详解】解:∵AB、CD相交于点O,∴∠BOD=∠AOC=40°.∵OD平分∠BOF,∴∠DOF=∠BOD=40°,∵OE⊥CD,∴∠EOD=90°,∴∠EOF=∠EOD+∠DOF=130°.故答案为130°.【点睛】本题考查相交线对顶角性质,角平分线定义,垂直定义,掌握对顶角性质,角平分线定义,垂直定义是解题关键.5、110︒度【分析】根据平行线的性质和角平分线的性质可得结论.【详解】解:∵AD//BC∴ ∵CE平分∠DCF∴ ∴ ∵AB//CD∴ ∵AD//BC∴ ∴ 故答案为:110︒【点睛】本题主要考查了角的平分线以及平行线的性质,熟练掌握平行线的性质是解答本题的关键.三、解答题1、(1)见解析;(2)34°【分析】(1)根据对顶角相等可得出∠ENC+∠FMN=180°,根据平行线的判定可得FG∥ED,由平行线的性质可得∠2=∠D,∠3=∠D,等量代换即可得出结论;(2)由平行线的性质∠A+∠ACD=180°,结合已知可得∠1+70°+∠1+42°=180°,可求得∠1=34°,根据平行线的性质即可求解.【详解】(1)证明:∵∠ENC+∠CMG=180°,∠CMG=∠FMN,∴∠ENC+∠FMN=180°,∴FG∥ED,∴∠2=∠D,∵AB∥CD,∴∠3=∠D,∴∠2=∠3;(2)解:∵AB∥CD,∴∠A+∠ACD=180°,∵∠A=∠1+70°,∠ACB=42°,∴∠1+70°+∠1+42°=180°,∴∠1=34°,∵AB∥CD,∴∠B=∠1=34°.故答案为:34°.【点睛】本题主要考查了平行线的性质与判定定理,解答此题的关键是注意平行线的性质和判定定理的综合运用.2、(1)①见解析;②见解析;(2)∠AOC+∠BOE=180°,理由见解析【分析】(1)①取格点D,然后作直线AD即可;②取格点E,然后作射线OE即可.(2)根据角的和差定义证明即可.【详解】解:(1)①如图,直线AD即为所求作.②∠AOE即为所求作.(2)∠AOC+∠BOE=180°.理由:∵∠AOC=90°﹣∠BOC,∠BOE=90°+∠AOE,∠BOC=∠AOE,∴∠AOC+∠BOE=90°﹣∠AOE+90°+∠AOE=180°.【点睛】本题考查了格点作图以及角的大小关系,明确题意、熟练掌握上述基本知识是解题关键.3、(1)见解析;(2)见解析;(3)见解析【分析】(1)根据两点之间线段最短即连接CD,则CD与线段AB交于点P,此时PC+PD最小;(2)根据图b可知∠B=45°,然后可在线段AB上找一点Q,使∠QCB=45°,则有CQ⊥AB,画出线段CQ;(3)根据网格图c可知∠A=45°,然后再格点中找到∠MCA=45°,则有∠A=∠MCA=45°,进而可知CM∥AB.【详解】解:(1)如图a,点P即为所求;(2)如图b,点Q和线段CQ即为所求;(3)如图c,线段CM即为所求.【点睛】本题主要考查格点作图及结合了垂直的定义、平行线的性质等知识点,熟练掌握格点作图是解题的关键.4、(1)证明见解析;(2)证明见解析.【分析】(1)由∠AGB=∠1,∠AGB=∠EHF,可得∠1=∠EHF,则BD∥CE;(2)由BD∥CE,可得∠D=∠2,则∠2=∠C,推出AC∥DF,则∠A=∠F.【详解】证明:(1)∵∠AGB=∠1,∠AGB=∠EHF,∴∠1=∠EHF,∴BD∥CE;(2)∵BD∥CE,∴∠D=∠2,∵∠D=∠C,∴∠2=∠C,∴AC∥DF,∴∠A=∠F.【点睛】本题主要考查了平行线的性质与判定,对顶角相等,熟练掌握平行线的性质与判定条件是解题的关键.5、∠3=50°,∠2=65°.【分析】根据邻补角的性质、角平分线的定义进行解答即可.【详解】∵∠FOC=90°,∠1=40°,∴∠3=180°-∠FOC-∠1 =180°-90°-40°=50°,∴∠AOD=180°-∠3=180°-50°=130°,又∵OE平分∠AOD,∴∠2=∠AOD=65°.【点睛】本题考查的是邻补角的概念和性质、角平分线的定义,掌握邻补角之和等于180°是解题的关键.6、见解析.【分析】先根据平行线的性质可得,从而可得,再根据垂直的定义可得,从而可得,然后根据平行线的性质可得,根据角平分线的定义可得,最后根据平行线的性质即可得.【详解】解:∵(已知),∴(两直线平行,同旁内角互补).∵(已知),∴.∵(已知),∴(垂直的定义).∴.∵(已知),∴(两直线平行,内错角相等).∵平分(已知),∴(角平分线的定义).∵(己知),∴(两条直线平行,同旁内角互补).∴.【点睛】本题考查了平行线的性质、垂直的定义、角平分线的定义等知识点,熟练掌握平行线的性质是解题关键.7、(1)见解析;(2)见解析;(3)2;(4),平行【分析】(1)根据网格的特点和题意,延长到,使;(2)根据网格是正方形,垂线的定义,画出,垂足为,点在线段的延长线上,(3)点C到直线AB的距离即的长,网格的特点即可数出的长;(4)根据同位角相等,两直线平行,或内错角相等,两直线平行即可得,即可知测量的角度【详解】解:(1)(2)如图所示, (3)由网格可知即点C到直线AB的距离是个单位长度故答案为:2(4)通过测量,可知故答案为:,平行【点睛】本题考查了画线段,画垂线,平行线的性质与判定,点到直线的距离,掌握以上知识是解题的关键.8、(1)见解析;(2)∠B=38°.【分析】(1)由AB∥DG,得到∠BAD=∠1,再由∠1+∠2=180°,得到∠BAD+∠2=180°,由此即可证明;(2)先求出∠1=38°,由DG是∠ADC的平分线,得到∠CDG=∠1=38°,再由AB∥DG,即可得到∠B=∠CDG=38°.【详解】(1)∵AB∥DG,∴∠BAD=∠1,∵∠1+∠2=180°,∴∠BAD+∠2=180°.∵AD∥EF . (2)∵∠1+∠2=180°且∠2=142°,∴∠1=38°,∵DG是∠ADC的平分线,∴∠CDG=∠1=38°,∵AB∥DG,∴∠B=∠CDG=38°.【点睛】本题主要考查了平行线的性质与判定,角平分线的定义,熟知平行线的性质与判定条件是解题的关键.9、∠AOD=110°,∠AOB=20°【分析】根据OB⊥OD,先可求出∠COD,再根据角平分线的性质求出∠AOD,利用角度的关系即可求出∠AOB.【详解】解:∵OB⊥OD∴∠BOD=90°∵∠BOC=35°,∴∠COD=90°-∠BOC=55°∵OC平分∠AOD,∴∠AOD=2∠COD=110°∴∠AOB=∠AOD-∠BOD=110°-90°=20°.【点睛】此题主要考查角度的求解,解题的关键是熟知角平分线的性质、垂直的定义.10、【分析】根据、可得,OF是∠AOE的角平分线,可得,所以,再根据对顶角相等,即可求解.【详解】解:∵、,∴,∵OF是∠AOE的角平分线,∴,∴,∴,【点睛】此题考查了角平分线的有关计算,解题的关键是掌握角平分线的定义以及角之间的和差关系.
相关试卷
这是一份沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试课后练习题,共27页。试卷主要包含了如图,能与构成同位角的有,下列命题正确的是等内容,欢迎下载使用。
这是一份沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试综合训练题,共33页。试卷主要包含了下列说法中,正确的是,下列说法中正确的个数是等内容,欢迎下载使用。
这是一份初中数学沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试测试题,共28页。试卷主要包含了如图,在等内容,欢迎下载使用。