初中数学沪教版 (五四制)七年级下册第十四章 三角形综合与测试达标测试
展开
这是一份初中数学沪教版 (五四制)七年级下册第十四章 三角形综合与测试达标测试,共32页。试卷主要包含了下列四个命题是真命题的有等内容,欢迎下载使用。
沪教版七年级数学第二学期第十四章三角形章节测评
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,在中,,,AD平分交BC于点D,在AB上截取,则的度数为( )
A.30° B.20° C.10° D.15°
2、若三条线段中a=3,b=5,c为奇数,那么以a、b、c为边组成的三角形共有( )
A.1个 B.2个 C.3个 D.4个
3、三根小木棒摆成一个三角形,其中两根木棒的长度分别是和,那么第三根小木棒的长度不可能是( )
A. B. C. D.
4、已知三角形的两边长分别为2cm和3cm,则第三边长可能是( )
A.6cm B.5cm C.3cm D.1cm
5、如图,ABC中,∠ABC=45°,CD⊥AB于D,BE平分∠ABC,且BE⊥AC于E,与CD相交于点F,DH⊥BC于H,交BE于G,下列结论中正确的是( )
①BCD为等腰三角形;②BF=AC;③CE=BF;④BH=CE.
A.①② B.①③ C.①②③ D.①②③④
6、如图,等腰中,,,于D,点O是线段AD上一点,点P是BA延长线上一点,若,则下列结论:①;②;③是等边三角形;④.其中正确的是( )
A.①③④ B.①②③ C.②③④ D.①②③④
7、将三根木条钉成一个三角形木架,这个三角形木架具有稳定性.解释这个现象的数学原理是( )
A.SSS B.SAS C.ASA D.AAS
8、如图,点F,C在BE上,AC=DF,BF=EC,AB=DE,AC与DF相交于点G,则与2∠DFE相等的是( )
A.∠A+∠D B.3∠B C.180°﹣∠FGC D.∠ACE+∠B
9、下列四个命题是真命题的有( )
①同位角相等;
②相等的角是对顶角;
③直角三角形两个锐角互余;
④三个内角相等的三角形是等边三角形.
A.1个 B.2个 C.3个 D.4个
10、如图,在中,AD是角平分线,且,若,则的度数是( )
A.45° B.50° C.52° D.58°
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,把两块大小相同的含45°的三角板ACF和三角板CFB如图所示摆放,点D在边AC上,点E在边BC上,且∠CFE=13°,∠CFD=32°,则∠DEC的度数为_______.
2、如图,BD,CE是等边三角形ABC的中线,BD,CE交于点F,则______°.
3、如图,把△ABC绕点C顺时针旋转某个角度α得到,∠A=30°,∠1=70°,则旋转角α的度数为_____.
4、如图,△ABC中,AB=AC=DC,D在BC上,且AD=DB,则∠BAC=_____.
5、如图,∠ACB=90°,AC=BC,AD⊥CD于点D,BE⊥CD于点E,有下面四个结论:① △CAD≌△BCE; ② ∠ABE=∠BAD; ③ AB=CD; ④ CD=AD+DE.其中所有正确结论的序号是____________.
三、解答题(10小题,每小题5分,共计50分)
1、已知,∠A=∠D,BC平分∠ABD,求证:AC=DC.
2、如图,,,求证:.
3、如图,点在上,点在上,,∠=∠.求证:.
4、已知:如图,在ABC中,AB=AC,点D、E分别在边BC,AC上,AD=AE.
(1)若∠BAD=30°,则∠EDC= °;若∠EDC=20°,则∠BAD= °.
(2)设∠BAD=x,∠EDC=y,写出y与x之间的关系式,并给出证明.
5、如图,等边△ABC中,点D在BC上,CE=CD,∠BCE=60°,连接AD、BE.
(1)如图1,求证:AD=BE;
(2)如图2,延长AD交BE于点F,连接DE、CF,在不添加任何辅助线和其它字母的情况下,请直接写出等于120°的角.
6、如图,为等边三角形,D是BC中点,,CE是的外角的平分线.
求证:.
7、如图,,,E为BC中点,DE平分.
(1)求证:平分;
(2)求证:;
(3)求证:.
8、如图,AB=AD,AC=AE,BC=DE,点E在BC上.
(1)求证:∠EAC=∠BAD;
(2)若∠EAC=42°,求∠DEB的度数.
9、如图1,点O是线段AD的中点,分别以AO和DO为边在线段AD的同侧作等边三角形OAB和等边三角形OCD,连接AC和BD,相交于点E,连接BC.
(1)求证DOB≌AOC;
(2)求∠CEB的大小;
(3)如图2,OAB固定不动,保持△OCD的形状和大小不变,将OCD绕点O旋转(OAB和OCD不能重叠),求∠CEB的大小.
10、 “三等分角”是被称为几何三大难题的三个古希腊作图难题之一.如图1所示的“三等分角仪”是利用阿基米德原理做出的.这个仪器由两根有槽的棒PA,PB组成,两根棒在P点相连并可绕点P旋转,C点是棒PA上的一个固定点,点A,O可在棒PA,PB内的槽中滑动,且始终保持OA=OC=PC.∠AOB为要三等分的任意角.则利用“三等分角仪”可以得到∠APB =∠AOB.
我们把“三等分角仪”抽象成如图2所示的图形,完成下面的证明.
已知:如图2,点O,C分别在∠APB的边PB,PA上,且OA=OC=PC.
求证:∠APB =∠AOB.
-参考答案-
一、单选题
1、B
【分析】
利用已知条件证明△ADE≌△ADC(SAS),得到∠DEA=∠C,根据外角的性质可求的度数.
【详解】
解:∵AD是∠BAC的平分线,
∴∠EAD=∠CAD
在△ADE和△ADC中,
,
∴△ADE≌△ADC(SAS),
∴∠DEA=∠C,
∵,∠DEA=∠B +,
∴;
故选:B
【点睛】
本题考查了全等三角形的性质与判定,解决本题的关键是证明△ADE≌△ADC.
2、C
【分析】
根据三角形的三边关系,得到合题意的边,进而求得三角形的个数.
【详解】
解:c的范围是:5﹣3<c<5+3,即2<c<8.
∵c是奇数,
∴c=3或5或7,有3个值.
则对应的三角形有3个.
故选:C.
【点睛】
本题主要考查了三角形三边关系,准确分析判断是解题的关键.
3、D
【分析】
设第三根木棒长为x厘米,根据三角形的三边关系可得8﹣5<x<8+5,确定x的范围即可得到答案.
【详解】
解:设第三根木棒长为x厘米,由题意得:
8﹣5<x<8+5,即3<x<13,
故选:D.
【点睛】
此题主要考查了三角形的三边关系,要注意三角形形成的条件:任意两边之和>第三边,任意两边之差<第三边.
4、C
【分析】
根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边.即可求解.
【详解】
解:设第三边长为xcm,根据三角形的三边关系可得:
3-2<x<3+2,
解得:1<x<5,
只有C选项在范围内.
故选:C.
【点睛】
本题考查了三角形的三边关系,关键是掌握第三边的范围是:大于已知的两边的差,而小于两边的和.
5、C
【分析】
根据∠ABC=45°,CD⊥AB可得出BD=CD;利用AAS判定Rt△DFB≌Rt△DAC,从而得出BF=AC;再利用AAS判定Rt△BEA≌Rt△BEC,即可得到CE=BF;由CE=BF,BH=BC,在三角形BCF中,比较BF、BC的长度即可得到CE<BH.
【详解】
解:∵CD⊥AB,∠ABC=45°,
∴△BCD是等腰直角三角形.
∴BD=CD,故①正确;
在Rt△DFB和Rt△DAC中,
∵∠DBF=90°﹣∠BFD,∠DCA=90°﹣∠EFC,且∠BFD=∠EFC,
∴∠DBF=∠DCA.
又∵∠BDF=∠CDA=90°,BD=CD,
∴△DFB≌△DAC.
∴BF=AC,故②正确;
在Rt△BEA和Rt△BEC中
∵BE平分∠ABC,
∴∠ABE=∠CBE.
又∵BE=BE,∠BEA=∠BEC=90°,
∴Rt△BEA≌Rt△BEC.
∴CE=AC=BF,故③正确;
∵CE=AC=BF,BH=BC,
在△BCF中,∠CBE=∠ABC=22.5°,∠DCB=∠ABC=45°,
∴∠BFC=112.5°,
∴BF<BC,
∴CE<BH,故④错误;
故选:C.
【点睛】
本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、SSA、HL.在复杂的图形中有45°的角,有垂直,往往要用到等腰直角三角形,要注意掌握并应用此点.
6、A
【分析】
①利用等边对等角得:∠APO=∠ABO,∠DCO=∠DBO,则∠APO+∠DCO=∠ABO+∠DBO=∠ABD,据此即可求解;②因为点O是线段AD上一点,所以BO不一定是∠ABD的角平分线,可作判断;③证明∠POC=60°且OP=OC,即可证得△OPC是等边三角形;④证明△OPA≌△CPE,则AO=CE,得AC=AE+CE=AO+AP.
【详解】
解:①如图1,连接OB,
∵AB=AC,AD⊥BC,
∴BD=CD,∠BAD=∠BAC=×120°=60°,
∴OB=OC,∠ABC=90°﹣∠BAD=30°
∵OP=OC,
∴OB=OC=OP,
∴∠APO=∠ABO,∠DCO=∠DBO,
∴∠APO+∠DCO=∠ABO+∠DBO=∠ABD=30°,故①正确;
②由①知:∠APO=∠ABO,∠DCO=∠DBO,
∵点O是线段AD上一点,
∴∠ABO与∠DBO不一定相等,
则∠APO与∠DCO不一定相等,故②不正确;
③∵∠APC+∠DCP+∠PBC=180°,
∴∠APC+∠DCP=150°,
∵∠APO+∠DCO=30°,
∴∠OPC+∠OCP=120°,
∴∠POC=180°﹣(∠OPC+∠OCP)=60°,
∵OP=OC,
∴△OPC是等边三角形,故③正确;
④如图2,在AC上截取AE=PA,
∵∠PAE=180°﹣∠BAC=60°,
∴△APE是等边三角形,
∴∠PEA=∠APE=60°,PE=PA,
∴∠APO+∠OPE=60°,
∵∠OPE+∠CPE=∠CPO=60°,
∴∠APO=∠CPE,
∵OP=CP,
在△OPA和△CPE中,
,
∴△OPA≌△CPE(SAS),
∴AO=CE,
∴AC=AE+CE=AO+AP,
∴AB=AO+AP,故④正确;
正确的结论有:①③④,
故选:A.
【点睛】
本题主要考查了全等三角形的判定与性质、等腰三角形的判定与性质、等边三角形的判定与性质等知识,正确作出辅助线是解决问题的关键.
7、A
【分析】
根据三根木条即为三角形的三边长,利用全等三角形判定定理确定唯一三角形即可得.
【详解】
解:三根木条即为三角形的三边长,
即为利用确定三角形,
故选:A.
【点睛】
题目主要考查利用全等三角形判定确定唯一三角形,熟练掌握全等三角形的判定是解题关键.
8、C
【详解】
由题意根据等式的性质得出BC=EF,进而利用SSS证明△ABC与△DEF全等,利用全等三角形的性质得出∠ACB=∠DFE,最后利用三角形内角和进行分析解答.
【分析】
解:∵BF=EC,
∴BF+FC=EC+FC,
∴BC=EF,
在△ABC与△DEF中,
,
∴△ABC≌△DEF(SSS),
∴∠ACB=∠DFE,
∴2∠DFE=180°﹣∠FGC,
故选:C.
【点睛】
本题考查全等三角形的判定与性质,其中全等三角形的判定方法有:SSS;SAS;ASA;AAS;以及HL(直角三角形的判定方法).
9、B
【分析】
利用平行线的性质、对顶角的定义、直角三角形的性质及等边三角形的性质分别判断后即可确定正确的选项.
【详解】
①两直线平行,同位角相等,故错误,是假命题;
②相等的角是对顶角,错误,是假命题;
③直角三角形两个锐角互余,正确,是真命题;
④三个内角相等的三角形是等边三角形,正确,是真命题,
综上所述真命题有2个,
故选:B.
【点睛】
本题考查了命题真假的判断,要说明一个命题是正确的,需要根据命题的题设和已学的有关公理、定理进行说明、推理、证明,正确的命题叫做真命题,错误的命题叫做假命题.
10、A
【分析】
根据角平分线性质求出∠DCA,再根据等腰三角形的性质和三角形的内角和定理求解∠C和∠B即可.
【详解】
解:∵AD是角平分线,,
∴∠DCA==30°,
∵AD=AC,
∴∠C=(180°-∠DCA)÷2=75°,
∴∠B=180°-∠BAC-∠C=180°-60°-75°=45°,
故选:A.
【点睛】
本题考查角平分线的性质、等腰三角形的性质、三角形的内角和定理,熟练掌握等腰三角形的性质是解答的关键.
二、填空题
1、
【分析】
作FH垂直于FE,交AC于点H,可证得,由对应边、对应角相等可得出,进而可求出,则.
【详解】
作FH垂直于FE,交AC于点H,
∵
又∵,
∴
∵,FA=CF
∴
∴FH=FE
∵
∵
∴
又∵DF=DF
∴
∴
∵
∴
∵
∴
∴
故答案为:.
【点睛】
本题考查了等腰三角形的性质,全等三角形的判定及其性质,作辅助线HF垂直于FE是解题的关键.
2、120
【分析】
等边三角形中线与角平分线合一,有,,由可求得结果.
【详解】
解:∵是等边三角形
∴
∵BD,CE是等边三角形ABC的中线
∴
又∵
∴
故答案为:.
【点睛】
本题考查了等边三角形的性质,角度的计算.解题的关键在于熟练利用等边三角形三线合一的性质.
3、##
【分析】
由旋转的性质可得再利用三角形的外角的性质求解从而可得答案.
【详解】
解: 把△ABC绕点C顺时针旋转某个角度α得到,∠A=30°,
∠1=70°,
故答案为:
【点睛】
本题考查的是旋转的性质,三角形的外角的性质,利用性质的性质求解是解本题的关键.
4、108°108度
【分析】
先设∠B=x,由AB=AC可知,∠C=x,由AD=DB可知∠B=∠DAB=x,由三角形外角的性质可知∠ADC=∠B+∠DAB=2x,根据DC=CA可知∠ADC=∠CAD=2x,再在△ABC中,由三角形内角和定理即可得出关于x的一元一次方程,求出x的值,从而求解.
【详解】
设∠B=x,
∵AB=AC,
∴∠C=∠B=x,
∵AD=DB,
∴∠B=∠DAB=x,
∴∠ADC=∠B+∠DAB=2x,
∵DC=CA,
∴∠ADC=∠CAD=2x,
在△ABC中,x+x+2x+x=180°,
解得:x=36°.
∴∠BAC=108°.
故答案为:108°.
【点睛】
此题主要考查等腰三角形的判定和性质、三角形的内角和定理,解题的关键是熟练进行逻辑推理
5、①②④
【分析】
由∠ACB=90°,BE⊥CD,AD⊥CD,得到∠ACD+∠BCE=90°,∠ADC=∠CEB=90°,则∠ACD+∠CAD=90°,AD∥BE,即可判断②,即可利用AAS证明△CAD≌△BCE,即可判断①;则AD=CE,得到CD=CE+DE=AD+DE,即可判定④;由AB>AC>CD,得到AB≠CD,即可判断③.
【详解】
解:∵∠ACB=90°,BE⊥CD,AD⊥CD,
∴∠ACD+∠BCE=90°,∠ADC=∠CEB=90°,
∴∠ACD+∠CAD=90°,AD∥BE,
∴∠CAD=∠BCE,∠ABE=∠BAD,故②正确;
又∵AC=CB,
∴△CAD≌△BCE(AAS),故①正确;
∴AD=CE,
∴CD=CE+DE=AD+DE,故④正确,
∵AB>AC>CD,
∴AB≠CD,故③错误;
故答案为:①②④.
【点睛】
本题主要考查了全等三角形的性质与判定,平行线的性质与判定,熟知相关知识是解题的关键.
三、解答题
1、见解析
【分析】
证明△BAC≌△BDC即可得出结论.
【详解】
解:∵BC平分∠ABD,
∴∠ABC=∠DBC,
在△BAC和△BDC中,
∴△BAC≌△BDC,
∴AC=DC.
【点睛】
本题考查角平分线的意义及全等三角形的判定与性质,解题关键是掌握角平分线的性质及全等三角形的判定与性质.
2、证明过程见解析
【分析】
先证明,得到,,再证明,即可得解;
【详解】
由题可得,在和中,
,
∴,
∴,,
又∵,
∴,
在和中,
,
∴,
∴.
【点睛】
本题主要考查了全等三角形的判定与性质,准确分析证明是解题的关键.
3、见解析
【分析】
根据已知条件和公共角,直接根据角边角证明,进而即可证明
【详解】
在与中,
∴.
∴.
【点睛】
本题考查了全等三角形的性质与判定,掌握全等三角形的性质与判定是解题的关键.
4、(1)15,40;(2)y=x,见解析
【分析】
(1)设∠EDC=m,则∠B=∠C=n,根据∠ADE=∠AED=m+n,∠ADC=∠B+∠BAD即可列出方程,从而求解.
(2)设∠BAD=x,∠EDC=y,根据等腰三角形的性质可得∠B=∠C,∠ADE=∠AED=∠C+∠EDC=∠B+y,由∠ADC=∠B+∠BAD=∠ADE+∠EDC即可得∠B+x=∠B+y+y,从而求解.
【详解】
解:(1)设∠EDC=m,∠B=∠C=n,
∵∠AED=∠EDC+∠C=m+n,
又∵AD=AE,
∴∠ADE=∠AED=m+n,
则∠ADC=∠ADE+∠EDC=2m+n,
又∵∠ADC=∠B+∠BAD,
∴∠BAD=2m,
∴2m+n=n+30,解得m=15°,
∴∠EDC的度数是15°;
若∠EDC=20°,则∠BAD=2m=2×20°=40°.
故答案是:15;40;
(2)y与x之间的关系式为y=x,
证明:设∠BAD=x,∠EDC=y,
∵AB=AC,AD=AE,
∴∠B=∠C,∠ADE=∠AED,
∵∠AED=∠C+∠EDC=∠B+y,
∴∠ADC=∠B+∠BAD=∠ADE+∠EDC,
∴∠B+x=∠B+y+y,
∴2y=x,
∴y=x.
【点睛】
本题主要考查了等腰三角形的性质、三角形外角的性质以及一元一次方程的应用,灵活运用等腰三角形的性质成为解答本题的关键.
5、(1)见解析;(2)等于120°的角有∠BFC、∠BDE、∠DFE=120°.
【分析】
(1)利用SAS证明△ADC≌△BEC,即可证明AD=BE;
(2)证明△CDE为等边三角形,可求得∠BDE=120°;利用全等三角形的性质可求得∠BFD=∠BCA=60°,推出∠DFE=120°;同理可推出∠BFC=∠AFC+∠BFD=120°.
【详解】
(1)证明:等边△ABC中,CA=CB,∠ACB=60°,
∵CE=CD,∠BCE=60°,
∴△ADC≌△BEC(SAS),
∴AD=BE;
(2)等于120°的角有∠BFC、∠BDE、∠DFE=120°.
∵CE=CD,∠BCE=60°,
∴△CDE为等边三角形,
∴∠CDE=60°,
∴∠BDE=120°;
∵△ADC≌△BEC,
∴∠DAC=∠EBC,
又∠BDF=∠ADC,
∴∠BFD=∠BCA=60°,
∴∠DFE=120°;
同理可求得∠AFC=∠ABC=60°,
∴∠BFC=∠AFC+∠BFD=120°;
综上,等于120°的角有∠BFC、∠BDE、∠DFE=120°.
【点睛】
本题考查了全等三角形的判定和性质,等边三角形的判定和性质,熟记各图形的性质并准确识图是解题的关键.
6、证明见解析.
【分析】
过D作DG∥AC交AB于G,由等边三角形的性质和平行线的性质得到∠BDG=∠BGD=60°,于是得到△BDG是等边三角形,再证明△AGD≌△DCE即可得到结论.
【详解】
证明:过D作DG∥AC交AB于G,
∵△ABC是等边三角形,
∴AB=AC,∠B=∠ACB=∠BAC=60°,
又∵DG∥AC,
∴∠BDG=∠BGD=60°,
∴△BDG是等边三角形,∠AGD=180°−∠BGD=120°,
∴DG=BD,
∵点D为BC的中点,
∴BD=CD,
∴DG=CD,
∵EC是△ABC外角的平分线,
∴∠ACE=(180°−∠ACB)=60°,
∴∠BCE=∠ACB+∠ACE=120°=∠AGD,
∵AB=AC,点D为BC的中点,
∴∠ADB=∠ADC=90°,
又∵∠BDG=60°,∠ADE=60°,
∴∠ADG=∠EDC=30°,
在△AGD和△ECD中,
,
∴△AGD≌△ECD(ASA).
∴AD=DE.
【点睛】
本题是三角形综合题,主要考查了平行线的性质,全等三角形的性质与判定,等边三角形的判定与性质,熟练掌握全等三角形的判定与性质是解题的关键.
7、(1)见解析;(2)见解析;(3)见解析
【分析】
(1)延长DE交AB延长线于F,由∠B=∠C=90°,推出AB∥CD,则∠CDE=∠F,再由DE平分∠ADC,即可推出∠ADF=∠F,得到AD=AF,即△ADF是等腰三角形,然后证明△CDE≌△BFE得到DE=FE,即E是DF的中点,即可证明AE平分∠BAD;
(2)由(1)即可用三线合一定理证明;
(3)由△CDE≌△BFE,得到CD=BF,则AD=AF=AB+BF=AB+CD.
【详解】
解:(1)如图所示,延长DE交AB延长线于F,
∵∠B=∠C=90°,
∴AB∥CD,
∴∠CDE=∠F,
∵DE平分∠ADC,
∴∠CDE=∠ADE,
∴∠ADF=∠F,
∴AD=AF,
∴△ADF是等腰三角形,
∵E是BC的中点,
∴CE=BE,
∴△CDE≌△BFE(AAS),
∴DE=FE,
∴E是DF的中点,
∴AE平分∠BAD;
(2)由(1)得△ADF是等腰三角形,AD=AF,E是DF的中点,
∴AE⊥DE;
(3)∵△CDE≌△BFE,
∴CD=BF,
∴AD=AF=AB+BF=AB+CD.
【点睛】
本题主要考查了平行线的性质与判定,全等三角形的性质与判定,等腰三角形的性质与判定,熟知相关知识是解题的关键.
8、(1)见解析;(2)42°
【分析】
(1)利用边边边证得△ABC≌△ADE,可得∠BAC=∠DAE,即可求证;
(2)根据等腰三角形的性质,可得∠AEC=∠C=69°,再由△ABC≌△ADE,可得∠AED=∠C=69°, 即可求解.
【详解】
(1)证明:∵AB=AD,AC=AE,BC=DE,
∴△ABC≌△ADE.
∴∠BAC=∠DAE.
∴∠BAC-∠BAE=∠DAE-∠BAE.
即∠EAC=∠BAD;
(2)解:∵AC=AE,∠EAC=42°,
∴∠AEC=∠C= ×(180°-∠EAC)= ×(180°-42°)=69°.
∵△ABC≌△ADE,
∴∠AED=∠C=69°,
∴∠DEB=180°-∠AED-∠C=180°-69°-69°=42°.
【点睛】
本题主要考查了全等三角形的判定和性质,等腰三角形的性质,熟练掌握全等三角形的判定和性质定理,等腰三角形的性质定理是解题的关键.
9、(1)见详解;(2)120°;(2)120°.
【分析】
(1)如图1,根据等边三角形的性质得到OD=OC=OA=OB,∠COD=∠AOB=60°,则利用根据“SAS”判断△AOC≌△BOD;
(2)利用△AOC≌△BOD得到∠CAO=∠DBO,然后根据三角形内角和可得到∠AEB=∠AOB=60°,即可求出答案;
(3)如图2,与(1)的方法一样可证明△AOC≌△BOD;则∠CAO=∠DBO,然后根据三角形内角和可求出∠AEB=∠AOB=60°,即可得到答案.
【详解】
(1)证明:如图1,
∵△ODC和△OAB都是等边三角形,
∴OD=OC=OA=OB,∠COD=∠AOB=60°,
∴∠BOD=∠AOC=120°,
在△AOC和△BOD中
∴△AOC≌△BOD;
(2)解:∵△AOC≌△BOD,
∴∠CAO=∠DBO,
∵∠1=∠2,
∴∠AEB=∠AOB=60°,
∴;
(3)解:如图2,
∵△ODC和△OAB都是等边三角形,
∴OD=OC=OA=OB,∠COD=∠AOB=60°,
∴∠AOB+∠BOC=∠COD+∠BOC,即∠AOC=∠BOD,
在△AOC和△BOD中
∴△AOC≌△BOD;
∴∠CAO=∠DBO,
∵∠1=∠2,
∴∠AEB=∠AOB=60°,
∴;
即∠CEB的大小不变.
【点睛】
本题考查了几何变换综合题:熟练掌握旋转的性质、等边三角形的性质和全等三角形的判定与性质;利用类比的方法解决(3)小题.
10、见解析
【分析】
由,得出为等腰三角形,由外角的性质及等量代换得,再次利用外角的性质及等量代换得,即可证明.
【详解】
解:,
为等腰三角形,
,
由外角的性质得:,
,
再由外角的性质得:,
,
.
【点睛】
本题考查了等腰三角形、外角的性质、解题的关键是掌握外角的性质及等量代换的思想进行求解.
相关试卷
这是一份沪教版 (五四制)七年级下册第十四章 三角形综合与测试当堂达标检测题,共31页。试卷主要包含了如图等内容,欢迎下载使用。
这是一份数学第十四章 三角形综合与测试课后测评,共34页。试卷主要包含了如图,AB=AC,点D等内容,欢迎下载使用。
这是一份初中数学第十四章 三角形综合与测试课时作业,共36页。试卷主要包含了下列三角形与下图全等的三角形是等内容,欢迎下载使用。