终身会员
搜索
    上传资料 赚现金

    2021-2022学年度沪教版七年级数学第二学期第十四章三角形同步练习试题(含详细解析)

    立即下载
    加入资料篮
    2021-2022学年度沪教版七年级数学第二学期第十四章三角形同步练习试题(含详细解析)第1页
    2021-2022学年度沪教版七年级数学第二学期第十四章三角形同步练习试题(含详细解析)第2页
    2021-2022学年度沪教版七年级数学第二学期第十四章三角形同步练习试题(含详细解析)第3页
    还剩30页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    沪教版 (五四制)七年级下册第十四章 三角形综合与测试课后测评

    展开

    这是一份沪教版 (五四制)七年级下册第十四章 三角形综合与测试课后测评,共33页。试卷主要包含了如图,AB=AC,点D等内容,欢迎下载使用。
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、等腰三角形的一个顶角是80°,则它的底角是( ).
    A.40°B.50°C.60°D.70°
    2、如图,∠BAD=90°,AC平分∠BAD,CB=CD,则∠B与∠ADC满足的数量关系为( )
    A.∠B=∠ADCB.2∠B=∠ADC
    C.∠B+∠ADC=180°D.∠B+∠ADC=90°
    3、如图,△ ABC≌△CDA,∠BAC=80°,∠ABC=65°,则∠CAD的度数为( )
    A.35°B.65°C.55°D.40°
    4、如图,在ABC中,AB=AC,D是BC的中点,∠B=35°,则∠BAD=( )
    A.110°B.70°C.55°D.35°
    5、如图,在中,,,AD平分交BC于点D,在AB上截取,则的度数为( )

    A.30°B.20°C.10°D.15°
    6、下列所给的各组线段,能组成三角形的是:( )
    A.2,11,13B.5,12,7C.5,5,11D.5,12,13
    7、在下列长度的四根木棒中,能与3cm,9cm的两根木棒首尾顺次相接钉成一个三角形的是( )
    A.3cmB.6cmC.10cmD.12cm
    8、如图,AB=AC,点D、E分别在AB、AC上,补充一个条件后,仍不能判定△ABE≌△ACD的是( )
    A.∠B=∠CB.AD=AEC.BE=CDD.∠AEB=∠ADC
    9、已知等腰三角形有一个角为50°,则这个等腰三角形的底角度数是( ).
    A.65°B.65°或80°C.50°或80°D.50°或65°
    10、如图,点F,C在BE上,AC=DF,BF=EC,AB=DE,AC与DF相交于点G,则与2∠DFE相等的是( )
    A.∠A+∠DB.3∠BC.180°﹣∠FGCD.∠ACE+∠B
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、如图,在中,BD和CD分别是和的平分线,EF过点D,且,若,,则EF的长为______.
    2、如图,在中,,,E为BC延长线上一点,与的平分线相交于点D,则∠D的度数为______.
    3、如图,已知△ABC是等边三角形,边长为3,G是三角形的重心,那么GA =______.
    4、如图,在正方形网格中,∠BAC______∠DAE.(填“>”、“=”或“<”)
    5、如图,线段AC与BD相交于点O,∠A=∠D=90°,要证明△ABC≌△DCB,还需添加的一个条件是____________.(只需填一个条件即可)
    三、解答题(10小题,每小题5分,共计50分)
    1、如图,在四边形ABCD中,E是CB上一点,分别延长AE,DC相交于点F,,.
    (1)求证:;
    (2)若,求BE的长.
    2、如图,AD为△ABC的角平分线.
    (1)如图1,若BE⊥AD于点E,交AC于点F,AB=4,AC=7.则CF= ;
    (2)如图2,CG⊥AD于点G,连接BG,若△ABG的面积是6,求△ABC的面积;
    (3)如图3,若∠B=2∠C,AB=m,AC=n,则CD的长为 .(用含m,n的式子表示)
    3、人教版初中数学教科书八年级上册第36、37页告诉我们作一个角等于已知角的方法:
    已知:∠AOB.
    求作:∠A′O′B′,使∠A′O′B′=∠AOB.
    作图:
    (1)以O为圆心,任意长为半径画弧,分别交OA、OB于点C、D;
    (2)画一条射线O′A′,以点O′为圆心,OC长为半径画弧,交O′A′于点C′;
    (3)以点C′为圆心,CD长为半径画弧,与第2步中所画的弧相交于点D′;
    (4)过点D′画射线O′B′,则∠A′O′B′=∠AOB.
    请你根据以上材料完成下列问题:
    (1)完成下面证明过程(将正确答案写在相应的横线上).
    证明:由作图可知,在△O′C′D′和△OCD中,

    ∴△O′C′D′≌ ,
    ∴∠A′O′B'=∠AOB.
    (2)这种作一个角等于已知角的方法依据是 .(填序号)
    ①AAS;②ASA;③SSS;④SAS
    4、如图,已知点B,F,C,E在同一直线上,AB∥DE,BF=CE,AB=ED,求证:∠A=∠D.
    5、如图,AD,BC相交于点O,AO=DO.
    (1)如果只添加一个条件,使得△AOB≌△DOC,那么你添加的条件是 (要求:不再添加辅助线,只需填一个答案即可);
    (2)根据已知及(1)中添加的一个条件,证明AB=DC.
    6、已知AMCN,点B在直线AM、CN之间,AB⊥BC于点B.
    (1)如图1,请直接写出∠A和∠C之间的数量关系: .
    (2)如图2,∠A和∠C满足怎样的数量关系?请说明理由.
    (3)如图3,AE平分∠MAB,CH平分∠NCB,AE与CH交于点G,则∠AGH的度数为 .
    7、如图,已知点E、C在线段BF上,,,.求证:ΔABC≅ΔDEF.
    8、(1)我们把两个面积相等但不全等的三角形叫做“偏等积三角形”,如图1,中,,P为上一点,当_______时,与是偏等积三角形;
    (2)如图2,四边形是一片绿色花园,、是等腰直角三角形,.
    ①与是偏等积三角形吗?请说明理由;
    ②已知的面积为.如图3,计划修建一条经过点C的笔直的小路,F在边上,的延长线经过中点G.若小路每米造价600元,请计算修建小路的总造价.
    9、如图,在△ABC中,AB=AC,CD⊥AB于点D,∠A=50°,求∠BCD的度数.
    10、如图,将△ABC绕点A逆时针旋转得到△ADE,点D在BC上,已知∠B=70°,求∠CDE的大小.
    -参考答案-
    一、单选题
    1、B
    【分析】
    依据三角形的内角和是180°以及等腰三角形的性质即可解答.
    【详解】
    解:(180°-80°)÷2
    =100°÷2
    =50°;
    答:底角为50°.
    故选:B.
    【点睛】
    本题主要考查三角形的内角和定理及等腰三角形的两个底角相等的特点.
    2、C
    【分析】
    由题意在射线AD上截取AE=AB,连接CE,根据SAS不难证得△ABC≌△AEC,从而得BC=EC,∠B=∠AEC,可求得CD=CE,得∠CDE=∠CED,证得∠B=∠CDE,即可得出结果.
    【详解】
    解:在射线AD上截取AE=AB,连接CE,如图所示:
    ∵∠BAD=90°,AC平分∠BAD,
    ∴∠BAC=∠EAC,
    在△ABC与△AEC中,

    ∴△ABC≌△AEC(SAS),
    ∴BC=EC,∠B=∠AEC,
    ∵CB=CD,
    ∴CD=CE,
    ∴∠CDE=∠CED,
    ∴∠B=∠CDE,
    ∵∠ADC+∠CDE=180°,
    ∴∠ADC+∠B=180°.
    故选:C.
    【点睛】
    本题主要考查全等三角形的判定与性质,解答的关键是作出适当的辅助线AE,CE.
    3、A
    【分析】
    先根据三角形内角和定理求出∠ACB=35°,再根据全等三角形性质即可求出∠CAD=35°.
    【详解】
    解:∵∠BAC=80°,∠ABC=65°,
    ∴∠ACB=180°-∠BAC-∠ABC=35°,
    ∵△ABC≌△CDA,
    ∴∠CAD=∠ACB=35°.
    故选:A
    【点睛】
    本题考查了三角形的内角和定理,全等三角形的性质,熟知两个定理是解题关键.
    4、C
    【分析】
    根据等腰三角形三线合一的性质可得AD⊥BC,然后利用直角三角形两锐角互余的性质解答.
    【详解】
    解:∵AB=AC,D是BC的中点,
    ∴AD⊥BC,
    ∵∠B=35°,
    ∴∠BAD=90°−35°=55°.
    故选:C.
    【点睛】
    本题主要考查了等腰三角形三线合一的性质,直角三角形两锐角互余的性质,是基础题,熟记性质是解题的关键.
    5、B
    【分析】
    利用已知条件证明△ADE≌△ADC(SAS),得到∠DEA=∠C,根据外角的性质可求的度数.
    【详解】
    解:∵AD是∠BAC的平分线,
    ∴∠EAD=∠CAD
    在△ADE和△ADC中,

    ∴△ADE≌△ADC(SAS),
    ∴∠DEA=∠C,
    ∵,∠DEA=∠B +,
    ∴;
    故选:B
    【点睛】
    本题考查了全等三角形的性质与判定,解决本题的关键是证明△ADE≌△ADC.
    6、D
    【分析】
    根据三角形三边关系定理,判断选择即可.
    【详解】
    ∵2+11=13,
    ∴A不符合题意;
    ∵5+7=12,
    ∴B不符合题意;
    ∵5+5=10<11,
    ∴C不符合题意;
    ∵5+12=17>13,
    ∴D符合题意;
    故选D.
    【点睛】
    本题考查了构成三角形的条件,熟练掌握三角形三边关系是解题的关键.
    7、C
    【分析】
    设第三根木棒的长度为cm,再确定三角形第三边的范围,再逐一分析各选项即可得到答案.
    【详解】
    解:设第三根木棒的长度为cm,则


    所以A,B,D不符合题意,C符合题意,
    故选C
    【点睛】
    本题考查的是三角形的三边的关系,掌握“利用三角形的三边关系确定第三边的范围”是解本题的关键.
    8、C
    【分析】
    根据全等三角形的判定定理进行判断即可.
    【详解】
    解:根据题意可知:AB=AC,,
    若,则根据可以证明△ABE≌△ACD,故A不符合题意;
    若AD=AE,则根据可以证明△ABE≌△ACD,故B不符合题意;
    若BE=CD,则根据不可以证明△ABE≌△ACD,故C符合题意;
    若∠AEB=∠ADC,则根据可以证明△ABE≌△ACD,故D不符合题意;
    故选:C.
    【点睛】
    本题考查了全等三角形的判定,熟练掌握全等三角形的判定定理是解本题的关键.
    9、D
    【分析】
    可以是底角,也可以是顶角,分情况讨论即可.
    【详解】
    当角为底角时,底角就是,
    当角为等腰三角形的顶角时,底角为,
    因此这个等腰三角形的底角为或.
    故选:D.
    【点睛】
    本题考查了等腰三角形的性质;若题目中没有明确顶角或底角的度数,做题时要注意分情况进行讨论,这是十分重要的,也是解答问题的关键.
    10、C
    【详解】
    由题意根据等式的性质得出BC=EF,进而利用SSS证明△ABC与△DEF全等,利用全等三角形的性质得出∠ACB=∠DFE,最后利用三角形内角和进行分析解答.
    【分析】
    解:∵BF=EC,
    ∴BF+FC=EC+FC,
    ∴BC=EF,
    在△ABC与△DEF中,

    ∴△ABC≌△DEF(SSS),
    ∴∠ACB=∠DFE,
    ∴2∠DFE=180°﹣∠FGC,
    故选:C.
    【点睛】
    本题考查全等三角形的判定与性质,其中全等三角形的判定方法有:SSS;SAS;ASA;AAS;以及HL(直角三角形的判定方法).
    二、填空题
    1、7
    【分析】
    根据角平分线的定义和平行线的性质证明∠EBD=∠EDB,∠FDC=∠FCD,得到BE=DE,CF=DF,即可求解.
    【详解】
    解:∵EF∥BC,
    ∴∠EDB=∠DBC,∠FDC=∠DCB,
    又∵BD和CD分别是∠ABC和∠ACB的平分线,
    ∴∠EBD=∠DBC,∠FCD=∠DCB,
    ∴∠EBD=∠EDB,∠FDC=∠FCD,
    ∴BE=DE,CF=DF,
    又∵BE=3,CF=4,
    ∴EF=DE+DF=BE+CF=7.
    故答案为:7.
    【点睛】
    本题主要考查了平行线的性质,角平分的定义,等腰三角形的性质与判定,熟知相关知识是解题的关键.
    2、20°度
    【分析】
    根据角平分线的性质得到,再利用三角形外角的性质计算.
    【详解】
    解:∵与的平分线相交于点D,
    ∴,
    ∵∠ACE=∠A+∠ABC,∠DCE=∠D+∠DBC,
    ∴∠D=∠DCE-∠DBC=,
    故答案为:20°.
    【点睛】
    此题考查了三角形的外角性质及角平分线的性质,熟记三角形外角的性质定理是解题的关键.
    3、
    【分析】
    延长AG交BC于D,根据重心的概念得到AD⊥BC,BD=DC=BC=,根据勾股定理求出AD,根据重心的概念计算即可.
    【详解】
    解:延长AG交BC于D,
    ∵G是三角形的重心,
    ∴AD⊥BC,BD=DC=BC=,
    由勾股定理得,AD=,
    ∴GA=AD=,
    故答案为:.
    【点睛】
    本题考查的是等边三角形的性质、三角形的重心的概念,三角形的重心是三角形三条中线的交点,且重心到顶点的距离是它到对边中点的距离的2倍.
    4、
    【分析】
    找到点,连接(见解析),根据等腰直角三角形的性质、网格特点即可得.
    【详解】
    解;如图,找到点,连接,
    则是等腰直角三角形,

    又是等腰直角三角形,

    故答案为:.
    【点睛】
    本题考查了等腰直角三角形、角的大小比较,正确找出点是解题关键.
    5、答案不唯一,如:AC=DB,AB=DC,∠ABC=∠DCB
    【分析】
    根据全等三角形的判定条件求解即可.
    【详解】
    解:∵∠A=∠D=90°,BC=CB,
    ∴只需要添加:AC=DB或AB=DC,即可利用HL证明△ABC≌△DCB;添加∠ABC=∠DCB可以利用AAS证明△ABC≌△DCB,
    故答案为:答案不唯一,如:AC=DB,AB=DC,∠ABC=∠DCB.
    【点睛】
    本题主要考查了全等三角形的判定,熟知全等三角形的判定条件是解题的关键.
    三、解答题
    1、
    (1)见解析
    (2)
    【分析】
    (1)利用是的外角,以及证明即可.
    (2)证明≌,可知,从而得出答案.
    (1)
    证明:∵是的外角,
    ∴.
    又∵,∴.
    (2)
    解:在和中,

    ∴≌.
    ∴.
    ∵,
    ∴.
    【点睛】
    本题考查了三角形的外角以及三角形全等的性质和判定,掌握三角形全等的性质和判定是解题的关键.
    2、
    (1)3
    (2)12
    (3)
    【分析】
    (1)利用ASA证明△AEF≌△ABE,得AE=AB=4,得出答案;
    (2)延长CG、AB交于点H,设S△BGC=S△HGB=a,用两种方法表示△ACH的面积即可;
    (3)在AC上取AN=AB,可得CD=DN=n-m,根据△ABD和△ACD的高相等,面积比等于底之比可求出CD的长.
    (1)
    ∵AD是△ABC的平分线,
    ∴∠BAD=∠CAD,
    ∵BE⊥AD,
    ∴∠BEA=∠FEA,
    在△AEF和△AEB中,

    ∴△AEF≌△AEB(ASA),
    ∴AF=AB=4,
    ∵AC=7
    ∴CF=AC-AF=7-4=3,
    故答案为:3;
    (2)
    延长CG、AB交于点H,如图,
    由(1)知AC=AH,点G为CH的中点,
    设S△BGC=S△HGB=a,
    根据△ACH的面积可得:
    S△ABC+2a=2(6+a),
    ∴S△ABC=12;
    (3)
    在AC上取AN=AB,如图,
    ∵AD是△ABC的平分线,
    ∴∠NAD=∠BAD,
    在△ADN与△ADB中,

    ∴△ADN≌△ADB(SAS),
    ∴∠AND=∠B,DN=BD,
    ∵∠B=2∠C,
    ∴∠AND=2∠C,
    ∴∠C=∠CDN,
    ∴CN=DN=AC-AB=n-m,
    ∴BD=DN=n-m,
    根据△ABD和△ACD的高相等,面积比等于底之比可得:

    ∴,
    ∴,
    故答案为:.
    【点睛】
    本题主要考查了全等三角形的判定与性质,角平分线的定义,三角形的面积等知识,利用角的轴对称性构造全等三角形是解题的关键.
    3、
    (1)CD,O′D′,△OCD,
    (2)③
    【分析】
    (1)根据SSS证明△D′O′C′≌△DOC,可得结论;
    (2)根据SSS证明三角形全等.
    (1)
    证明:由作图可知,在△D′O′C′和△DOC中,

    ∴△O′C′D′≌△OCD(SSS),
    ∴∠A′O′B′=∠AOB.
    故答案为:CD,O′D′,△OCD,
    (2)
    解:上述证明过程中利用三角形全等的方法依据是SSS,
    故答案为:③
    【点睛】
    本题考查三角形综合题,考查了三角形全等的判定和性质,解题的关键是读懂图象信息,灵活运用所学知识解决问题.
    4、见解析
    【分析】
    根据平行线的性质得出∠B=∠E,进而利用SAS证明,利用全等三角形的性质解答即可.
    【详解】
    证明:,

    即.


    在和中,


    【点睛】
    本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,本题中求证是解题的关键.
    5、(1)OB=OC(或,或);(2)见解析
    【分析】
    (1)根据SAS添加OB=OC即可;
    (2)由(1)得△AOB≌△DOC,由全等三角形的性质可得结论.
    【详解】
    解:(1)添加的条件是:OB=OC(或,或)
    证明:在和中
    所以,△AOB≌△DOC
    (2)由(1)知,△AOB≌△DOC
    所以,AB=DC.
    【点睛】
    本题主要考查了全等三角形的判定与性质,熟练掌握全等三角形的判定方法是解答本题的关键
    6、(1)∠A+∠C=90°;(2)∠C﹣∠A=90°,见解析;(3)45°
    【分析】
    (1)过点B作BE∥AM,利用平行线的性质即可求得结论;
    (2)过点B作BE∥AM,利用平行线的性质即可求得结论;
    (3)利用(2)的结论和三角形的外角等于和它不相邻的两个内角的和即可求得结论.
    【详解】
    (1)过点B作BE∥AM,如图,
    ∵BE∥AM,
    ∴∠A=∠ABE,
    ∵BE∥AM,AM∥CN,
    ∴BE∥CN,
    ∴∠C=∠CBE,
    ∵AB⊥BC,
    ∴∠ABC=90°,
    ∴∠A+∠C=∠ABE+∠CBE=∠ABC=90°.
    故答案为:∠A+∠C=90°;
    (2)∠A和∠C满足:∠C﹣∠A=90°.理由:
    过点B作BE∥AM,如图,
    ∵BE∥AM,
    ∴∠A=∠ABE,
    ∵BE∥AM,AM∥CN,
    ∴BE∥CN,
    ∴∠C+∠CBE=180°,
    ∴∠CBE=180°﹣∠C,
    ∵AB⊥BC,
    ∴∠ABC=90°,
    ∴∠ABE+∠CBE=90°,
    ∴∠A+180°﹣∠C=90°,
    ∴∠C﹣∠A=90°;
    (3)设CH与AB交于点F,如图,
    ∵AE平分∠MAB,
    ∴∠GAF=∠MAB,
    ∵CH平分∠NCB,
    ∴∠BCF=∠BCN,
    ∵∠B=90°,
    ∴∠BFC=90°﹣∠BCF,
    ∵∠AFG=∠BFC,
    ∴∠AFG=90°﹣∠BCF.
    ∵∠AGH=∠GAF+∠AFG,
    ∴∠AGH=∠MAB+90°﹣∠BCN=90°﹣(∠BCN﹣∠MAB).
    由(2)知:∠BCN﹣∠MAB=90°,
    ∴∠AGH=90°﹣45°=45°.
    故答案为:45°.
    【点睛】
    本题考查平行线的性质以及三角形外角的性质,由题作出辅助线是解题的关键.
    7、见解析
    【分析】
    由平行线的性质可证明.再由,可推出.最后即可利用“ASA”直接证明.
    【详解】
    证明:
    ,即.
    ∴在和中,

    【点睛】
    本题考查三角形全等的判定,平行线的性质,线段的和与差.掌握三角形全等的判定条件是解答本题的关键.
    8、(1);(2)①与是偏等积三角形,理由见详解;②修建小路的总造价为元
    【分析】
    (1)当时,则,证,再证与不全等,即可得出结论;
    (2)①过作于,过作于,证,得,则,再证与不全等,即可得出结论;②过点作,交的延长线于,证得,得到,再证,得,由余角的性质可证,然后由三角形面积和偏等积三角形的定义得,,求出,即可求解.
    【详解】
    解:(1)当时,与是偏等积三角形,理由如下:
    设点到的距离为,则,,

    ,,

    、,
    与不全等,
    与是偏等积三角形,
    故答案为:;
    (3)①与是偏等积三角形,理由如下:
    过作于,过作于,如图3所示:
    则,
    、是等腰直角三角形,
    ,,,



    在和中,



    ,,

    ,,

    ,,
    与不全等,
    与是偏等积三角形;
    ②如图4,过点作,交的延长线于,
    则,
    点为的中点,

    在和中,










    在和中,







    由①得:与是偏等积三角形,
    ,,

    修建小路的总造价为:(元.
    【点睛】
    本题是四边形综合题目,考查了新定义“偏等积三角形”的定义、全等三角形的判定与性质、等腰直角三角形的性质、三角形面积等知识;本题综合性强,熟练掌握“偏等积三角形”的定义,证明和是解题的关键,属于中考常考题型.
    9、25°
    【分析】
    直接利用等腰三角形的性质得出∠ABC=∠ACB=65°,进而利用三角形内角和定理得出答案.
    【详解】
    ∵AB=AC,∠A=50°,
    ∴∠ABC=∠ACB=65°,
    ∵CD⊥BC于点D,
    ∴∠BCD的度数为:180°−90°−65°=25°.
    【点睛】
    此题主要考查了等腰三角形的性质,正确得出∠B的度数是解题关键.
    10、
    【分析】
    先由旋转的性质证明再利用等边对等角证明从而可得答案.
    【详解】
    解: 把△ABC绕点A逆时针旋转得到△ADE,∠B=70°,


    【点睛】
    本题考查的是旋转的性质,等腰三角形的性质,掌握“旋转前后的对应角相等与等边对等角”是解本题的关键.

    相关试卷

    沪教版 (五四制)七年级下册第十四章 三角形综合与测试同步测试题:

    这是一份沪教版 (五四制)七年级下册第十四章 三角形综合与测试同步测试题,共29页。试卷主要包含了定理,如图,点D等内容,欢迎下载使用。

    初中数学沪教版 (五四制)七年级下册第十四章 三角形综合与测试课时练习:

    这是一份初中数学沪教版 (五四制)七年级下册第十四章 三角形综合与测试课时练习,共36页。试卷主要包含了下列三角形与下图全等的三角形是,如图,AB=AC,点D,已知等内容,欢迎下载使用。

    沪教版 (五四制)七年级下册第十四章 三角形综合与测试当堂达标检测题:

    这是一份沪教版 (五四制)七年级下册第十四章 三角形综合与测试当堂达标检测题,共32页。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map