初中数学沪教版 (五四制)七年级下册第十四章 三角形综合与测试精练
展开
这是一份初中数学沪教版 (五四制)七年级下册第十四章 三角形综合与测试精练,共30页。试卷主要包含了下列三角形与下图全等的三角形是等内容,欢迎下载使用。
沪教版七年级数学第二学期第十四章三角形专题练习
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、已知三角形的两边长分别为2cm和3cm,则第三边长可能是( )
A.6cm B.5cm C.3cm D.1cm
2、若等腰三角形的一个外角是70°,则它的底角的度数是( )
A.110° B.70° C.35° D.55°
3、如图,,AC,BD相交于点O.添加一个条件,不一定能使≌的是( )
A. B.
C. D.
4、下列所给的各组线段,能组成三角形的是:( )
A.2,11,13 B.5,12,7 C.5,5,11 D.5,12,13
5、下列三角形与下图全等的三角形是( )
A. B. C. D.
6、等腰三角形的一个角是80°,则它的一个底角的度数是( )
A.50° B.80° C.50°或80° D.100°或80°
7、如图,,点E在线段AB上,,则的度数为( )
A.20° B.25° C.30° D.40°
8、根据下列已知条件,不能画出唯一的是( )
A.,, B.,,
C.,, D.,,
9、如图,∠BAD=90°,AC平分∠BAD,CB=CD,则∠B与∠ADC满足的数量关系为( )
A.∠B=∠ADC B.2∠B=∠ADC
C.∠B+∠ADC=180° D.∠B+∠ADC=90°
10、BP是∠ABC的平分线,CP是∠ACB的邻补角的平分线,∠ABP=20°,∠ACP=50°,则∠P=( )
A.30° B.40° C.50° D.60°
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、一个三角形的其中两个内角为,,则这个第三个内角的度数为______.
2、如图,已知,请添加一个条件,使得,则添加的条件可以为___(只填写一个即可).
3、如图,在中,,交BC的延长线于点E,若,点C是BE中点,则______°.
4、如图,在△ABC中,CA=CB,∠ACB=120°,E为AB上一点,∠DCE=∠DAE=60°,AD=2.4,BE=7,则DE=_____.
5、如图,一把直尺的一边缘经过直角三角形的直角顶点,交斜边于点;直尺的另一边缘分别交、于点、,若,,则___________度.
三、解答题(10小题,每小题5分,共计50分)
1、如图,在中,,,,BD是的角平分线,点E在AB边上,.求的周长.
2、如图,在长方形ABCD中,AD=3,DC=5,动点M从A点出发沿线段AD—DC以每秒1个单位长度的速度向终点C运动;动点N同时从C点出发沿线段CD—DA以每秒3个单位长度的速度向终点A运动.ME⊥PQ于点E,NF⊥PQ于点F,设运动的时间为秒.
(1)在运动过程中当M、N两点相遇时,求t的值.
(2)在整个运动过程中,求DM的长.(用含t的代数式表示)
(3)当DEM与DFN全等时,请直接写出所有满足条件的DN的长.
3、如图,在中,,AD是角平分线,E是AB边上一点,连接ED,CB是的平分线,ED的延长线与CF交于点F.
(1)求证:;
(2)若,,则______度.
4、如图,已知点B,F,C,E在同一直线上,AB∥DE,BF=CE,AB=ED,求证:∠A=∠D.
5、如图,在△ABC中,AB=AC,M,N分别是AB,AC边上的点,并且MN∥BC.
(1)△AMN是否是等腰三角形?说明理由;
(2)点P是MN上的一点,并且BP平分∠ABC,CP平分∠ACB.
①求证:△BPM是等腰三角形;
②若△ABC的周长为a,BC=b(a>2b),求△AMN的周长(用含a,b的式子表示).
6、如图,在△ABC中,AD⊥BE,∠DAC=10°,AE是∠BAC的外角∠MAC的平分线,BF平分∠ABC交AE于点F,求∠AFB的度数.
7、如图,在△ABC中,AB=AC,CD⊥AB于点D,∠A=50°,求∠BCD的度数.
8、如图,是等边三角形,D点是BC上一点,,于点E,CE交AD于点P.求的度数.
9、在等腰中,,点D是BC边上的一个动点(点D不与点B,C重合),连接AD,作等腰,使,,点D,E在直线AC两旁,连接CE.
(1)如图1,当时,直接写出BC与CE的位置关系;
(2)如图2,当时,过点A作于点F,请你在图2中补全图形,用等式表示线段BD,CD,之间的数量关系,并证明.
10、如图,是的中线,分别过点、作及其延长线的垂线,垂足分别为、.
(1)求证:;
(2)若的面积为8,的面积为6,求的面积.
-参考答案-
一、单选题
1、C
【分析】
根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边.即可求解.
【详解】
解:设第三边长为xcm,根据三角形的三边关系可得:
3-2<x<3+2,
解得:1<x<5,
只有C选项在范围内.
故选:C.
【点睛】
本题考查了三角形的三边关系,关键是掌握第三边的范围是:大于已知的两边的差,而小于两边的和.
2、C
【分析】
先求出与这个外角相邻的内角的度数为,再根据三角形的内角和定理即可得.
【详解】
解:等腰三角形的一个外角是,
与这个外角相邻的内角的度数为,
这个等腰三角形的顶角的度数为,底角的度数为,
故选:C.
【点睛】
本题考查了等腰三角形、三角形的内角和定理等知识点,判断出等腰三角形的顶角的度数为是解题关键.
3、C
【分析】
直接利用直角三角形全等的判定定理(定理)即可判断选项;先根据等腰三角形的性质可得,再根据三角形全等的判定定理(定理)即可判断选项;直接利用三角形全等的判定定理(定理)即可判断选项,由此即可得出答案.
【详解】
解:当添加条件是时,
在和中,,
,则选项不符题意;
当添加条件是时,
,
在和中,,
,则选项不符题意;
当添加条件是时,
在和中,,
,则选项不符题意;
当添加条件是时,不一定能使,则选项符合题意;
故选:C.
【点睛】
本题考查了三角形全等的判定、等腰三角形的性质,熟练掌握三角形全等的判定方法是解题关键.
4、D
【分析】
根据三角形三边关系定理,判断选择即可.
【详解】
∵2+11=13,
∴A不符合题意;
∵5+7=12,
∴B不符合题意;
∵5+5=10<11,
∴C不符合题意;
∵5+12=17>13,
∴D符合题意;
故选D.
【点睛】
本题考查了构成三角形的条件,熟练掌握三角形三边关系是解题的关键.
5、C
【分析】
根据已知的三角形求第三个内角的度数,由全等三角形的判定定理即可得出答案.
【详解】
由题可知,第三个内角的度数为,
A.只有两边,故不能判断三角形全等,故此选项错误;
B.两边夹的角度数不相等,故两三角形不全等,故此选项错误;
C.两边相等且夹角相等,故能判断两三角形全等,故此选项正确;
D. 两边夹的角度数不相等,故两三角形不全等,故此选项错误.
故选:C.
【点睛】
本题考查全等三角形的判定,掌握全等三角形的判定定理是解题的关键.
6、C
【分析】
已知给出一个角的的度数为80º,没有明确是顶角还是底角,要分类讨论,联合内角和求出底角即可.
【详解】
解:等腰三角形的一个角是80°,
当80º为底角时,它的一个底角是80º,
当80º为顶角时,它的一个底角是,
则它的一个底角是50º或80º.
故选:C.
【点睛】
本题考查等腰三角形的性质,内角和定理,掌握分类讨论的思想是解决问题的关键.
7、C
【分析】
根据全等三角形的性质可证得BC=CE,∠ACB=∠DCE即∠ACD=∠BCE,根据等腰三角形的性质和三角形的内角和定理求解∠B=∠BEC和∠BCE即可.
【详解】
解:∵,
∴BC=CE,∠ACB=∠DCE,
∴∠B=∠BEC,∠ACD=∠BCE,
∵,
∴∠ACD=∠BCE=180°-2×75°=30°,
故选:C.
【点睛】
本题考查全等三角形的性质、等腰三角形的性质、三角形的内角和定理,熟练掌握全等三角形的性质和等腰三角形的性质是解答的关键.
8、B
【分析】
根据三角形存在的条件去判断.
【详解】
∵,,,满足ASA的要求,
∴可以画出唯一的三角形,A不符合题意;
∵,,,∠A不是AB,BC的夹角,
∴可以画出多个三角形,B符合题意;
∵,,,满足SAS的要求,
∴可以画出唯一的三角形,C不符合题意;
∵,,,AB最大,
∴可以画出唯一的三角形,D不符合题意;
故选B.
【点睛】
本题考查了三角形的存在性,熟练掌握三角形全等的判定方法是解题的关键.
9、C
【分析】
由题意在射线AD上截取AE=AB,连接CE,根据SAS不难证得△ABC≌△AEC,从而得BC=EC,∠B=∠AEC,可求得CD=CE,得∠CDE=∠CED,证得∠B=∠CDE,即可得出结果.
【详解】
解:在射线AD上截取AE=AB,连接CE,如图所示:
∵∠BAD=90°,AC平分∠BAD,
∴∠BAC=∠EAC,
在△ABC与△AEC中,
,
∴△ABC≌△AEC(SAS),
∴BC=EC,∠B=∠AEC,
∵CB=CD,
∴CD=CE,
∴∠CDE=∠CED,
∴∠B=∠CDE,
∵∠ADC+∠CDE=180°,
∴∠ADC+∠B=180°.
故选:C.
【点睛】
本题主要考查全等三角形的判定与性质,解答的关键是作出适当的辅助线AE,CE.
10、A
【分析】
根据角平分线的定义以及一个三角形的外角等于与它不相邻的两个内角和,可求出∠P的度数.
【详解】
∵BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,
∴∠ABP=∠CBP=20°,∠ACP=∠MCP=50°,
∵∠PCM是△BCP的外角,
∴∠P=∠PCM−∠CBP=50°−20°=30°,
故选:A.
【点睛】
本题考查三角形外角性质以及角平分线的定义,解题时注意:一个三角形的外角等于与它不相邻的两个内角的和.
二、填空题
1、60°
【分析】
依题意,利用三角形内角和为:,即可;
【详解】
由题得:一个三角形的内角和为:;又已知两个其中的内角为:,;
∴ 第三个角为:;
故填:
【点睛】
本题主要考查三角形的内角和,关键在于熟练并运用基本的计算;
2、或
【分析】
根据全等三角形的判定方法即可解决问题.
【详解】
解:由题意,,
根据,可以添加,使得,
根据,可以添加,使得.
故答案为:或
【点睛】
本题主要考查了全等三角形的判定,熟练掌握全等三角形的判定方法——边角边、角边角、角角边、边边边是解题的关键.
3、67.5°
【分析】
连接AE,先得出∠BAC=∠BAE,再根据,得出∠BAC=22.5°,最后得出结果.
【详解】
解:连接AE,
∵点C是BE中点,
∴BC=CE,
∵∠ACB=90°,
∴AC⊥BE,
∴AB=AE,
∴∠BAC=∠BAE,
∵DE⊥AB,
∴∠ADE=90°,
∵,
∴∠AED=∠DAE=45°,
∴∠BAC=∠BAE=22.5°,
∴∠B=90°-∠BAC=67.5°.
故答案为:67.5°.
【点睛】
本题考查了线段垂直平分线的性质,等腰三角形的性质及直角三角形的性质,正确作出辅助线是解题的关键.
4、4.6
【分析】
在AB上截取BF=AD,连接CF,通过证明△ADC≌△BFC,可得∠ACD=∠BCF,CD=CF,由“SAS”可得△DCE≌△FCE,可得DE=EF,即可求得结果.
【详解】
解:如图,在AB上截取BF=AD,连接CF,
∵CA=CB,∠ACB=120°,
∴∠CAB=∠CBA=30°,
∵∠DAE=60°
∴∠DAC=∠DAE﹣∠CAB=30°
∴∠DAC=∠CBA,且AD=BF,AC=BC
∴△ADC≌△BFC(SAS)
∴∠ACD=∠BCF,CD=CF,
∵∠ACB=∠ACE+∠ECF+∠BCF=∠ACE+∠ECF+∠ACD=∠DCE+∠ECF=120°
∴∠ECF=60°=∠DCE,且CE=CE,DC=CF
∴△DCE≌△FCE(SAS)
∴DE=EF
∴DE=BE﹣BF=BE﹣AD=7﹣2.4=4.6,
故答案为4.6
【点睛】
本题考查了全等三角形的判定和性质,等腰三角形的性质,添加恰当的辅助线构造全等三角形是本题的关键.
5、20
【分析】
利用平行线的性质求出∠1,再利用三角形外角的性质求出∠DCB即可.
【详解】
解:∵EF∥CD,
∴,
∵∠1是△DCB的外角,
∴∠1-∠B=50°-30°=20º,
故答案为:20.
【点睛】
本题考查了平行线的性质,三角形外角的性质等知识,解题的关键是熟练掌握基本知识.
三、解答题
1、
【分析】
由题意结合角平分线性质和全等三角形判定得出,进而依据的周长进行求解即可.
【详解】
解:∵,,,
∴,
∵BD是的角平分线,
∴,
在和中,
,
∴,
∴,
∵,
∴的周长.
【点睛】
本题考查全等三角形的判定与性质以及角平分线性质,熟练掌握利用全等三角形的判定与性质以及角平分线性质进行边的等量替换是解题的关键.
2、(1)2;(2)当0≤t≤3时,DM=3-t,当3<t≤8时,DM=t-3;(3)2或1
【分析】
(1)根据题意得: ,解得:,即可求解;
(2)根据题意得:当0≤t≤3时,AM=t,则DM=3-t,当3<t≤8时,DM=t-3,即可求解;
(3)根据ME⊥PQ,NF⊥PQ,可得∠DEM=∠DFN=90°,再由∠ADC=90°,可得∠DME =∠FDN,从而得到当DEM与DFN全等时,DM=DN,根据题意可得M到达点D时, ,M到达点C时, ,N到达点D时, ,N到达点A时,,然后分两种情况:当时和当时,即可求解.
【详解】
解:(1)根据题意得: ,解得:,
即在运动过程中当M、N两点相遇时,t的值为2;
(2)根据题意得:当0≤t≤3时,AM=t,则DM=3-t,
当3<t≤8时,DM=t-3;
(3)∵ME⊥PQ,NF⊥PQ,
∴∠DEM=∠DFN=90°,
∴∠EDM+ ∠DME =90°,
∵∠ADC=90°,
∴∠EDM+∠FDN =90°,
∴∠DME =∠FDN,
∴当DEM与DFN全等时,DM=DN,
∵M到达点D时, ,M到达点C时, ,
N到达点D时, ,N到达点A时,,
当时,DM=3-t,CN=3t,则DN=5-3t,
∴3-t=5-3t,解得:t=1,
∴此时DN=5-3t=2,
当时,DM=3-t,DN=3t-5,
∴3-t=3t-5,解得: ,
∴DN=3t-5=1,
综上所述,当DEM与DFN全等时,所有满足条件的DN的长为2或1.
【点睛】
本题主要考查了全等三角形的判定和性质,动点问题,利用分类讨论思想解答是解题的关键.
3、(1)见解析,(2)46
【分析】
(1)根据等腰三角形的性质和角平分线得到∠B=∠ACB=∠BCF,由AD是角平分线,得到BD=CD,证△BDE≌△CDF即可;
(2)根据全等三角形的性质得到DE=DF=DA,根据求得∠DAB,进而求出∠B的度数即可.
【详解】
(1)证明:∵,
∴∠B=∠ACB,
∵CB是的平分线,
∴∠ACB=∠BCF,
∴∠B=∠BCF,
∵AD是角平分线,AB=AC,
∴BD=CD,
∵∠BDE=∠CDF,
∴△BDE≌△CDF(AAS);
∴;
(2)∵△BDE≌△CDF;
∴ED=FD,
∵,
∴ED=AD,
∵,
∴,
∴,
∴∠B=∠ACB=∠BCF=23°,
∴,
故答案为:46.
【点睛】
本题考查了等腰三角形的性质和全等三角形的判定与性质,解题关键是熟练运用相关知识进行推理证明和计算.
4、见解析
【分析】
根据平行线的性质得出∠B=∠E,进而利用SAS证明,利用全等三角形的性质解答即可.
【详解】
证明:,
,
即.
,
.
在和中,
,
.
【点睛】
本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,本题中求证是解题的关键.
5、
(1)△AMN是是等腰三角形;理由见解析;
(2)①证明见解析;②a﹣b.
【分析】
(1)由等腰三角形的性质得到∠ABC=∠ACB,由平行线的性质得到∠AMN=∠ABC,∠ANM=∠ACB,于是得到∠AMN=∠ANM,根据等角对等边即可证得结论;
(2)①由角平分线的定义得到∠PBM=∠PBC,由平行线的性质得到∠MPB=∠PBC,于是得到∠PBM=∠MPB,根据等角对等边即可证得结论;
②由①知MB=MP,同理可得:NC=NP,故△AMN的周长=AB+AC,再根据已知条件即可求出结果.
(1)
解:△AMN是是等腰三角形,
理由如下:
∵AB=AC,
∴∠ABC=∠ACB,
∵MN∥BC,
∴∠AMN=∠ABC,∠ANM=∠ACB,
∴∠AMN=∠ANM,
∴AM=AN,
∴△AMN是等腰三角形;
(2)
①证明:∵BP平分∠ABC,
∴∠PBM=∠PBC,
∵MN∥BC,
∴∠MPB=∠PBC
∴∠PBM=∠MPB,
∴MB=MP,
∴△BPM是等腰三角形;
②由①知MB=MP,
同理可得:NC=NP,
∴△AMN的周长=AM+MP+NP+AN=AM+MB+NC+AN=AB+AC,
∵△ABC的周长为a,BC=b,
∴AB+AC+b=a,
∴AB+AC=a﹣b
∴△AMN的周长=a﹣b.
【点睛】
本题考查了等腰三角形的性质和判定,平行线的性质,列代数式,能够灵活应用这些性质是解决问题的关键.
6、∠AFB=40°.
【分析】
由题意易得∠ADC=90°,∠ACB=80°,然后可得,进而根据三角形外角的性质可求解.
【详解】
解:∵AD⊥BE,
∴∠ADC=90°,
∵∠DAC=10°,
∴∠ACB=90°﹣∠DAC=90°﹣10°=80°,
∵AE是∠MAC的平分线,BF平分∠ABC,
∴,
又∵∠MAE=∠ABF+∠AFB,∠MAC=∠ABC+∠ACB,
∴∠AFB=∠MAE﹣∠ABF=.
【点睛】
本题主要考查三角形外角的性质及角平分线的定义,熟练掌握三角形外角的性质及角平分线的定义是解题的关键.
7、25°
【分析】
直接利用等腰三角形的性质得出∠ABC=∠ACB=65°,进而利用三角形内角和定理得出答案.
【详解】
∵AB=AC,∠A=50°,
∴∠ABC=∠ACB=65°,
∵CD⊥BC于点D,
∴∠BCD的度数为:180°−90°−65°=25°.
【点睛】
此题主要考查了等腰三角形的性质,正确得出∠B的度数是解题关键.
8、
【分析】
由题意易得,,则有,然后可得,进而可证,则有,最后问题可求解.
【详解】
解:∵是等边三角形,
∴,,
∵,
∴,
∴,
∴,
∵,
∴,
∴(SAS),
∴,
∵,
∴.
【点睛】
本题主要考查等边三角形的性质、含30度直角三角形的性质及全等三角形的性质与判定,熟练掌握等边三角形的性质、含30度直角三角形的性质及全等三角形的性质与判定是解题的关键.
9、
(1)
(2)或,见解析
【分析】
(1)根据已知条件求出∠B=∠ACB=45°,证明△BAD≌△CAE,得到∠ACE=∠B=45°,求出∠BCE=∠ACB+∠ACE=90°,即可得到结论;
(2)根据题意作图即可,证明≌.得到,,,推出.延长EF到点G,使,证明≌,推出.由此得到.同理可证.
(1)
解:,,
∴∠B=∠ACB=45°,
∵,
∴,即∠BAD=∠CAE,
∵,,
∴△BAD≌△CAE,
∴∠ACE=∠B=45°,
∴∠BCE=∠ACB+∠ACE=90°,
∴;
(2)
解:如图,补全图形;
.
证明:∵,
∴.
又∵,,
∴≌.
∴,,.
∵,
∴.
∴.
延长EF到点G,使.
∵,
∴.
∴.
∵,
∴.
∴.
∵,
∴≌.
∴.
∵,
∴.
如图,同理可证.
.
【点睛】
此题考查了全等三角形的判定及性质,等腰三角形的性质,熟记全等三角形的判定及性质是解题的关键.掌握分类思想解题是难点.
10、
(1)见解析
(2)的面积为20.
【分析】
(1)根据已知条件得到、,然后利用全等三角形的判定,进行证明即可.
(2)分别根据和的面积,用CF表示AF、DF,通过,得到,,用CF表示出AE的长,最后利用面积公式求解即可.
(1)
(1)解:由题意可知:
是的中线
在与中
.
(2)
解:的面积为8,的面积为6.
,即
,即
由(1)可知:
,
.
【点睛】
本题主要是考查了全等三角形的判定和性质,熟练根据条件证明三角形全等,利用其性质,证明对应边相等,这是解决本题的关键.
相关试卷
这是一份数学沪教版 (五四制)第十四章 三角形综合与测试课时练习,共35页。试卷主要包含了如图,ABC≌DEF,点B等内容,欢迎下载使用。
这是一份沪教版 (五四制)七年级下册第十四章 三角形综合与测试习题,共32页。试卷主要包含了尺规作图,若一个三角形的三个外角之比为3等内容,欢迎下载使用。
这是一份初中数学沪教版 (五四制)七年级下册第十四章 三角形综合与测试课时作业,共29页。试卷主要包含了已知等内容,欢迎下载使用。