![2022年强化训练沪教版七年级数学第二学期第十四章三角形综合测试试卷(无超纲)第1页](http://img-preview.51jiaoxi.com/2/3/12709375/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年强化训练沪教版七年级数学第二学期第十四章三角形综合测试试卷(无超纲)第2页](http://img-preview.51jiaoxi.com/2/3/12709375/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年强化训练沪教版七年级数学第二学期第十四章三角形综合测试试卷(无超纲)第3页](http://img-preview.51jiaoxi.com/2/3/12709375/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中数学沪教版 (五四制)七年级下册第十四章 三角形综合与测试课后测评
展开
这是一份初中数学沪教版 (五四制)七年级下册第十四章 三角形综合与测试课后测评,共39页。试卷主要包含了三角形的外角和是等内容,欢迎下载使用。
沪教版七年级数学第二学期第十四章三角形综合测试
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,在△ABC中,BD平分∠ABC,∠C=2∠CDB,AB=12,CD=3,则△ABC的周长为( )
A.21 B.24 C.27 D.30
2、如图,已知Rt△ABC中,∠C=90°,∠A=30°,在直线BC上取一点P,使得△PAB是等腰三角形,则符合条件的点P有( )
A.1个 B.2个 C.3个 D.4个
3、如图,等腰△ABC中,AB=AC,点D是BC边中点,则下列结论不正确的是( )
A.ÐB=ÐC B.AD⊥BC C.ÐBAD=ÐCAD D.AB=2BC
4、三角形的外角和是( )
A.60° B.90° C.180° D.360°
5、在平面直角坐标系xOy中,点A(0,2),B(a,0),C(m,n)().若ABC是等腰直角三角形,且,当时,点C的横坐标m的取值范围是( )
A. B. C. D.
6、已知的三边长分别为a,b,c,则a,b,c的值可能分别是( )
A.1,2,3 B.3,4,7
C.2,3,4 D.4,5,10
7、如图,在Rt△ABC中,∠ACB=90°,∠BAC=40°,直线a∥b,若BC在直线b上,则∠1的度数为( )
A.40° B.45° C.50° D.60°
8、下列长度的三条线段能组成三角形的是( )
A.2,3,6 B.2,4,7 C.3,3,5 D.3,3,7
9、如图,,于点,与交于点,若,则等于( )
A.20° B.50° C.70° D.110°
10、三个等边三角形的摆放位置如图所示,若,则的度数为
A. B. C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,△ABC中,AB平分∠DAC,AB⊥BC,垂足为B,若∠ADC与∠ACB互补,BC=5,则CD的长为_________.
2、若一个立体图形从正面看和从左面看都是等腰三角形,从上面看是带有圆心的圆,则这个立体图形是_____.
3、如图,在△ABC中,AB=AC.在AB、AC上分别截取AP,AQ,使AP=AQ.再分别以点P,Q为圆心,以大于PQ的长为半径作弧,两弧在∠BAC内交于点R,作射线AR,交BC于点D.若BC=6,则BD的长为______________.
4、如图,已知,请添加一个条件,使得,则添加的条件可以为___(只填写一个即可).
5、如图,直线ED把分成一个和四边形BDEC,的周长一定大于四边形BDEC的周长,依据的原理是____________________________________.
三、解答题(10小题,每小题5分,共计50分)
1、如图,在等边△ABC中,点P是BC边上一点,∠BAP=(30°<<60°),作点B关于直线AP的对称点D,连接DC并延长交直线AP于点E,连接BE.
(1)依题意补全图形,并直接写出∠AEB的度数;
(2)用等式表示线段AE,BE,CE之间的数量关系,并证明.
分析:①涉及的知识要素:图形轴对称的性质;等边三角形的性质;全等三角形的判定与性质……
②通过截长补短,利用60°角构造等边三角形,进而构造出全等三角形,从而达到转移边的目的.
请根据上述分析过程,完成解答过程.
2、如图,在△ABC中,∠BAC=90°,AB=AC,射线AE交BC于点P,∠BAE=15°;过点C作CD⊥AE于点D,连接BE,过点E作EF∥BC交DC的延长线于点F.
(1)求∠F的度数;
(2)若∠ABE=75°,求证:BE∥CF.
3、如图,Rt△ACB中,∠ACB=90°,AC=BC,E点为射线CB上一动点,连结AE,作AF⊥AE且AF=AE.
(1)如图1,过F点作FD⊥AC交AC于D点,求证:FD=BC;
(2)如图2,连结BF交AC于G点,若AG=3,CG=1,求证:E点为BC中点.
(3)当E点在射线CB上,连结BF与直线AC交子G点,若BC=4,BE=3,则 .(直接写出结果)
4、如图,CE⊥AB于点E,BF⊥AC于点F,BD=CD.
(1)求证:△BDE≌△CDF;
(2)求证:AE=AF.
5、中,,以点为中心,分别将线段,逆时针旋转得到线段,,连接,延长交于点.
(1)如图1,若,的度数为________;
(2)如图2,当吋,
①依题意补全图2;
②猜想与的数量关系,并加以证明.
6、阅读下面材料:活动1利用折纸作角平分线
①画图:在透明纸片上画出(如图1-①);②折纸:让的两边QP与QR重合,得到折痕QH(如图1-②);③获得结论:展开纸片,QH就是的平分线(如图1-③).
活动2利用折纸求角
如图2,纸片上的长方形ABCD,直线EF与边AB,CD分别相交于点E,F.将对折,点A落在直线EF上的点处,折痕EN与AD的交点为N;将对折,点B落在直线EF上的点处,折痕EM与BC的交点为M.这时的度数可知,而且图中存在互余或者互补的角.
解答问题:(1)求的度数;
(2)①图2中,用数字所表示的角,哪些与互为余角?
②写出的一个补角.
解:(1)利用活动1可知,EN是的平分线,EM是的平分线,所以 , .由题意可知,是平角.所以(∠ +∠ )= °.
(2)①图2中,用数字所表示的角,所有与互余的角是: ;
②的一个补角是 .
7、(1)我们把两个面积相等但不全等的三角形叫做“偏等积三角形”,如图1,中,,P为上一点,当_______时,与是偏等积三角形;
(2)如图2,四边形是一片绿色花园,、是等腰直角三角形,.
①与是偏等积三角形吗?请说明理由;
②已知的面积为.如图3,计划修建一条经过点C的笔直的小路,F在边上,的延长线经过中点G.若小路每米造价600元,请计算修建小路的总造价.
8、中,CD平分,点E是BC上一动点,连接AE交CD于点D.
(1)如图1,若,AE平分,则的度数为______;
(2)如图2,若,,,则的度数为______;
(3)如图3,在BC的右侧过点C作,交AE延长线于点F,且,.试判断AB与CF的位置关系,并证明你的结论.
9、如图,在△ABC中,AD⊥BE,∠DAC=10°,AE是∠BAC的外角∠MAC的平分线,BF平分∠ABC交AE于点F,求∠AFB的度数.
10、周老师带领同学们在数学课上探究下面命题的正确性:顶角为36°的等腰三角形具有一种特性,即经过它某一顶点的一条直线可把它分成两个小等腰三角形.为此,请你完成下列问题:
(1)已知:如图①,在中,,,直线BD平分交AC于点D.求证:与都是等腰三角形;
(2)在证明了该命题后,小尹同学发现:图②、③两个等腰三角形也具有这种特性,请你在图②、图③中分别画出一条直线,把它们分成两个小等腰三角形,并在图中标出所有等腰三角形两个底角的度数;
(3)接着,小尹又发现:还有一些非等腰三角形也具有这样的特性:即过它其中一个顶点画一条直线可以将原三角形分成两个小等腰三角形,请你画出一个具有这种特性的三角形的示意图,并在图中标出可能的各内角的度数.
(4)请你写出两个符合(3)中一般规律的非等腰三角形的特征.
-参考答案-
一、单选题
1、C
【分析】
根据题意在AB上截取BE=BC,由“SAS”可证△CBD≌△EBD,可得∠CDB=∠BDE,∠C=∠DEB,可证∠ADE=∠AED,可得AD=AE,进而即可求解.
【详解】
解:如图,在AB上截取BE=BC,连接DE,
∵BD平分∠ABC,
∴∠ABD=∠CBD,
在△CBD和△EBD中,
,
∴△CBD≌△EBD(SAS),
∴∠CDB=∠BDE,∠C=∠DEB,
∵∠C=2∠CDB,
∴∠CDE=∠DEB,
∴∠ADE=∠AED,
∴AD=AE,
∴△ABC的周长=AD+AE+BE+BC+CD=AB+AB+CD=27,
故选:C.
【点睛】
本题考查全等三角形的判定和性质以及等腰三角形的性质,注意掌握添加恰当辅助线构造全等三角形是解题的关键.
2、B
【分析】
根据等腰三角形的判定定理,结合图形即可得到结论.
【详解】
解:以点A、B为圆心,AB长为半径画弧,交直线BC于两个点,然后作AB的垂直平分线交直线BC于点,如图所示:
∵∠C=90°,∠A=30°,
∴,
∵,
∴是等边三角形,
∴点重合,
∴符合条件的点P有2个;
故选B.
【点睛】
本题主要考查等腰三角形的性质及等边三角形的性质与判定,熟练掌握等腰三角形的性质是解题的关键.
3、D
【分析】
根据等腰三角形的等边对等角的性质及三线合一的性质判断.
【详解】
解:∵AB=AC,点D是BC边中点,
∴ÐB=ÐC,AD⊥BC,ÐBAD=ÐCAD,
故选:D.
【点睛】
此题考查了等腰三角形的性质:等边对等角,三线合一,熟记等腰三角形的性质是解题的关键.
4、D
【分析】
根据三角形的内角和定理、邻补角的性质即可得.
【详解】
解:如图,,
,
又,
,
即三角形的外角和是,
故选:D.
【点睛】
本题考查了三角形的内角和定理、邻补角的性质,熟练掌握三角形的内角和定理是解题关键.
5、B
【分析】
过点作轴于,由“”可证,可得,,即可求解.
【详解】
解:如图,过点作轴于,
点,
,
是等腰直角三角形,且,
,
,
,
在和中,
,
,
,,
,
,
,
故选:B.
【点睛】
本题考查了全等三角形的判定和性质,等腰直角三角形的性质,解题的关键是画图及添加恰当辅助线构造全等三角形.
6、C
【分析】
三角形的三边应满足两边之和大于第三边,两边之差小于第三边,据此求解.
【详解】
解:A、1+2=3,不能组成三角形,不符合题意;
B、3+4=7,不能组成三角形,不符合题意;
C、2+3>4,能组成三角形,符合题意;
D、4+5<10,不能组成三角形,不符合题意;
故选:C.
【点睛】
本题考查了三角形的三边关系,满足两条较小边的和大于最大边即可.
7、C
【分析】
根据三角形内角和定理确定,然后利用平行线的性质求解即可.
【详解】
解:∵,,
∴,
∵,
∴,
故选:C.
【点睛】
题目主要考查平行线的性质,三角形内角和定理等,熟练掌握运用平行线的性质是解题关键.
8、C
【分析】
根据三角形的三边关系,逐项判断即可求解.
【详解】
解:A、因为 ,所以不能组成三角形,故本选项不符合题意;
B、因为 ,所以不能组成三角形,故本选项不符合题意;
C、因为 ,所以能组成三角形,故本选项符合题意;
D、因为 ,所以不能组成三角形,故本选项不符合题意;
故选:C
【点睛】
本题主要考查了三角形的三边关系,熟练掌握三角形的两边之和大于第三边,两边之差小于第三边是解题的关键.
9、C
【分析】
由与,即可求得的度数,又由,根据两直线平行,同位角相等,即可求得的度数.
【详解】
解:∵,
∴,
∵,
∴,
∵,
∴.
故选:C.
【点睛】
题目主要考查了平行线的性质与垂直的性质、三角形内角和定理,熟练掌握平行线的性质是解题关键.
10、A
【分析】
利用三个平角的和减去中间三角形的内角和,再减去三个的角即可.
【详解】
解:,,
,
,
,
,
故选:.
【点睛】
本题主要考查了三角形的内角和定理,灵活运用三角形内角和定理成为解答本题的关键.
二、填空题
1、10
【分析】
构造,再证得,求得EB=BC,再通过等量代换、等角的补角相等求得∠E=∠CDE,则CE=2BC=10.
【详解】
解:延长AD.和CB交于点E.
∵AB平分∠DAC
∴∠EAB=∠CAB
又∵
∴∠ABE=∠ABC
又∵AB=AB
∴
∴BC=EB=5,∠E=∠ACB,
又∵
∴∠ACB=∠CDE
∴∠E=∠CDE
∴.CD=CE
又∵CE=2BC=10
∴CD=10
故答案为:10.
【点睛】
本题考查了全等三角形的性质和判定,等角的补角相等,能根据全等三角形的性质找到角与角之间的关系是解答此题的关键.
2、圆锥
【分析】
根据立体图形视图、等腰三角形的性质分析,即可得到答案.
【详解】
根据题意,这个立体图形是圆锥
故答案为:圆锥.
【点睛】
本题考查了等腰三角形、圆锥、立体图形视图的知识;解题的关键是熟练掌握立体图形视图的性质,从而完成求解.
3、3
【分析】
根据题意依据等腰三角形的性质,即可得到BD=BC,进而分析计算即可得出结论.
【详解】
解:由题可得,AR平分∠BAC,
又∵AB=AC,
∴AD是三角形ABC的中线,
∴BD=BC=×6=3.
故答案为:3.
【点睛】
本题主要考查基本作图以及等腰三角形的性质,注意掌握等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.
4、或
【分析】
根据全等三角形的判定方法即可解决问题.
【详解】
解:由题意,,
根据,可以添加,使得,
根据,可以添加,使得.
故答案为:或
【点睛】
本题主要考查了全等三角形的判定,熟练掌握全等三角形的判定方法——边角边、角边角、角角边、边边边是解题的关键.
5、三角形两边之和大于第三边
【分析】
表示出和四边形BDEC的周长,再结合中的三边关系比较即可.
【详解】
解:的周长=
四边形BDEC的周长=
∵在中
∴
即的周长一定大于四边形BDEC的周长,
∴依据是:三角形两边之和大于第三边;
故答案为三角形两边之和大于第三边
【点睛】
本题考查了三角形三边关系定理,关键是熟悉三角形两边之和大于第三边的知识点.
三、解答题
1、(1)图见解析,∠AEB=60°;(2)AE=BE+CE,证明见解析
【分析】
(1)依题意补全图形,如图所示:然后连接AD,先求出,然后根据轴对称的性质得到,AD=AB=AC,∠AEC=∠AEB,求出,即可求出,再由进行求解即可;
(2)如图,在AE上截取EG=BE,连接BG.先证明△BGE是等边三角形,得到BG=BE=EG,∠GBE=60°. 再证明∠ABG=∠CBE,即可证明△ABG≌△CBE得到AG=CE,则AE=EG+AG=BE+CE.
【详解】
解:(1)依题意补全图形,如图所示:连接AD,
∵△ABC是等边三角形,
∴∠BAC=60°,AB=AC,
∵,
∴,
∵B、D关于AP对称,
∴,AD=AB=AC,∠AEC=∠AEB,
∴,
∴,
∴,
∴
∴∠AEB=60°.
(2)AE=BE+CE.
证明:如图,在AE上截取EG=BE,连接BG.
∵∠AEB=60°,
∴△BGE是等边三角形,
∴BG=BE=EG,∠GBE=60°.
∵△ABC是等边三角形,
∴AB=BC,∠ABC=60°,
∴∠ABG+∠GBC=∠GBC+∠CBE=60°,
∴∠ABG=∠CBE.
在△ABG和△CBE中,
∴△ABG≌△CBE(SAS),
∴AG=CE,
∴AE=EG+AG=BE+CE.
【点睛】
本题主要考查了全等三角形的性质,等边三角形的性质与判定,轴对称的性质,等腰三角形的性质与判定,三角形内角和定理,三角形外角的性质等等,熟知相关知识是解题的关键
2、(1);(2)证明见详解.
.
【分析】
(1)根据三角形内角和及等腰三角形的性质可得,,由各角之间的关系及三角形内角和定理可得,,最后由平行线的性质即可得出;
(2)由题意及各角之间的关系可得,得出,利用平行线的判定定理即可证明.
【详解】
解:(1)∵,,,
∴,,
∵,
∴,,
∴,
∴,
∵,
∴,,
∴;
(2)∵,,
∴,
由(1)可得,
∴,
∴(内错角相等,两直线平行).
【点睛】
题目主要考查平行线的判定与性质,三角形内角和定理等,熟练掌握平行线的判定与性质是解题关键.
3、(1)证明见解析;(2)证明见解析;(3)或
【分析】
(1)证明△AFD≌△EAC,根据全等三角形的性质得到DF=AC,等量代换证明结论;
(2)作FD⊥AC于D,证明△FDG≌△BCG,得到DG=CG,求出CE,CB的长,得到答案;
(3)过F作FD⊥AG的延长线交于点D,根据全等三角形的性质得到CG=GD,AD=CE=7,代入计算即可.
【详解】
(1)证明:∵FD⊥AC,
∴∠FDA=90°,
∴∠DFA+∠DAF=90°,
同理,∠CAE+∠DAF=90°,
∴∠DFA=∠CAE,
在△AFD和△EAC中,
,
∴△AFD≌△EAC(AAS),
∴DF=AC,
∵AC=BC,
∴FD=BC;
(2)作FD⊥AC于D,
由(1)得,FD=AC=BC,AD=CE,
在△FDG和△BCG中,
,
∴△FDG≌△BCG(AAS),
∴DG=CG=1,
∴AD=2,
∴CE=2,
∵BC=AC=AG+CG=4,
∴E点为BC中点;
(3)当点E在CB的延长线上时,过F作FD⊥AG的延长线交于点D,
BC=AC=4,CE=CB+BE=7,
由(1)(2)知:△ADF≌△ECA,△GDF≌△GCB,
∴CG=GD,AD=CE=7,
∴CG=DG=1.5,
∴AG=CG+AC=5.5,
∴,
同理,当点E在线段BC上时,AG= AC -CG+=2.5,
∴,
故答案为:或.
【点睛】
本题考查的是全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理是解题的关键.
4、(1)见解析;(2)见解析
【分析】
(1)根据CE⊥AB,BF⊥AC就可以得出∠BED=∠CFD=90°,就可以由AAS得出结论;
(2)由(1)得DE=DF,就可以得出BF=CE,由AAS就可以得出△AFB≌△AEC就可以得出结论.
【详解】
证明:(1)∵CE⊥AB,BF⊥AC,
∴∠BED=∠CFD=90°,
在△BED和△CFD中,
,
∴△BED≌△CFD(AAS);
(2)∵△BED≌△CFD,
∴DE=DF,
∴BD+DF=CD+DE,
∴BF=CE,
在△ABF和△ACE中,
,
∴△ABF≌△ACE(AAS),
∴AE=AF.
【点睛】
本题考查了垂直的性质的运用,全等三角形的判定与性质的运用,等式的性质的运用,解答时证明三角形全等是关键.
5、
(1)120°
(2)①图形见解析;②
【分析】
(1)根据进而判断出点E在边AB上,得出△ADE≌△ABC(SAS),进而得出∠AED=∠ACB=90°最后用三角形的外角的性质即可得出结论;
(2)①依题意补全图形即可;②先判断出△ADE≌△ABC(SAS),进而得出∠AEF=90°,即可判断出Rt△AEF≌Rt△ACF,进而求出∠CAF=∠CAE=30°,即可得出结论.
(1)
(1)如图1,
在Rt△ABC中,∠B=30°,
∴∠BAC=60°,
由旋转知,∠CAE=60°=∠CAB,
∴点E在边AB上,
∵AD=AB,AE=AC,
∴△ADE≌△ABC(SAS),
∴∠AED=∠ACB=90°,
∴∠CFE=∠B+∠BEF=30°+90°=120°,
故答案为120°;
(2)
(2)①依题意补全图形如图2所示,
②如图2,连接AF,
∵∠BAD=∠CAE,
∴∠EAD=∠CAB,
∵AD=AB,AE=AC,
∴△ADE≌△ABC(SAS),
∴∠AED=∠C=90°,
∴∠AEF=90°,
∴Rt△AEF≌Rt△ACF(HL),
∴∠EAF=∠CAF,
∴∠CAF=∠CAE=30°,
在Rt△ACF中,CF=AF,且AC2+CF2=AF2,
∴
【点睛】
此题是三角形综合题,主要考查了旋转的性质,全等三角形的判定和性质,三角形的外角的性质,含30度角的直角三角形的性质,勾股定理,判断出△ADE≌△ABC是解本题的关键.
6、(1),,,90;(2)①∠1、∠2;②∠CME或∠NEB.
【分析】
【详解】
解:(1)∵折叠
∴EN是的平分线,EM是的平分线,
∴∠NEA=∠NEA′=,∠BEM=∠B′EM=,
∵是平角.
∴∠NEM=∠NEA′+∠B′EM==+,
故答案为:,,,90;
(2)①∵∠1=∠2,∠A′EN=∠3,∠NEM=90°,
∴∠A′EN+∠1=∠NEM=90°,
∴互为余角为∠1和∠2,
故答案为:∠1、∠2;
②∵∠A′EN=∠3,∠3+∠NEB=180°,
∴∠A′EN的补角为∠NEB.
∵∠B=90°,
∴∠2+∠EMB=90°,
∴∠3=∠EMB,
∵∠CME+∠EMB=180°,
∴∠3+∠CME=180°,
∴∠A′EN的补角为∠CME,
∴∠A′EN的补角为∠CME或∠NEB.
故答案为∠CME或∠NEB.
【点睛】
本题考查折叠性质,平角,角平分线,余角性质,补角性质,掌握折叠性质,平角,角平分线,余角性质,补角性质是解题关键.
7、(1);(2)①与是偏等积三角形,理由见详解;②修建小路的总造价为元
【分析】
(1)当时,则,证,再证与不全等,即可得出结论;
(2)①过作于,过作于,证,得,则,再证与不全等,即可得出结论;②过点作,交的延长线于,证得,得到,再证,得,由余角的性质可证,然后由三角形面积和偏等积三角形的定义得,,求出,即可求解.
【详解】
解:(1)当时,与是偏等积三角形,理由如下:
设点到的距离为,则,,
,
,,
,
、,
与不全等,
与是偏等积三角形,
故答案为:;
(3)①与是偏等积三角形,理由如下:
过作于,过作于,如图3所示:
则,
、是等腰直角三角形,
,,,
,
,
,
在和中,
,
,
,
,,
,
,,
,
,,
与不全等,
与是偏等积三角形;
②如图4,过点作,交的延长线于,
则,
点为的中点,
,
在和中,
,
,
,
,
,
,
,
,
,
,
在和中,
,
,
,
,
,
,
.
由①得:与是偏等积三角形,
,,
,
修建小路的总造价为:(元.
【点睛】
本题是四边形综合题目,考查了新定义“偏等积三角形”的定义、全等三角形的判定与性质、等腰直角三角形的性质、三角形面积等知识;本题综合性强,熟练掌握“偏等积三角形”的定义,证明和是解题的关键,属于中考常考题型.
8、(1)40°;(2)10°;(3)AB∥CF,理由见解析
【分析】
(1)根据三角形的角和定理和角平分线的定义可求得∠BAC+∠ACB=140°即可求解;
(2)根据三角形的外角性质求得∠B+∠BAE=47°即可求解;
(3)延长AC到G,根据等腰三角形的性质和三角形的外角性质得到∠FCG=2∠F,再根据角平分线的定义和等角的余角相等得到∠BCF=2∠F,则有∠B=∠BCF,根据平行线在判定即可得出结论.
【详解】
解:(1)∵∠ADC=110°,
∴∠DAC+∠DCA=180°-110°=70°,
∵AE平分∠BAC,CD平分∠ACB,
∴∠BAC=2∠DAC,∠ACB=2∠DCA,
∴∠BAC+∠ACB=2(∠DAC+∠DCA)=140°,
∴∠B=180°-(∠BAC+∠ACB)=180°-140°=40°,
故答案为:40°;
(2)∵∠ADC=∠DCE+∠DEC=100°,∠DCE=53°,
∴∠DEC=100°-53°=47°,
∴∠B+∠BAE=∠DEC=47°,
∵∠B-∠BAE=27°,
∴∠BAE=10°,
故答案为:10°;
(3)AB∥CF,理由为:
如图,延长AC到G,
∵AC=CF,
∴∠F=∠FAC,
∴∠FCG=∠F+∠FAC=2∠F,
∵CF⊥CD,
∴∠BCF+∠BCD=90°,∠FCG+∠ACD=90°,
∵CD平分∠ACB,
∴∠BCD=∠ACD,
∴∠BCF=∠FCG=2∠F,
∵∠B=2∠F,
∴∠B=∠BCF,
∴AB∥CF.
【点睛】
本题考查角平分线的定义、三角形的内角和定理、三角形的外角性质、等腰三角形的性质、等角的余角相等、平行线的判定,熟练掌握相关知识的联系与运用是解答的关键.
9、∠AFB=40°.
【分析】
由题意易得∠ADC=90°,∠ACB=80°,然后可得,进而根据三角形外角的性质可求解.
【详解】
解:∵AD⊥BE,
∴∠ADC=90°,
∵∠DAC=10°,
∴∠ACB=90°﹣∠DAC=90°﹣10°=80°,
∵AE是∠MAC的平分线,BF平分∠ABC,
∴,
又∵∠MAE=∠ABF+∠AFB,∠MAC=∠ABC+∠ACB,
∴∠AFB=∠MAE﹣∠ABF=.
【点睛】
本题主要考查三角形外角的性质及角平分线的定义,熟练掌握三角形外角的性质及角平分线的定义是解题的关键.
10、
(1)见详解;
(2)见详解;
(3)见详解;
(4)见详解;
【分析】
(1)根据等边对等角,及角平分线定义易得∠1=∠2=36°,∠C=72°,那么∠BDC=72°,则可得AD=BD=CB,所以△ABD与△DBC都是等腰三角形;
(2)把等腰直角三角形分为两个小的等腰直角三角形即可,把108°的角分为36°和72°即可;
(3)利用直角三角形的中线等于直角三角形斜边的一半可得任意直角三角形的中线把直角三角形分为两个等腰三角形;由(1),(2)易得所知的两个角要么是2倍关系,要么是3倍关系,可猜测只要所给的三个角中有2个角是2倍或3倍关系都可得到上述图形;
(4)按照发现的(3)的特点来写,注意去掉特殊三角形的形式.
(1)
证明:在△ABC中,∵AB=AC,
∴∠ABC=∠C,
∵∠A=36°,
∴∠ABC=∠C=(180°-∠A)=72°,
∵BD平分∠ABC,
∴∠1=∠2=36°
∴∠3=∠1+∠A=72°,
∴∠1=∠A,∠3=∠C,
∴AD=BD,BD=BC,
∴△ABD与△BDC都是等腰三角形
(2)
解:如下图所示:
(3)
解:如图所示:
(4)
解:特征一:直角三角形(直角边不等);
特征二:2倍内角关系,在△ABC中,∠A=2∠B,0°<∠B<45°,其中,∠B≠30°;
【点睛】
本题考查了等腰三角形的判定;注意应根据题中所给的范例用类比的方法推测出把一般三角形分为两个等腰三角形的一般结论.
相关试卷
这是一份初中沪教版 (五四制)第十四章 三角形综合与测试习题,共33页。
这是一份沪教版 (五四制)七年级下册第十四章 三角形综合与测试同步测试题,共35页。试卷主要包含了如图,点A等内容,欢迎下载使用。
这是一份初中数学沪教版 (五四制)七年级下册第十四章 三角形综合与测试测试题,共29页。试卷主要包含了如图,ABC≌DEF,点B,下列三角形与下图全等的三角形是,如图,为估计池塘岸边A等内容,欢迎下载使用。