沪教版 (五四制)七年级下册第十四章 三角形综合与测试当堂检测题
展开
这是一份沪教版 (五四制)七年级下册第十四章 三角形综合与测试当堂检测题,共33页。试卷主要包含了若一个三角形的三个外角之比为3,如图,点D等内容,欢迎下载使用。
沪教版七年级数学第二学期第十四章三角形同步训练
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、在平面直角坐标系xOy中,点A(0,2),B(a,0),C(m,n)().若ABC是等腰直角三角形,且,当时,点C的横坐标m的取值范围是( )
A. B. C. D.
2、三角形的外角和是( )
A.60° B.90° C.180° D.360°
3、如图,直线l1l2,被直线l3、l4所截,并且l3⊥l4,∠1=46°,则∠2等于( )
A.56° B.34° C.44° D.46°
4、若一个三角形的三个外角之比为3:4:5,则该三角形为( )
A.直角三角形 B.等腰三角形 C.等边三角形 D.等腰直角三角形
5、一个三角形三个内角的度数分别是x,y,z.若,则这个三角形是( )
A.等腰三角形 B.等边三角形 C.等腰直角三角形 D.不存在
6、如图,点D、E分别在∠ABC的边BA、BC上,DE⊥AB,过BA上的点F(位于点D上方)作FG∥BC,若∠AFG=42°,则∠DEB的度数为( )
A.42° B.48° C.52° D.58°
7、如果三角形一边上的中线等于这条边的一半,那么这个三角形一定是( ).
A.锐角三角形 B.直角三角形 C.钝角三角形 D.等腰三角形
8、已知三角形的两边长分别为和,则下列长度的四条线段中能作为第三边的是( )
A. B. C. D.
9、下列所给的各组线段,能组成三角形的是:( )
A.2,11,13 B.5,12,7 C.5,5,11 D.5,12,13
10、如图,∠A=α,∠DBC=3∠DBA,∠DCB=3∠DCA,则∠BDC的大小为( )
A. B. C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,在△中,已知点分别为的中点,若△的面积为,则阴影部分的面积为 _________
2、如图,把两块大小相同的含45°的三角板ACF和三角板CFB如图所示摆放,点D在边AC上,点E在边BC上,且∠CFE=13°,∠CFD=32°,则∠DEC的度数为_______.
3、如图,正三角形ABC中,D是AB的中点,于点E,过点E作与BC交于点F.若,则的周长为______.
4、如图,已知△ABC是等边三角形,边长为3,G是三角形的重心,那么GA =______.
5、已知:如图,AB = DB.只需添加一个条件即可证明.这个条件可以是______.(写出一个即可).
三、解答题(10小题,每小题5分,共计50分)
1、在等腰中,,点D是BC边上的一个动点(点D不与点B,C重合),连接AD,作等腰,使,,点D,E在直线AC两旁,连接CE.
(1)如图1,当时,直接写出BC与CE的位置关系;
(2)如图2,当时,过点A作于点F,请你在图2中补全图形,用等式表示线段BD,CD,之间的数量关系,并证明.
2、已知:直线AB、CR被直线UV所截,直线UV交直线AB于点B,交直线CR于点D,∠ABU+∠CDV=180°.
(1)如图1,求证:AB∥CD;
(2)如图2,BE∥DF,∠MEB=∠ABE+5°,∠FDR=35°,求∠MEB的度数;
(3)如图3,在(2)的条件下,点N在直线AB上,分别连接EN、ED,MG∥EN,连接ME,∠GME=∠GEM,∠EBD=2∠NEG,EB平分∠DEN,MH⊥UV于点H,若∠EDC=∠CDB,求∠GMH的度数.
3、如图,点C是线段AB上一点,与都是等边三角形,连接AE,BF.
(1)求证:;
(2)若点M,N分别是AE,BF的中点,连接CM,MN,NC.
①依题意补全图形;
②判断的形状,并证明你的结论.
4、已知:如图,点D为BC的中点,,求证:是等腰三角形.
5、如图,E为AB上一点,BD∥AC,AB=BD,AC=BE.求证:BC=DE.
6、如图,△ABC中,AB=AC,D为BC边的中点,AF⊥AD,垂足为A.求证:∠1=∠2
7、如图,点B,F,C,E在一条直线上,AB=DE,∠B=∠E,BF=CE.求证:AC=DF.
8、如图,在中,,AD是角平分线,E是AB边上一点,连接ED,CB是的平分线,ED的延长线与CF交于点F.
(1)求证:;
(2)若,,则______度.
9、如图,已知△ABC≌△DEB,点E在AB上,AC与BD交于点F,AB=6,BC=3,∠C=55°,∠D=25°.
(1)求AE的长度;
(2)求∠AED的度数.
10、如图,AD是的高,CE是的角平分线.若,,求的度数.
-参考答案-
一、单选题
1、B
【分析】
过点作轴于,由“”可证,可得,,即可求解.
【详解】
解:如图,过点作轴于,
点,
,
是等腰直角三角形,且,
,
,
,
在和中,
,
,
,,
,
,
,
故选:B.
【点睛】
本题考查了全等三角形的判定和性质,等腰直角三角形的性质,解题的关键是画图及添加恰当辅助线构造全等三角形.
2、D
【分析】
根据三角形的内角和定理、邻补角的性质即可得.
【详解】
解:如图,,
,
又,
,
即三角形的外角和是,
故选:D.
【点睛】
本题考查了三角形的内角和定理、邻补角的性质,熟练掌握三角形的内角和定理是解题关键.
3、C
【分析】
依据l1∥l2,即可得到∠3=∠1=46°,再根据l3⊥l4,可得∠2=90°﹣46°=44°.
【详解】
解:如图:
∵l1∥l2,∠1=46°,
∴∠3=∠1=46°,
又∵l3⊥l4,
∴∠2=90°﹣46°=44°,
故选:C.
【点睛】
本题考查了平行线性质以及三角形内角和,平行线的性质:两直线平行,同位角相等以及三角形内角和是180°.
4、A
【分析】
根据三角形外角和为360°计算,求出内角的度数,判断即可.
【详解】
解:设三角形的三个外角的度数分别为3x、4x、5x,
则3x+4x+5x=360°,
解得,x=30°,
∴三角形的三个外角的度数分别为90°、120°、150°,
对应的三个内角的度数分别为90°、60°、30°,
∴此三角形为直角三角形,
故选:A.
【点睛】
本题考查的是三角形的外角和,掌握三角形外角和为360°是解题的关键.
5、C
【分析】
根据绝对值及平方的非负性可得,,再由三角形内角和定理将两个式子代入求解可得,,即可确定三角形的形状.
【详解】
解:,
∴且,
∴,,
∴,
∵,
∴,
解得:,,
∴三角形为等腰直角三角形,
故选:C.
【点睛】
题目主要考查绝对值及平方的非负性,三角形内角和定理,等腰三角形的判定等,理解题意,列出式子求解是解题关键.
6、B
【分析】
根据两直线平行,同位角相等可得,再由垂直的性质及三角形内角和定理即可得.
【详解】
解:∵,
∴,
∵,
∴,
∴,
故选:B.
【点睛】
题目主要考查平行线及垂线的性质,三角形内角和定理等,理解题意,熟练运用平行线的性质是解题关键.
7、B
【分析】
根据题意画出图形,利用等腰三角形的性质及三角形内角和定理即可得到答案.
【详解】
如图,在△ABC中,CD是边AB上的中线
∵AD=CD=BD
∴∠A=∠DCA,∠B=∠DCB
∵∠A+∠ACB+∠B=180°
∴ ∠A+∠DCA+∠DCB+∠B=180
即2∠A+2∠B=180°
∴∠A+∠B=90°
∴∠ACB=90°
∴△ABC是直角三角形
故选:B
【点睛】
本题考查了等腰三角形的性质及三角形内角和定理,熟练运用这两个知识是关键.
8、C
【分析】
根据三角形的三边关系可得,再解不等式可得答案.
【详解】
解:设三角形的第三边为,由题意可得:
,
即,
故选:C.
【点睛】
本题主要考查了三角形的三边关系,解题的关键是掌握三角形两边之和大于第三边;三角形的两边差小于第三边.
9、D
【分析】
根据三角形三边关系定理,判断选择即可.
【详解】
∵2+11=13,
∴A不符合题意;
∵5+7=12,
∴B不符合题意;
∵5+5=10<11,
∴C不符合题意;
∵5+12=17>13,
∴D符合题意;
故选D.
【点睛】
本题考查了构成三角形的条件,熟练掌握三角形三边关系是解题的关键.
10、A
【分析】
根据题意设,根据三角形内角和公式定理,进而表示出,进而根据三角形内角和定理根据即可求解
【详解】
解:∵∠A=α,∠DBC=3∠DBA,∠DCB=3∠DCA,设,
∴
即
故选A
【点睛】
本题考查了三角形内角和定理,掌握三角形内角和定理是解题的关键.
二、填空题
1、1
【分析】
根据三角形的中线把三角形分成两个面积相等的三角形解答.
【详解】
解:∵点E是AD的中点,
∴S△ABE=S△ABD,S△ACE=S△ADC,
∴S△ABE+S△ACE=S△ABC=×4=2cm2,
∴S△BCE=S△ABC=×4=2cm2,
∵点F是CE的中点,
∴S△BEF=S△BCE=×2=1cm2.
故答案为:1.
【点睛】
本题考查了三角形的面积,主要利用了三角形的中线把三角形分成两个面积相等的三角形,原理为等底等高的三角形的面积相等.
2、
【分析】
作FH垂直于FE,交AC于点H,可证得,由对应边、对应角相等可得出,进而可求出,则.
【详解】
作FH垂直于FE,交AC于点H,
∵
又∵,
∴
∵,FA=CF
∴
∴FH=FE
∵
∵
∴
又∵DF=DF
∴
∴
∵
∴
∵
∴
∴
故答案为:.
【点睛】
本题考查了等腰三角形的性质,全等三角形的判定及其性质,作辅助线HF垂直于FE是解题的关键.
3、18
【分析】
利用正三角形ABC以及平行关系,求出是等边三角形,在中,利用含角的直角三角形的性质,求出的长,进而得到长,最后即可求出的周长.
【详解】
解:是等边三角形,
,,
,
,
为等边三角形,
,
由于D是AB的中点,故,
,
,
在中,,
,
,
,
故答案为:18.
【点睛】
本题主要是考查了等边三角形的判定及性质、含角的直角三角形的性质,熟练地综合应用等边三角形和含角的直角三角形的性质求解边长,是解决该题的关键.
4、
【分析】
延长AG交BC于D,根据重心的概念得到AD⊥BC,BD=DC=BC=,根据勾股定理求出AD,根据重心的概念计算即可.
【详解】
解:延长AG交BC于D,
∵G是三角形的重心,
∴AD⊥BC,BD=DC=BC=,
由勾股定理得,AD=,
∴GA=AD=,
故答案为:.
【点睛】
本题考查的是等边三角形的性质、三角形的重心的概念,三角形的重心是三角形三条中线的交点,且重心到顶点的距离是它到对边中点的距离的2倍.
5、AC=DC
【分析】
由题意可得,BC为公共边,AB=DB,即添加一组边对应相等,可证△ABC与△DBC全等.
【详解】
解:∵AB=DB,BC=BC,
添加AC=DC,
∴在△ABC与△DBC中,
,
∴△ABC≌△DBC(SSS),
故答案为:AC=DC.
【点睛】
本题考查了全等三角形的判定,灵活运用全等三角形的判定是本题的关键.
三、解答题
1、
(1)
(2)或,见解析
【分析】
(1)根据已知条件求出∠B=∠ACB=45°,证明△BAD≌△CAE,得到∠ACE=∠B=45°,求出∠BCE=∠ACB+∠ACE=90°,即可得到结论;
(2)根据题意作图即可,证明≌.得到,,,推出.延长EF到点G,使,证明≌,推出.由此得到.同理可证.
(1)
解:,,
∴∠B=∠ACB=45°,
∵,
∴,即∠BAD=∠CAE,
∵,,
∴△BAD≌△CAE,
∴∠ACE=∠B=45°,
∴∠BCE=∠ACB+∠ACE=90°,
∴;
(2)
解:如图,补全图形;
.
证明:∵,
∴.
又∵,,
∴≌.
∴,,.
∵,
∴.
∴.
延长EF到点G,使.
∵,
∴.
∴.
∵,
∴.
∴.
∵,
∴≌.
∴.
∵,
∴.
如图,同理可证.
.
【点睛】
此题考查了全等三角形的判定及性质,等腰三角形的性质,熟记全等三角形的判定及性质是解题的关键.掌握分类思想解题是难点.
2、(1)见详解;(2)∠MEB=40°,(3)∠GMH=80°
【分析】
(1)根据等角的补角性质得出∠ABD=∠CDV,根据同位角相等两直线平行可得AB∥CD;
(2)根据AB∥CD;利用内错角相等得出∠ABD=∠RDB,根据BE∥DF,得出∠EBD=∠FDB,利用等量减等量差相等得出∠ABE=∠FDR,根据∠FDR=35°,可得∠ABE=∠FDR=35°即可;
(3)设ME交AB于S,根据MG∥EN,得出∠NES=∠GMS=∠GES,设∠NES=y°,可得∠NEG=∠NES+∠GES=2∠NES=2y°,根据∠EBD=2∠NEG,得出∠EBD =4∠NES=4y°,根据∠EDC=∠CDB,设∠EDC=x°,得出∠CDB=7x°,根据AB∥CD,得出∠GBE+∠EBD+∠CDB=180°,可得35+4y+7x=180根据三角形内角和∠BDE=∠BDC-∠EDC=7x-x=6x,∠BED=180°-∠EBD-∠EDB=180°-4y°-6x°,利用EB平分∠DEN,得出y°+40°=180°-4y°-6x°,解方程组,解得,可证ME∥UV,根据MH⊥UV,可求∠SMH=90°,∠SMG=∠NES=10°即可.
【详解】
(1)证明:∵∠ABU+∠ABD=180°,∠ABU+∠CDV=180°.
∴∠ABU=180°-∠ABD,∠CDV=180°-∠ABU,
∴∠ABD=∠CDV,
∴AB∥CD;
(2)解:∵AB∥CD;
∴∠ABD=∠RDB,
∴∠ABE+∠EBD=∠FDB+∠FDR,
∵BE∥DF,
∴∠EBD=∠FDB,
∴∠ABE=∠FDR,
∵∠FDR=35°,
∴∠ABE=∠FDR=35°,
∴∠MEB=∠ABE+5°=35°+5°=40°,
(3)解:设ME交AB于S,
∵MG∥EN,
∴∠NES=∠GMS=∠GES,
设∠NES=y°,
∵∠EBD=2∠NEG
∴∠NEG=∠NES+∠GES=2∠NES=2y°,
∴∠EBD =4∠NES=4y°,
∵∠EDC=∠CDB,
设∠EDC=x°
∴∠CDB=7x°,
∵AB∥CD,
∴∠ABD+∠CDB=180°,即∠GBE+∠EBD+∠CDB=180°,
∴35+4y+7x=180,
∵∠BDE=∠BDC-∠EDC=7x-x=6x,
∴∠BED=180°-∠EBD-∠EDB=180°-4y°-6x°,
∵EB平分∠DEN,
∴∠NEB=∠BED,
∵∠NEB=∠NES+∠SEB=y°+40°,
∴y°+40°=180°-4y°-6x°,
∴,
解得,
∴∠EBD=4y°=40°=∠MEB,
∴ME∥UV,
∵MH⊥UV,
∴MH⊥ME,
∴∠SMH=90°,,
∵∠SMG=∠NES=10°,
∴∠GMH=90°-∠SMG=90°-10°=80°.
【点睛】
本题考查平行线判定与性质,三角形内角和,垂直性质,角平分线定义,角的倍分,二元一次方程组,掌握平行线判定与性质,三角形内角和,垂直性质,角平分线定义,角的倍分,二元一次方程组是解题关键.
3、
(1)证明见解析;
(2)①补全图形见解析;②是等边三角形,证明见解析.
【分析】
(1)由等边三角形的性质可知,,.结合题意易得出.即可利用“SAS”证明,即得出;
(2)①根据题意补全图形即可;
②由全等三角形的性质可知,.再由题意点M,N分别是AE,BF的中点,即得出.即可利用“SAS”证明,得出结论,.最后根据,即得出,即可判定是等边三角形.
(1)
∵与都是等边三角形,
∴,,,
∴,即,
在和中,
∴,
∴,
∴.
(2)
①画图如下:
②是等边三角形.
理由如下:∵,
∴,.
∵点M,N分别是AE,BF的中点,
∴,
在和中,
∵,
∴,
∴,,
∴,即,
∴是等边三角形.
【点睛】
本题考查等边三角形的判定和性质,全等三角形的判定和性质,线段的中点.利用数形结合的思想是解答本题的关键.
4、证明见解析
【分析】
过点D作,交AB于点M,过点D做,交AC于点N,根据角平分线性质,得;根据全等三角形的性质,通过证明,通过证明,得,结合等腰三角形的性质,即可完成证明.
【详解】
如下图,过点D作,交AB于点M,过点D做,交AC于点N
∵
∴
直角和直角中
∴
∴
∵点D为BC的中点,
∴
直角和直角中
∴
∴
∵,
∴,即是等腰三角形.
【点睛】
本题考查了角平分线、三角形中线、全等三角形、等腰三角形的知识;解题的关键是熟练掌握角平分线、三角形中线,全等三角形的性质,从而完成求解.
5、见解析
【分析】
根据平行线的性质可得,利用全等三角形的判定定理即可证明.
【详解】
证明:∵,
∴.
在和中,
,
∴,
∴.
【点睛】
题目主要考查全等三角形的判定定理和平行线的性质,熟练掌握全等三角形的判定定理是解题关键.
6、见详解.
【分析】
根据等腰三角形三合一性质以及等边对等角性质得出AD⊥BC,∠B=∠C,根据AF⊥AD,利用在同一平面内垂直同一直线的两直线平行得出AF∥BC,利用平行线性质得出∠1=∠B,∠2=∠C即可.
【详解】
证明:∵△ABC中,AB=AC,D为BC边的中点,
∴AD⊥BC,∠B=∠C,
∵AF⊥AD,
∴AF∥BC,
∴∠1=∠B,∠2=∠C,
∴∠1=∠2.
【点睛】
本题考查等腰三角形性质,平行线的判定与性质,掌握等腰三角形性质,平行线的判定与性质是解题关键.
7、见解析
【分析】
先由BF=CE说明BC= EF.然后运用SAS证明△ABC≌△DEF,最后运用全等三角形的性质即可证明.
【详解】
证明:∵BF= CE,
∴BC= EF.
在△ABC和△DEF中,
∴△ABC≌△DEF(SAS).
∴AC=DF.
【点睛】
本题主要考查了全等三角形的判定与性质,正确证明△ABC≌△DEF是解答本题的关键.
8、(1)见解析,(2)46
【分析】
(1)根据等腰三角形的性质和角平分线得到∠B=∠ACB=∠BCF,由AD是角平分线,得到BD=CD,证△BDE≌△CDF即可;
(2)根据全等三角形的性质得到DE=DF=DA,根据求得∠DAB,进而求出∠B的度数即可.
【详解】
(1)证明:∵,
∴∠B=∠ACB,
∵CB是的平分线,
∴∠ACB=∠BCF,
∴∠B=∠BCF,
∵AD是角平分线,AB=AC,
∴BD=CD,
∵∠BDE=∠CDF,
∴△BDE≌△CDF(AAS);
∴;
(2)∵△BDE≌△CDF;
∴ED=FD,
∵,
∴ED=AD,
∵,
∴,
∴,
∴∠B=∠ACB=∠BCF=23°,
∴,
故答案为:46.
【点睛】
本题考查了等腰三角形的性质和全等三角形的判定与性质,解题关键是熟练运用相关知识进行推理证明和计算.
9、(1);(2).
【分析】
(1)先根据全等三角形的性质可得,再根据线段的和差即可得;
(2)先根据全等三角形的性质可得,再根据三角形的外角性质即可得.
【详解】
解:(1)∵,
∴,
∵,
∴;
(2)∵,
∴,
∵,
∴.
【点睛】
本题考查全等三角形的性质等知识点,熟练掌握全等三角形的对应角和对应边相等是解题关键.
10、
【分析】
AD是的高,有;由知;CE是的角平分线可得;,;在中,.
【详解】
解:∵AD是的高
∴
∵
∴
∵CE是的角平分线
∴
∵
∴
∴在中,.
【点睛】
本题考查了角平分线.解题的关键在于正确表示各角度之间的数量关系.
相关试卷
这是一份初中数学沪教版 (五四制)七年级下册第十四章 三角形综合与测试达标测试,共30页。
这是一份沪教版 (五四制)七年级下册第十四章 三角形综合与测试精练,共32页。试卷主要包含了尺规作图等内容,欢迎下载使用。
这是一份初中数学沪教版 (五四制)七年级下册第十四章 三角形综合与测试习题,共29页。试卷主要包含了如图,直线l1l2,被直线l3,如图,AB=AC,点D等内容,欢迎下载使用。