终身会员
搜索
    上传资料 赚现金

    2022年最新精品解析沪教版七年级数学第二学期第十四章三角形课时练习试题(含详细解析)

    立即下载
    加入资料篮
    2022年最新精品解析沪教版七年级数学第二学期第十四章三角形课时练习试题(含详细解析)第1页
    2022年最新精品解析沪教版七年级数学第二学期第十四章三角形课时练习试题(含详细解析)第2页
    2022年最新精品解析沪教版七年级数学第二学期第十四章三角形课时练习试题(含详细解析)第3页
    还剩26页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中沪教版 (五四制)第十四章 三角形综合与测试复习练习题

    展开

    这是一份初中沪教版 (五四制)第十四章 三角形综合与测试复习练习题,共29页。试卷主要包含了下列三角形与下图全等的三角形是,如图,点A,如图,三角形的外角和是等内容,欢迎下载使用。
    沪教版七年级数学第二学期第十四章三角形课时练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在中,ADAE分别是边BC上的中线与高,CD的长为5,则的面积为(    A.8 B.10 C.20 D.402、如图,直线l1l2,被直线l3l4所截,并且l3l4,∠1=46°,则∠2等于(  )A.56° B.34° C.44° D.46°3、如图,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形.他的依据是(    A. B. C. D.4、下列三角形与下图全等的三角形是(    A. B. C. D.5、如图,点ABCD在一条直线上,点EFAD两侧,,添加下列条件不能判定的是(    A. B. C. D.6、如图:将一张长为40cm的长方形纸条按如图所示折叠,若AB=3BC,则纸条的宽为(     ) A.12 B.14 C.16 D.187、已知的三边长分别为abc,则abc的值可能分别是(    A.1,2,3 B.3,4,7C.2,3,4 D.4,5,108、三角形的外角和是(  )A.60° B.90° C.180° D.360°9、如图,在中,AD是角平分线,且,若,则的度数是(    A.45° B.50° C.52° D.58°10、若一个三角形的三个外角之比为3:4:5,则该三角形为(  )A.直角三角形 B.等腰三角形 C.等边三角形 D.等腰直角三角形第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、在等腰△ABC中,∠A=40°,则∠B=_____°.2、如图,△ABC的面积等于35,AEEDBD=3DC,则图中阴影部分的面积等于 _______ 3、如图,在边长为4,面积为的等边中,点分别是边的中点,点边上的动点,求的最小值___.4、如图,在中,,点DE在边BC上,,若,则CE的长为______.5、如图,将绕点顺时针旋转得到,点的对应点恰好落在边上,则_______.(用含的式子表示)三、解答题(10小题,每小题5分,共计50分)1、已知:在△ABC中,AD平分∠BAC,AE=AC.求证:ADCE2、如图,已知△ABC≌△DEB,点EAB上,ACBD交于点FAB=6,BC=3,∠C=55°,∠D=25°.(1)求AE的长度;(2)求∠AED的度数.3、如图,在中,点DE分别在边ABAC上,BECD交于点F.求的度数.4、如图,四边形中,于点(1)如图1,求证:(2)如图2,延长的延长线于点,点上,连接,且,求证:(3)如图3,在(2)的条件下,点的延长线上,连接于点,连接,且,当时,求的长.5、如图,在等边三角形ABC中,点DE分别在边BCAC上,且DEAB,过点EEFDE,交BC的延长线于点F(1)求证:CECF(2)若CD=2,求DF的长.6、阅读填空,将三角尺(△MPN∠MPN=90°)放置在△ABC上(点P△ABC内),如图①所示,三角尺的两边PM、PN恰好经过点B和点C,我们来研究∠ABP∠ACP是否存在某种数量关系.(1)特例探索:∠A=50°,则∠PBC+∠PCB=       度,∠ABP+∠ACP=       度.(2)类比探索:∠ABP、∠ACP、∠A的关系是                      (3)变式探索:如图②所示,改变三角尺的位置,使点P△ABC外,三角尺的两边PM、PN仍恰好经过点B和点C,则∠ABP、∠ACP、∠A的关系是                      7、如图,将△ABC绕点A逆时针旋转得到△ADE,点DBC上,已知∠B=70°,求∠CDE的大小.8、已知:如图,AD是等腰三角形ABC的底边BC上的中线,DEAB,交AC于点E.求证:△AED是等腰三角形.9、如图,点BFCE在一条直线上,AB=DE,∠B=∠EBF=CE.求证:AC=DF10、如图,在△ABC中,AB=ACCDAB于点D,∠A=50°,求∠BCD的度数. -参考答案-一、单选题1、C【分析】根据三角形中线的性质得出CB的长为10,再用三角形面积公式计算即可.【详解】解:∵AD是边BC上的中线,CD的长为5,CB=2CD=10,的面积为故选:C.【点睛】本题考查了三角形中线的性质和面积公式,解题关键是明确中线的性质求出底边长.2、C【分析】依据l1l2,即可得到∠3=∠1=46°,再根据l3l4,可得∠2=90°﹣46°=44°.【详解】解:如图:l1l2,∠1=46°,∴∠3=∠1=46°,又∵l3l4∴∠2=90°﹣46°=44°,故选:C.【点睛】本题考查了平行线性质以及三角形内角和,平行线的性质:两直线平行,同位角相等以及三角形内角和是180°.3、C【分析】根据题意,可知仍可辨认的有1条边和2个角,且边为两角的夹边,即可根据来画一个完全一样的三角形【详解】根据题意可得,已知一边和两个角仍保留,且边为两角的夹边,根据两个三角形对应的两角及其夹边相等,两个三角形全等,即故选C【点睛】本题考查了三角形全等的性质与判定,掌握三角形的判定方法是解题的关键.4、C【分析】根据已知的三角形求第三个内角的度数,由全等三角形的判定定理即可得出答案.【详解】由题可知,第三个内角的度数为A.只有两边,故不能判断三角形全等,故此选项错误;B.两边夹的角度数不相等,故两三角形不全等,故此选项错误;C.两边相等且夹角相等,故能判断两三角形全等,故此选项正确;D. 两边夹的角度数不相等,故两三角形不全等,故此选项错误.故选:C.【点睛】本题考查全等三角形的判定,掌握全等三角形的判定定理是解题的关键.5、A【分析】根据题意,可得,结合选项根据三角形全等的性质与判定逐项分析即可.【详解】解:A. ,不能根据SSA证明三角形全等,故该选项符合题意;B. ,故能判定,不符合题意;C. ,,故能判定,不符合题意;D.,故能判定,不符合题意;故选A【点睛】本题考查了平行线的性质,三角形全等的性质与判定,掌握三角形全等的性质与判定是解题的关键.6、B【分析】如图,延长NOAD的延长线于点P,设BC=x,则AB=3x,利用折叠的性质和等腰直角三角形的性质可表示出纸条的宽MONO的长,从而可表示出纸条的长2PN的长,然后根据长方形纸条的长为40,可得到关于x的方程,解方程求出x的值,即可求出纸条的宽.【详解】解:如图,延长NOAD的延长线于点P BC=x,则AB=3x ∵折叠, AB=BM=CO=CD=PO=3x ∴纸条的宽为:MO=NO=3x+3x+x=7x ∴纸条的长为:2PN=2(7x+3x)=20x=40 解得:x=2, ∴纸条的宽NO=7×2=14. 故答案为:B.【点睛】此题考查了折叠的性质,等腰直角三角形的性质,一元一次方程应用题,解题的关键是正确分析题目中的等量关系列出方程求解.7、C【分析】三角形的三边应满足两边之和大于第三边,两边之差小于第三边,据此求解.【详解】解:A、1+2=3,不能组成三角形,不符合题意;B、3+4=7,不能组成三角形,不符合题意;C、2+3>4,能组成三角形,符合题意;D、4+5<10,不能组成三角形,不符合题意;故选:C.【点睛】本题考查了三角形的三边关系,满足两条较小边的和大于最大边即可.8、D【分析】根据三角形的内角和定理、邻补角的性质即可得.【详解】解:如图,即三角形的外角和是故选:D.【点睛】本题考查了三角形的内角和定理、邻补角的性质,熟练掌握三角形的内角和定理是解题关键.9、A【分析】根据角平分线性质求出∠DCA,再根据等腰三角形的性质和三角形的内角和定理求解∠C和∠B即可.【详解】解:∵AD是角平分线,∴∠DCA==30°,AD=AC∴∠C=(180°-∠DCA)÷2=75°,∴∠B=180°-∠BAC-∠C=180°-60°-75°=45°,故选:A.【点睛】本题考查角平分线的性质、等腰三角形的性质、三角形的内角和定理,熟练掌握等腰三角形的性质是解答的关键.10、A【分析】根据三角形外角和为360°计算,求出内角的度数,判断即可.【详解】解:设三角形的三个外角的度数分别为3x、4x、5x则3x+4x+5x=360°,解得,x=30°,∴三角形的三个外角的度数分别为90°、120°、150°,对应的三个内角的度数分别为90°、60°、30°,∴此三角形为直角三角形,故选:A.【点睛】本题考查的是三角形的外角和,掌握三角形外角和为360°是解题的关键.二、填空题1、40°或70°或100°【分析】本题要分两种情况讨论:当∠A=40°为顶角;当∠A=40°为底角时,则∠B为底角时或顶角.然后求出∠B【详解】分两种情况讨论:当∠A=40°为顶角时,当∠A=40°为底角时,∠B为底角时∠B=∠A=40°;∠B为顶角时∠B=180°−∠A−∠C=180°−40°−40°=100°.故答案为:40°或70°或100°.【点睛】本题考查等腰三角形的性质,解题的关键是掌握等腰三角形的性质,分情况讨论问题.2、15【分析】连接DF,根据AEEDBD=3DC,可得,然后设△AEF的面积为x,△BDE的面积为y,则,再由△ABC的面积等于35,即可求解.【详解】解:如图,连接DF AEEDBD=3DC设△AEF的面积为x,△BDE的面积为y,则∵△ABC的面积等于35,解得:故答案为:15【点睛】本题主要考查了与三角形中线有关的面积问题,根据题意得到是解题的关键.3、【分析】连接,交于点,连接,则的最小值为,再由已知求出的长即可.【详解】解:连接,交于点,连接是等边三角形,边中点,点与点关于对称,的最小值为的中点,的面积为的最小值为故答案为:【点睛】本题考查了等边三角形的性质,将军饮马河原理,熟练掌握等边三角形的性质,灵活运用将军饮马河原理是解题的关键.4、5【分析】由题意易得,然后可证,则有,进而问题可求解.【详解】解:∵ASA),故答案为5.【点睛】本题主要考查全等三角形的性质与判定,熟练掌握全等三角形的性质与判定是解题的关键.5、【分析】由旋转的性质可得∠DAB=AD=ABB,进而即可求解.【详解】解:∵将绕点顺时针旋转得到∴∠DAB=AD=ABB∵∠B=故答案是:【点睛】本题考查了旋转的性质,等腰三角形的性质,掌握旋转的性质是本题的关键.三、解答题1、见解析.【分析】先根据角平分线的定义得到∠BAD=BAC,再根据等腰三角形的性质和三角形外角定理得到∠E=BAC,从而得到∠BAD=∠E,即可证明ADCE【详解】解:∵AD平分∠BAC,∴∠BAD=BACAE=AC∴∠E=∠ACE∵∠E+∠ACE=∠BAC∴∠E=BAC∴∠BAD=∠EADCE【点睛】本题考查了角平分线的定义,等腰三角形的性质,平行线的判定,三角形外角定理,熟知相关定理并灵活应用是解题关键.2、(1);(2)【分析】(1)先根据全等三角形的性质可得,再根据线段的和差即可得;(2)先根据全等三角形的性质可得,再根据三角形的外角性质即可得.【详解】解:(1)∵(2)∵【点睛】本题考查全等三角形的性质等知识点,熟练掌握全等三角形的对应角和对应边相等是解题关键.3、87°,40°【分析】根据三角形外角的性质可得,,代入计算即可求出,再根据三角形内角和定理求解即可.【详解】解:∵【点睛】本题考查了三角形内角和和外角的性质,解题关键是准确识图,理清角之间的关系,准确进行计算.4、(1)见解析;(2)见解析;(3)2【分析】(1)过点B于点Q,根据AAS证明△,再证明四边形是矩形得BQ=CG,从而得出结论;(2) 在GF上截取GH=GE,连接AH,证明AH=FHGE=GH即可;(3) 过点A于点P,在FC上截取,连接,证明,可证明ACEH的垂直平分线,再证明和△可求出,从而可得结论.【详解】解:(1)证明:过点B于点Q,如图1∴△∴四边形是矩形(2)在GF上截取GH=GE,连接AH,如图2,(3)过点A于点P,在FC上截取,连接,如图3,由(1)、(2)知,∴∠∴∠∴∠ACEH的垂直平分线,又∵∴∠∴∠∵∠ ∴∠ ∵∠,即 ,即 中, ∴△【点睛】本题考查的是全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理是解题的关键.5、(1)证明见解析;(2)4【分析】(1)根据等边三角形的性质和平行线的性质可证得∠EDC=∠ECD=∠DEC=60°,再根据直角定义和三角形的外角性质证得∠F=∠FEC=30°,利用等角对等边即可证得结论;(2)由等角对等边可知CE=DC=2,结合(1)中结论即可求解.(1)证明:∵△ABC是等边三角形,∴∠A=∠B=∠ACB=60°.DEAB∴∠B=∠EDC=60°,∠A=∠CED=60°,∴∠EDC=∠ECD=∠DEC=60°,EFED∴∠DEF=90°,∴∠F=30°∵∠F+∠FEC=∠ECD=60°,∴∠F=∠FEC=30°,CECF(2)解:由(1)可知∠EDC=∠ECD=∠DEC=60°,CEDC=2.又∵CECFCF=2.DFDC+CF=2+2=4.【点睛】本题考查等边三角形的性质、等腰三角形的判定、平行线的性质、三角形的外角性质、线段的和与差,熟练掌握相关知识的联系与运用是解答的关键.6、(1)90,40 ;(2)∠ABP+∠ACP+∠A=90°;(3)∠A+∠ACP∠ABP=90°.【分析】(1)由三角形内角和为180°计算中的角的关系即可.(2)由(1)所得即可得出∠ABP、∠ACP、∠A的关系为∠ABP+∠ACP+∠A=90°.(3)由三角形外角的性质即可推出∠A+∠ACP∠ABP=90°.【详解】(1)在∵∠MPN=90°∠PBC+∠PCB=180°-∠MPN=180°-90°=90°∵∠A+∠ABC+∠ACB=180°又∵∠ABC=∠PBC+∠ABP,∠ACB=∠ACP+∠BCP∴∠A+∠PBC+∠ABP +∠ACP+∠BCP =180°∠PBC+∠PCB=90°,∠A=50°∠ABP +∠ACP=180°-90°-50°=40°(2)由(1)问可知∠A+∠PBC+∠ABP +∠ACP+∠BCP =180°又∵∠PBC+∠PCB=90°∴∠A+∠ABP +∠ACP=180°-(∠PBC+∠PCB)=180°-90°=90°(3)如图所示,设PNAB交于点H∵∠A+∠ACP=∠AHP又∵∠ABP+∠MPN =∠AHP∴∠A+∠ACP=∠ABP+∠MPN又∵∠MPN =90°∠A+∠ACP =90°+∠ABP∠A+∠ACP∠ABP=90°.【点睛】本题考查了三角形的性质以及三角尺的角度计算问题,三角板的角度分别为90°,45°,45°;90°,60°,30°两种直角三角尺,三角形内角和是180°,三角形的一个外角等于与它不相邻的两个内角的和.7、【分析】先由旋转的性质证明再利用等边对等角证明从而可得答案.【详解】解: 把△ABC绕点A逆时针旋转得到△ADE,∠B=70°, 【点睛】本题考查的是旋转的性质,等腰三角形的性质,掌握“旋转前后的对应角相等与等边对等角”是解本题的关键.8、见解析【分析】根据等腰三角形的性质得到∠BAD=∠CAD,根据平行线的性质得到∠ADE=∠BAD,等量代换得到∠ADE=∠CAD于是得到结论.【详解】解:∵△ABC是等腰三角形,AB=ACAD是底边BC上的中线,∴∠BAD=∠CADDEAB∴∠ADE=∠BAD∴∠ADE=∠CADAE=ED∴△AED是等腰三角形.【点睛】本题主要考查等腰三角形的判定与性质以及平行线的性质,熟练掌握等腰三角形的判定和性质定理是解题的关键.9、见解析【分析】先由BF=CE说明BC= EF.然后运用SAS证明△ABC≌△DEF,最后运用全等三角形的性质即可证明.【详解】证明:∵BF= CE        BC= EF                     在△ABC和△DEF中,∴△ABC≌△DEFSAS).        AC=DF【点睛】本题主要考查了全等三角形的判定与性质,正确证明△ABC≌△DEF是解答本题的关键.10、25°【分析】直接利用等腰三角形的性质得出∠ABC=∠ACB=65°,进而利用三角形内角和定理得出答案.【详解】AB=AC,∠A=50°,∴∠ABC=∠ACB=65°,CDBC于点D∴∠BCD的度数为:180°−90°−65°=25°.【点睛】此题主要考查了等腰三角形的性质,正确得出∠B的度数是解题关键. 

    相关试卷

    数学七年级下册第十四章 三角形综合与测试同步达标检测题:

    这是一份数学七年级下册第十四章 三角形综合与测试同步达标检测题,共31页。试卷主要包含了如图,在中,等内容,欢迎下载使用。

    沪教版 (五四制)七年级下册第十四章 三角形综合与测试复习练习题:

    这是一份沪教版 (五四制)七年级下册第十四章 三角形综合与测试复习练习题,共34页。试卷主要包含了下列叙述正确的是等内容,欢迎下载使用。

    初中数学沪教版 (五四制)七年级下册第十四章 三角形综合与测试一课一练:

    这是一份初中数学沪教版 (五四制)七年级下册第十四章 三角形综合与测试一课一练,共33页。试卷主要包含了下列说法不正确的是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map