终身会员
搜索
    上传资料 赚现金

    2022年强化训练沪教版七年级数学第二学期第十四章三角形综合测评试题(无超纲)

    立即下载
    加入资料篮
    2022年强化训练沪教版七年级数学第二学期第十四章三角形综合测评试题(无超纲)第1页
    2022年强化训练沪教版七年级数学第二学期第十四章三角形综合测评试题(无超纲)第2页
    2022年强化训练沪教版七年级数学第二学期第十四章三角形综合测评试题(无超纲)第3页
    还剩30页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学沪教版 (五四制)七年级下册第十四章 三角形综合与测试习题

    展开

    这是一份初中数学沪教版 (五四制)七年级下册第十四章 三角形综合与测试习题,共33页。
    沪教版七年级数学第二学期第十四章三角形综合测评
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、如图,工人师傅在安装木制门框时,为防止变形,常常钉上两条斜拉的木条,这样做的数学依据是( )

    A.两点确定一条直线
    B.两点之间,线段最短
    C.三角形具有稳定性
    D.三角形的任意两边之和大于第三边
    2、如图:将一张长为40cm的长方形纸条按如图所示折叠,若AB=3BC,则纸条的宽为( )

    A.12 B.14 C.16 D.18
    3、将三根木条钉成一个三角形木架,这个三角形木架具有稳定性.解释这个现象的数学原理是( )
    A.SSS B.SAS C.ASA D.AAS
    4、如图,已知Rt△ABC中,∠C=90°,∠A=30°,在直线BC上取一点P,使得△PAB是等腰三角形,则符合条件的点P有( )

    A.1个 B.2个 C.3个 D.4个
    5、如图,ABC的面积为18,AD平分∠BAC,且AD⊥BD于点D,则ADC的面积是(  )

    A.8 B.10 C.9 D.16
    6、已知三条线段的长分别是4,4,m,若它们能构成三角形,则整数m的最大值是( )
    A.10 B.8 C.7 D.4
    7、如图,在和中,,,,,连接,交于点,连接.下列结论:①;②;③平分;④平分.其中正确的个数为( )

    A.1个 B.2个 C.3个 D.4个
    8、如图点在同一条直线上,都是等边三角形,相交于点O,且分别与交于点,连接,有如下结论:①;②;③为等边三角形;④.其中正确的结论个数是( )

    A.1个 B.2个 C.3个 D.4个
    9、如图,△ABC中,∠ABC与∠ACB的平分线交于点F,过点F作DE∥BC交AB于点D,交AC于点E,那么下列结论:①△BDF是等腰三角形;②DE=BD+CE;③若∠A=50°,则∠BFC=115°;④DF=EF.其中正确的有( )

    A.1个 B.2个 C.3个 D.4个
    10、根据下列已知条件,不能画出唯一的是( )
    A.,, B.,,
    C.,, D.,,
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、一个三角形的其中两个内角为,,则这个第三个内角的度数为______.
    2、若,则以、为边长的等腰三角形的周长为________.
    3、已知△ABC是等腰三角形,若∠A=70°,则∠B=_____.
    4、如图,在中,,,,则的大小等于_______度.

    5、两角和它们的夹边分别相等的两个三角形全等(可以简写成 _____).
    三、解答题(10小题,每小题5分,共计50分)
    1、△ABC中,AB=AC,BD平分∠ABC交AC于点D,从点A作AE∥BC交BD的延长线于点E.

    (1)若∠BAC=40°,求∠E的度数;
    (2)点F是BE上一点,且FE=BD.取DF的中点H,请问AH⊥BE吗?试说明理由.
    2、如图,在△ABC中,AB=AC,M,N分别是AB,AC边上的点,并且MN∥BC.
    (1)△AMN是否是等腰三角形?说明理由;
    (2)点P是MN上的一点,并且BP平分∠ABC,CP平分∠ACB.
    ①求证:△BPM是等腰三角形;
    ②若△ABC的周长为a,BC=b(a>2b),求△AMN的周长(用含a,b的式子表示).

    3、如图,是的角平分线,于点.

    (1)用尺规完成以下基本作图:过点作于点,连接交于点.(不写作法,保留作图痕迹)
    (2)在(1)中所作的图形中,求证:.
    4、如图,已知AB=AC,AD=AE,BD和CE相交于点O.求证:OB=OC.

    5、探究与发现:如图①,在△ABC中,∠B=∠C=45°,点D在BC边上,点E在AC边上,且∠ADE=∠AED,连接DE.
    (1)当∠BAD=60°时,求∠CDE的度数;
    (2)当点D在BC(点B、C除外)边上运动时,试猜想∠BAD与∠CDE的数量关系,并说明理由.
    (3)深入探究:如图②,若∠B=∠C,但∠C≠45°,其他条件不变,试探究∠BAD与∠CDE的数量关系.

    6、如图,灯塔B在灯塔A的正东方向,且.灯塔C在灯塔A的北偏东20°方向,灯塔C在灯塔B的北偏西50°方向.

    (1)求的度数;
    (2)一轮船从B地出发向北偏西50°方向匀速行驶,5h后到达C地,求轮船的速度.
    7、如图,在中,是角平分线,,.

    (1)求的度数;
    (2)若,求的度数.
    8、一个零件形状如图所示,按规定应等于75°,和应分别是18°和22°,某质检员测得,就断定这个零件不合格,请你运用三角形的有关知识说明零件不合格的理由.

    9、如图所示,四边形的对角线、相交于点,已知,.求证:

    (1);
    (2).
    10、中,,以点为中心,分别将线段,逆时针旋转得到线段,,连接,延长交于点.
    (1)如图1,若,的度数为________;

    (2)如图2,当吋,
    ①依题意补全图2;
    ②猜想与的数量关系,并加以证明.


    -参考答案-
    一、单选题
    1、C
    【分析】
    根据三角形具有稳定性进行求解即可.
    【详解】
    解:工人师傅在安装木制门框时,为防止变形,常常钉上两条斜拉的木条,这样做的数学依据是三角形具有稳定性,
    故选C.
    【点睛】
    本题主要考查了三角形的稳定性,熟知三角形具有稳定性是解题的关键.
    2、B
    【分析】
    如图,延长NO交AD的延长线于点P,设BC=x,则AB=3x,利用折叠的性质和等腰直角三角形的性质可表示出纸条的宽MO,NO的长,从而可表示出纸条的长2PN的长,然后根据长方形纸条的长为40,可得到关于x的方程,解方程求出x的值,即可求出纸条的宽.
    【详解】
    解:如图,延长NO交AD的延长线于点P,

    设BC=x,则AB=3x,
    ∵折叠,
    ∴AB=BM=CO=CD=PO=3x,
    ∴纸条的宽为:MO=NO=3x+3x+x=7x,
    ∴纸条的长为:2PN=2(7x+3x)=20x=40
    解得:x=2,
    ∴纸条的宽NO=7×2=14.
    故答案为:B.
    【点睛】
    此题考查了折叠的性质,等腰直角三角形的性质,一元一次方程应用题,解题的关键是正确分析题目中的等量关系列出方程求解.
    3、A
    【分析】
    根据三根木条即为三角形的三边长,利用全等三角形判定定理确定唯一三角形即可得.
    【详解】
    解:三根木条即为三角形的三边长,
    即为利用确定三角形,
    故选:A.
    【点睛】
    题目主要考查利用全等三角形判定确定唯一三角形,熟练掌握全等三角形的判定是解题关键.
    4、B
    【分析】
    根据等腰三角形的判定定理,结合图形即可得到结论.
    【详解】
    解:以点A、B为圆心,AB长为半径画弧,交直线BC于两个点,然后作AB的垂直平分线交直线BC于点,如图所示:

    ∵∠C=90°,∠A=30°,
    ∴,
    ∵,
    ∴是等边三角形,
    ∴点重合,
    ∴符合条件的点P有2个;
    故选B.
    【点睛】
    本题主要考查等腰三角形的性质及等边三角形的性质与判定,熟练掌握等腰三角形的性质是解题的关键.
    5、C
    【分析】
    延长BD交AC于点E,根据角平分线及垂直的性质可得:,,依据全等三角形的判定定理及性质可得:,,再根据三角形的面积公式可得:SΔABD=SΔADE,SΔBDC=SΔCDE,得出SΔADC=12SΔABC,求解即可.
    【详解】
    解:如图,延长BD交AC于点E,

    ∵AD平分,,
    ∴,,
    在和中,

    ∴,
    ∴,
    ∴SΔABD=SΔADE,SΔBDC=SΔCDE,
    ∴SΔADC=12SΔABC=12×18=9,
    故选:C.
    【点睛】
    题目主要考查全等三角形的判定和性质,角平分线的定义等,熟练掌握基础知识,进行逻辑推理是解题关键.
    6、C
    【分析】
    根据三角形三边关系列出不等式,根据不等式的解集求整数m的最大值.
    【详解】
    解:条线段的长分别是4,4,m,若它们能构成三角形,则
    ,即
    又为整数,则整数m的最大值是7
    故选C
    【点睛】
    本题考查了求不等式的整数解,三角形三边关系,根据三角形的三边关系列出不等式是解题的关键.
    7、C
    【分析】
    由全等三角形的判定及性质对每个结论推理论证即可.
    【详解】



    又∵,


    故①正确


    由三角形外角的性质有


    故②正确
    作于,于,如图所示:

    则°,
    在和中,,
    ∴,
    ∴,
    在和中,
    ∴,

    ∴平分
    故④正确
    假设平分




    由④知
    又∵为对顶角



    ∴在和中,

    即AB=AC
    又∵
    故假设不符,故不平分
    故③错误.
    综上所述①②④正确,共有3个正确.
    故选:C.
    【点睛】
    本题考查了全等三角形的判定及性质,灵活的选择全等三角形的判定的方法是解题的关键,从判定两个三角形全等的方法可知,要判定两个三角形全等,需要知道这两个三角形分别有三个元素(其中至少一个元素是边)对应相等,这样就可以利用题目中的已知边角迅速、准确地确定要补充的边角,有目的地完善三角形全等的条件,从而得到判定两个三角形全等的思路.
    8、D
    【分析】
    由SAS即可证明,则①正确;有∠CAE=∠CDB,然后证明△ACM≌△DCN,则②正确;由CM=CN,∠MCN=60°,即可得到为等边三角形,则③正确;由AD∥CE,则∠DAO=∠NEO=∠CBN,由外角的性质,即可得到答案.
    【详解】
    解:∵△DAC和△EBC均是等边三角形,
    ∴AC=CD,BC=CE,∠ACD=∠BCE=60°,
    ∴∠ACD+∠DCE=∠BCE+∠DCE,即∠ACE=∠BCD,∠MCN=180°-∠ACD-∠BCE=60°,
    在△ACE和△DCB中,


    ∴△ACE≌△DCB(SAS),则①正确;
    ∴AE=BD,∠CAE=∠CDB,
    在ACM和△DCN中,

    ∴△ACM≌△DCN(ASA),
    ∴CM=CN,;则②正确;
    ∵∠MCN=60°,
    ∴为等边三角形;则③正确;
    ∵∠DAC=∠ECB=60°,
    ∴AD∥CE,
    ∴∠DAO=∠NEO=∠CBN,
    ∴;则④正确;
    ∴正确的结论由4个;
    故选D.
    【点睛】
    本题考查了等边三角形的性质与判定,全等三角形的判定与性质,平行线的性质与判定,综合性较强,但难度不是很大,准确识图找出全等三角形是解题的关键.
    9、C
    【分析】
    根据平行线的性质和角平分线的定义以及等腰三角形的判定和性质逐个判定即可解答.
    【详解】
    解:∵BF是∠AB的角平分线,
    ∴∠DBF=∠CBF,
    ∵DE∥BC,
    ∴∠DFB=∠CBF,
    ∴∠DBF=∠DFB,
    ∴BD=DF,
    ∴△BDF是等腰三角形;故①正确;
    同理,EF=CE,
    ∴DE=DF+EF=BD+CE,故②正确;
    ∵∠A=50°,
    ∴∠ABC+∠ACB=130°,
    ∵BF平分∠ABC,CF平分∠ACB,
    ∴,
    ∴∠FBC+∠FCB=(∠ABC+∠ACB)=65°,
    ∴∠BFC=180°﹣65°=115°,故③正确;
    当△ABC为等腰三角形时,DF=EF,
    但△ABC不一定是等腰三角形,
    ∴DF不一定等于EF,故④错误.
    故选:C.
    【点睛】
    本题主要考查等腰三角形的性质、角平分线的定义及平行线的性质等知识点,根据两直线平行、内错角相等以及等角对等边来判定等腰三角形是解答本题的关键.
    10、B
    【分析】
    根据三角形存在的条件去判断.
    【详解】
    ∵,,,满足ASA的要求,
    ∴可以画出唯一的三角形,A不符合题意;
    ∵,,,∠A不是AB,BC的夹角,
    ∴可以画出多个三角形,B符合题意;
    ∵,,,满足SAS的要求,
    ∴可以画出唯一的三角形,C不符合题意;
    ∵,,,AB最大,
    ∴可以画出唯一的三角形,D不符合题意;
    故选B.
    【点睛】
    本题考查了三角形的存在性,熟练掌握三角形全等的判定方法是解题的关键.
    二、填空题
    1、60°
    【分析】
    依题意,利用三角形内角和为:,即可;
    【详解】
    由题得:一个三角形的内角和为:;又已知两个其中的内角为:,;
    ∴ 第三个角为:;
    故填:
    【点睛】
    本题主要考查三角形的内角和,关键在于熟练并运用基本的计算;
    2、17
    【分析】
    先根据非负数的性质列式求出a、b的值,再分情况讨论求解即可.
    【详解】
    解:∵,
    ∴,,
    解得:,,
    ①若是腰长,则底边为7,三角形的三边分别为3、3、7,
    ∵,
    ∴3、3、7不能组成三角形;
    ②若是腰长,则底边为3,三角形的三边分别为7、7、3,能组成三角形,
    周长为:,
    ∴以、为边长的等腰三角形的周长为17,
    故答案为:17.
    【点睛】
    本题考查了等腰三角形的性质,绝对值和平方的非负性,以及三角形的三边关系,难点在于要分类讨论求解.
    3、或或
    【分析】
    分①是顶角,是底角,②是底角,是底角,③是底角,是顶角三种情况,再根据等腰三角形的定义、三角形的内角和定理即可得.
    【详解】
    解:由题意,分以下三种情况:
    ①当是顶角,是底角时,
    则;
    ②当是底角,是底角时,
    则;
    ③当是底角,是顶角时,
    则;
    综上,的度数为或或,
    故答案为:或或.
    【点睛】
    本题考查了等腰三角形、三角形的内角和定理,正确分三种情况讨论是解题关键.
    4、
    【分析】
    先根据等腰三角形的性质得出,再根据三角形外角的性质得出求出的度数,最后根据三角形内角和求出的度数即可.
    【详解】
    解:,





    故答案为:54
    【点睛】
    此题考查了等腰三角形的性质、三角形内角和定理和外角的性质,掌握相应的性质和定理是解答此题的关键.
    5、角边角或
    【分析】
    根据全等三角形的判定定理得出即可.
    【详解】
    解答:解:两角和它们的夹边分别相等的两个三角形全等,简写成角边角或ASA,
    故答案为:角边角或ASA.
    【点睛】
    本题考查了全等三角形的判定定理,掌握全等三角形的判定定理是解题的关键.
    三、解答题
    1、(1)∠E=35°;(2)AH⊥BE.理由见解析.
    【分析】
    (1)根据等腰三角形两底角相等,已知顶角,可以求出底角,再根据角平分线的定义求出∠CBD的度数,最后根据两直线平行,内错角相等求出;
    (2)由“SAS”可证△ABD≌△AEF,可得AD=AF,由等腰三角形的性质可求解.
    【详解】
    解:(1)∵AB=AC,
    ∴∠ABC=∠ACB,
    ∵∠BAC=40°,
    ∴∠ABC=(180°-∠BAC)=70°,
    ∵BD平分∠ABC,
    ∴∠CBD=∠ABC=35°,
    ∵AE∥BC,
    ∴∠E=∠CBD=35°;
    (2)∵BD平分∠ABC,∠E=∠CBD,
    ∴∠CBD=∠ABD=∠E,
    ∴AB=AE,
    在△ABD和△AEF中,

    ∴△ABD≌△AEF(SAS),
    ∴AD=AF,
    ∵点H是DF的中点,
    ∴AH⊥BE.
    【点睛】
    本题考查了全等三角形的判定和性质,等腰三角形的性质,证明三角形全等是解题的关键.
    2、
    (1)△AMN是是等腰三角形;理由见解析;
    (2)①证明见解析;②a﹣b.
    【分析】
    (1)由等腰三角形的性质得到∠ABC=∠ACB,由平行线的性质得到∠AMN=∠ABC,∠ANM=∠ACB,于是得到∠AMN=∠ANM,根据等角对等边即可证得结论;
    (2)①由角平分线的定义得到∠PBM=∠PBC,由平行线的性质得到∠MPB=∠PBC,于是得到∠PBM=∠MPB,根据等角对等边即可证得结论;
    ②由①知MB=MP,同理可得:NC=NP,故△AMN的周长=AB+AC,再根据已知条件即可求出结果.
    (1)
    解:△AMN是是等腰三角形,
    理由如下:
    ∵AB=AC,
    ∴∠ABC=∠ACB,
    ∵MN∥BC,
    ∴∠AMN=∠ABC,∠ANM=∠ACB,
    ∴∠AMN=∠ANM,
    ∴AM=AN,
    ∴△AMN是等腰三角形;
    (2)
    ①证明:∵BP平分∠ABC,
    ∴∠PBM=∠PBC,
    ∵MN∥BC,
    ∴∠MPB=∠PBC
    ∴∠PBM=∠MPB,
    ∴MB=MP,
    ∴△BPM是等腰三角形;
    ②由①知MB=MP,
    同理可得:NC=NP,
    ∴△AMN的周长=AM+MP+NP+AN=AM+MB+NC+AN=AB+AC,
    ∵△ABC的周长为a,BC=b,
    ∴AB+AC+b=a,
    ∴AB+AC=a﹣b
    ∴△AMN的周长=a﹣b.
    【点睛】
    本题考查了等腰三角形的性质和判定,平行线的性质,列代数式,能够灵活应用这些性质是解决问题的关键.
    3、(1)见解析;(2)见解析.
    【分析】
    (1)以点D为圆心,适当长为半径,作弧,交AC于两点,再分别以这两点为圆心,适当长为半径作弧,连接两条弧的交点所在的直线,该直线与AC的交点即为点F,连接交于点;
    (2)利用角平分线性质可得,由此证明,得到,继而证明,证得即可解题.
    【详解】
    解:(1)如图,点F、G即为所求作的点;

    (2)是的角平分线,,,










    【点睛】
    本题考查角平分线的性质、全等三角形的判定与性质等知识,是重要考点,难度一般,掌握相关知识是解题关键.
    4、见解析
    【分析】
    根据SAS证明△AEC与△ADB全等,进而利用全等三角形的性质解答即可.
    【详解】
    证明:在△AEC与△ADB中,

    ∴△AEC≌△ADB(SAS),
    ∴∠ACE=∠ABD,
    ∵AB=AC,
    ∴∠ABC=∠ACB,
    ∴∠OBC=∠OCB,
    ∴OB=OC.
    【点睛】
    本题考查了全等三角形的判定和性质,等腰三角形的性质,证明△AEC≌△ADB是本题的关键.
    5、(1)30°;(2)∠BAD=2∠CDE,理由见解析;(3)∠BAD=2∠CDE.
    【分析】
    (1)根据三角形的外角的性质求出∠ADC,结合图形计算即可;
    (2)设∠BAD=x,根据三角形的外角的性质求出∠ADC,结合图形计算即可;
    (3)设∠BAD=x,仿照(2)的解法计算.
    【详解】
    解:(1)∵∠ADC是△ABD的外角,
    ∴∠ADC=∠BAD+∠B=105°,
    ∠DAE=∠BAC﹣∠BAD=30°,
    ∴∠ADE=∠AED=75°,
    ∴∠CDE=105°﹣75°=30°;
    (2)∠BAD=2∠CDE,
    理由如下:设∠BAD=x,
    ∴∠ADC=∠BAD+∠B=45°+x,
    ∠DAE=∠BAC﹣∠BAD=90°﹣x,
    ∴∠ADE=∠AED=,
    ∴∠CDE=45°+x﹣=x,
    ∴∠BAD=2∠CDE;
    (3)设∠BAD=x,
    ∴∠ADC=∠BAD+∠B=∠B+x,
    ∠DAE=∠BAC﹣∠BAD=180°﹣2∠C﹣x,
    ∴∠ADE=∠AED=∠C+x,
    ∴∠CDE=∠B+x﹣(∠C+x)=x,
    ∴∠BAD=2∠CDE.
    【点睛】
    本题考查了三角形内角和和外角的性质,解题关键是熟练掌握三角形内角和和外角性质,通过设参数计算,发现角之间的关系
    6、(1)70°;(2)15km/h
    【分析】
    (1)根据题意得∠BAC=70°,∠ABC=40°,根据三角形的内角和定理即可求得∠ACB;
    (2)根据等腰三角形的判定可得BC=AB=75km,进而由速度=路程÷时间求解即可.
    【详解】
    解:(1)根据题意得∠BAC=70°,∠ABC=40°,
    ∴∠ACB=180°-∠BAC-∠ABC=180°-70°-40°=70°;
    (2)∵∠BAC=∠ACB=70°,
    ∴BC=AB=75km,
    ∴轮船的速度为75÷5=15(km/h).
    【点睛】
    本题考查方位角、等腰三角形的判定、三角形的内角和定理,理解方位角,熟练掌握等腰三角形的等角对等边是解答的关键.
    7、
    (1);
    (2).
    【分析】
    (1)根据三角形内角和定理可求出,然后利用角平分线进行计算即可得;
    (2)根据垂直得出,然后根据三角形内角和定理即可得.
    (1)
    解:∵,,
    ∴,
    ∵AD是角平分线,
    ∴,
    ∴;
    (2)
    ∵,
    ∴,
    ∴,
    ∴.
    【点睛】
    题目主要考查三角形内角和定理,角平分线的计算等,熟练运用三角形内角和定理是解题关键.
    8、不合格,理由见解析
    【分析】
    延长BD与AC相交于点E.利用三角形的外角性质,可得,,即可求解.
    【详解】
    解:如图,延长BD与AC相交于点E.

    ∵是的一个外角,,,
    ∴,
    同理可得
    ∵李师傅量得,不是115°,
    ∴这个零件不合格.
    【点睛】
    本题主要考查了三角形的外角性质,熟练掌握三角形的一个外角等于与它不相邻的两个内角的和是解题的关键.
    9、
    (1)证明见解析;
    (2)证明见解析.
    【分析】
    (1)根据全等三角形的判定定理可直接证明;
    (2)根据(1)中结论可得,再由等角对等边得出,运用等式的性质进行计算即可证明.
    (1)
    解:在与中,

    ∴;
    (2)
    由(1)可得:,
    ∴,
    ∵,
    ∴,
    ∴,
    即.
    【点睛】
    题目主要考查全等三角形的判定和性质,等角对等边的性质,理解题意,综合运用这些知识点是解题关键.
    10、
    (1)120°
    (2)①图形见解析;②
    【分析】
    (1)根据进而判断出点E在边AB上,得出△ADE≌△ABC(SAS),进而得出∠AED=∠ACB=90°最后用三角形的外角的性质即可得出结论;
    (2)①依题意补全图形即可;②先判断出△ADE≌△ABC(SAS),进而得出∠AEF=90°,即可判断出Rt△AEF≌Rt△ACF,进而求出∠CAF=∠CAE=30°,即可得出结论.
    (1)
    (1)如图1,

    在Rt△ABC中,∠B=30°,
    ∴∠BAC=60°,
    由旋转知,∠CAE=60°=∠CAB,
    ∴点E在边AB上,
    ∵AD=AB,AE=AC,
    ∴△ADE≌△ABC(SAS),
    ∴∠AED=∠ACB=90°,
    ∴∠CFE=∠B+∠BEF=30°+90°=120°,
    故答案为120°;
    (2)
    (2)①依题意补全图形如图2所示,

    ②如图2,连接AF,
    ∵∠BAD=∠CAE,
    ∴∠EAD=∠CAB,
    ∵AD=AB,AE=AC,
    ∴△ADE≌△ABC(SAS),
    ∴∠AED=∠C=90°,
    ∴∠AEF=90°,
    ∴Rt△AEF≌Rt△ACF(HL),
    ∴∠EAF=∠CAF,
    ∴∠CAF=∠CAE=30°,
    在Rt△ACF中,CF=AF,且AC2+CF2=AF2,

    【点睛】
    此题是三角形综合题,主要考查了旋转的性质,全等三角形的判定和性质,三角形的外角的性质,含30度角的直角三角形的性质,勾股定理,判断出△ADE≌△ABC是解本题的关键.

    相关试卷

    沪教版 (五四制)七年级下册第十四章 三角形综合与测试当堂达标检测题:

    这是一份沪教版 (五四制)七年级下册第十四章 三角形综合与测试当堂达标检测题,共31页。试卷主要包含了如图等内容,欢迎下载使用。

    沪教版 (五四制)七年级下册第十四章 三角形综合与测试课时作业:

    这是一份沪教版 (五四制)七年级下册第十四章 三角形综合与测试课时作业,共28页。试卷主要包含了下列三个说法等内容,欢迎下载使用。

    初中沪教版 (五四制)第十四章 三角形综合与测试习题:

    这是一份初中沪教版 (五四制)第十四章 三角形综合与测试习题,共33页。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map