年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    精品试卷沪教版七年级数学第二学期第十四章三角形必考点解析试卷(精选含详解)

    精品试卷沪教版七年级数学第二学期第十四章三角形必考点解析试卷(精选含详解)第1页
    精品试卷沪教版七年级数学第二学期第十四章三角形必考点解析试卷(精选含详解)第2页
    精品试卷沪教版七年级数学第二学期第十四章三角形必考点解析试卷(精选含详解)第3页
    还剩30页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中沪教版 (五四制)第十四章 三角形综合与测试同步训练题

    展开

    这是一份初中沪教版 (五四制)第十四章 三角形综合与测试同步训练题,共33页。
    沪教版七年级数学第二学期第十四章三角形必考点解析
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、如图,在中,AD是角平分线,且,若,则的度数是( )

    A.45° B.50° C.52° D.58°
    2、如图,∠BAD=90°,AC平分∠BAD,CB=CD,则∠B与∠ADC满足的数量关系为(  )

    A.∠B=∠ADC B.2∠B=∠ADC
    C.∠B+∠ADC=180° D.∠B+∠ADC=90°
    3、如图,等腰△ABC中,AB=AC,点D是BC边中点,则下列结论不正确的是( )

    A.ÐB=ÐC B.AD⊥BC C.ÐBAD=ÐCAD D.AB=2BC
    4、已知三角形的两边长分别是3cm和7cm,则下列长度的线段中能作为第三边的是(  )
    A.3cm B.4cm C.7cm D.10cm
    5、如图,在和中,,,,,连接,交于点,连接.下列结论:①;②;③平分;④平分.其中正确的个数为( )

    A.1个 B.2个 C.3个 D.4个
    6、已知三条线段的长分别是4,4,m,若它们能构成三角形,则整数m的最大值是( )
    A.10 B.8 C.7 D.4
    7、三根小木棒摆成一个三角形,其中两根木棒的长度分别是和,那么第三根小木棒的长度不可能是( )
    A. B. C. D.
    8、如图,已知Rt△ABC中,∠C=90°,∠A=30°,在直线BC上取一点P,使得△PAB是等腰三角形,则符合条件的点P有( )

    A.1个 B.2个 C.3个 D.4个
    9、如图,等边中,D为AC中点,点P、Q分别为AB、AD上的点,,,在BD上有一动点E,则的最小值为( )

    A.7 B.8 C.10 D.12
    10、下列三角形与下图全等的三角形是( )

    A. B. C. D.
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、在新年联欢会上,老师设计了“你说我画”的游戏.游戏规则如下:甲同学需要根据乙同学提供的三个条件画出形状和大小都确定的三角形.已知乙同学说出的前两个条件是“,”.现仅存下列三个条件:①;②;③.为了甲同学画出形状和大小都确定的,乙同学可以选择的条件有: ______.(填写序号,写出所有正确答案)
    2、如图,线段AC与BD相交于点O,∠A=∠D=90°,要证明△ABC≌△DCB,还需添加的一个条件是____________.(只需填一个条件即可)

    3、如图,在△ABC中,点D为BC边的中点,点E为AC上一点,将∠C沿DE翻折,使点C落在AB上的点F处,若∠AEF=50°,则∠A的度数为__.

    4、已知:如图,AB = DB.只需添加一个条件即可证明.这个条件可以是______.(写出一个即可).

    5、等腰三角形的一条边长为5,周长为20,则该三角形的腰长为__________.
    三、解答题(10小题,每小题5分,共计50分)
    1、已知:如图,点B、C在线段AD的异侧,点E、F分别是线段AB、CD上的点,∠AEG=∠AGE,∠C=∠DGC.
    (1)求证:AB//CD;
    (2)若∠AGE+∠AHF=180°,求证:∠B=∠C;
    (3)在(2)的条件下,若∠BFC=4∠C,求∠D的度数.

    2、△ABC中,AB=AC,BD平分∠ABC交AC于点D,从点A作AE∥BC交BD的延长线于点E.

    (1)若∠BAC=40°,求∠E的度数;
    (2)点F是BE上一点,且FE=BD.取DF的中点H,请问AH⊥BE吗?试说明理由.
    3、中,CD平分,点E是BC上一动点,连接AE交CD于点D.

    (1)如图1,若,AE平分,则的度数为______;
    (2)如图2,若,,,则的度数为______;
    (3)如图3,在BC的右侧过点C作,交AE延长线于点F,且,.试判断AB与CF的位置关系,并证明你的结论.
    4、如图,点A,B,C,D在一条直线上,,,.求证:.

    5、如图,已知AB=AC,AD=AE,BD和CE相交于点O.求证:OB=OC.

    6、如图,在等边三角形ABC中,点D,E分别在边BC,AC上,且DE∥AB,过点E作EF⊥DE,交BC的延长线于点F.
    (1)求证:CE=CF;
    (2)若CD=2,求DF的长.

    7、如图,在四边形ABCD中,点E在BC上,连接DE、AC相交于点F,∠BAE=∠CAD,AB=AE,AD=AC.

    (1)求证:∠DEC=∠BAE;
    (2)如图2,当∠BAE=∠CAD=30°,AD⊥AB时,延长DE、AB交于点G,请直接写出图中除△ABE、△ADC以外的等腰三角形.
    8、如图,在中,,,,BD是的角平分线,点E在AB边上,.求的周长.

    9、中,,以点为中心,分别将线段,逆时针旋转得到线段,,连接,延长交于点.
    (1)如图1,若,的度数为________;

    (2)如图2,当吋,
    ①依题意补全图2;
    ②猜想与的数量关系,并加以证明.

    10、如图,点A,B,C,D在一条直线上,,,.

    (1)求证:.
    (2)若,,求∠F的度数.

    -参考答案-
    一、单选题
    1、A
    【分析】
    根据角平分线性质求出∠DCA,再根据等腰三角形的性质和三角形的内角和定理求解∠C和∠B即可.
    【详解】
    解:∵AD是角平分线,,
    ∴∠DCA==30°,
    ∵AD=AC,
    ∴∠C=(180°-∠DCA)÷2=75°,
    ∴∠B=180°-∠BAC-∠C=180°-60°-75°=45°,
    故选:A.
    【点睛】
    本题考查角平分线的性质、等腰三角形的性质、三角形的内角和定理,熟练掌握等腰三角形的性质是解答的关键.
    2、C
    【分析】
    由题意在射线AD上截取AE=AB,连接CE,根据SAS不难证得△ABC≌△AEC,从而得BC=EC,∠B=∠AEC,可求得CD=CE,得∠CDE=∠CED,证得∠B=∠CDE,即可得出结果.
    【详解】
    解:在射线AD上截取AE=AB,连接CE,如图所示:

    ∵∠BAD=90°,AC平分∠BAD,
    ∴∠BAC=∠EAC,
    在△ABC与△AEC中,

    ∴△ABC≌△AEC(SAS),
    ∴BC=EC,∠B=∠AEC,
    ∵CB=CD,
    ∴CD=CE,
    ∴∠CDE=∠CED,
    ∴∠B=∠CDE,
    ∵∠ADC+∠CDE=180°,
    ∴∠ADC+∠B=180°.
    故选:C.
    【点睛】
    本题主要考查全等三角形的判定与性质,解答的关键是作出适当的辅助线AE,CE.
    3、D
    【分析】
    根据等腰三角形的等边对等角的性质及三线合一的性质判断.
    【详解】
    解:∵AB=AC,点D是BC边中点,
    ∴ÐB=ÐC,AD⊥BC,ÐBAD=ÐCAD,
    故选:D.
    【点睛】
    此题考查了等腰三角形的性质:等边对等角,三线合一,熟记等腰三角形的性质是解题的关键.
    4、C
    【分析】
    设三角形第三边的长为x cm,再根据三角形的三边关系求出x的取值范围,找出符合条件的x的值即可.
    【详解】
    解:设三角形的第三边是xcm.则
    7-3<x<7+3.
    即4<x<10,
    四个选项中,只有选项C符合题意,
    故选:C.
    【点睛】
    本题主要考查了三角形三边关系的应用.此类求三角形第三边的范围的题,实际上就是根据三角形三边关系定理列出不等式,然后解不等式即可.
    5、C
    【分析】
    由全等三角形的判定及性质对每个结论推理论证即可.
    【详解】



    又∵,


    故①正确


    由三角形外角的性质有


    故②正确
    作于,于,如图所示:

    则°,
    在和中,,
    ∴,
    ∴,
    在和中,
    ∴,

    ∴平分
    故④正确
    假设平分




    由④知
    又∵为对顶角



    ∴在和中,

    即AB=AC
    又∵
    故假设不符,故不平分
    故③错误.
    综上所述①②④正确,共有3个正确.
    故选:C.
    【点睛】
    本题考查了全等三角形的判定及性质,灵活的选择全等三角形的判定的方法是解题的关键,从判定两个三角形全等的方法可知,要判定两个三角形全等,需要知道这两个三角形分别有三个元素(其中至少一个元素是边)对应相等,这样就可以利用题目中的已知边角迅速、准确地确定要补充的边角,有目的地完善三角形全等的条件,从而得到判定两个三角形全等的思路.
    6、C
    【分析】
    根据三角形三边关系列出不等式,根据不等式的解集求整数m的最大值.
    【详解】
    解:条线段的长分别是4,4,m,若它们能构成三角形,则
    ,即
    又为整数,则整数m的最大值是7
    故选C
    【点睛】
    本题考查了求不等式的整数解,三角形三边关系,根据三角形的三边关系列出不等式是解题的关键.
    7、D
    【分析】
    设第三根木棒长为x厘米,根据三角形的三边关系可得8﹣5<x<8+5,确定x的范围即可得到答案.
    【详解】
    解:设第三根木棒长为x厘米,由题意得:
    8﹣5<x<8+5,即3<x<13,
    故选:D.
    【点睛】
    此题主要考查了三角形的三边关系,要注意三角形形成的条件:任意两边之和>第三边,任意两边之差<第三边.
    8、B
    【分析】
    根据等腰三角形的判定定理,结合图形即可得到结论.
    【详解】
    解:以点A、B为圆心,AB长为半径画弧,交直线BC于两个点,然后作AB的垂直平分线交直线BC于点,如图所示:

    ∵∠C=90°,∠A=30°,
    ∴,
    ∵,
    ∴是等边三角形,
    ∴点重合,
    ∴符合条件的点P有2个;
    故选B.
    【点睛】
    本题主要考查等腰三角形的性质及等边三角形的性质与判定,熟练掌握等腰三角形的性质是解题的关键.
    9、C
    【分析】
    作点关于的对称点,连接交于,连接,此时的值最小,最小值,据此求解即可.
    【详解】
    解:如图,

    是等边三角形,

    ∵D为AC中点,
    ∴,,,

    作点关于的对称点,连接交于,连接,此时的值最小.最小值,
    ,,




    是等边三角形,

    的最小值为.
    故选:C.
    【点睛】
    本题考查等边三角形的性质和判定,轴对称最短问题等知识,解题的关键是学会利用轴对称解决最短问题,属于中考常考题型.
    10、C
    【分析】
    根据已知的三角形求第三个内角的度数,由全等三角形的判定定理即可得出答案.
    【详解】
    由题可知,第三个内角的度数为,
    A.只有两边,故不能判断三角形全等,故此选项错误;
    B.两边夹的角度数不相等,故两三角形不全等,故此选项错误;
    C.两边相等且夹角相等,故能判断两三角形全等,故此选项正确;
    D. 两边夹的角度数不相等,故两三角形不全等,故此选项错误.
    故选:C.
    【点睛】
    本题考查全等三角形的判定,掌握全等三角形的判定定理是解题的关键.
    二、填空题
    1、②
    【分析】
    根据两边及其夹角对应相等的两个三角形全等,即可求解.
    【详解】
    解:①若选,是边边角,不能得到形状和大小都确定的;
    ②若选,是边角边,能得到形状和大小都确定的;
    ③若选,是边边角,不能得到形状和大小都确定的;
    所以乙同学可以选择的条件有②.
    故答案为:②
    【点睛】
    本题主要考查了全等三角形的判定,熟练掌握两边及其夹角对应相等的两个三角形全等是解题的关键.
    2、答案不唯一,如:AC=DB,AB=DC,∠ABC=∠DCB
    【分析】
    根据全等三角形的判定条件求解即可.
    【详解】
    解:∵∠A=∠D=90°,BC=CB,
    ∴只需要添加:AC=DB或AB=DC,即可利用HL证明△ABC≌△DCB;添加∠ABC=∠DCB可以利用AAS证明△ABC≌△DCB,
    故答案为:答案不唯一,如:AC=DB,AB=DC,∠ABC=∠DCB.
    【点睛】
    本题主要考查了全等三角形的判定,熟知全等三角形的判定条件是解题的关键.
    3、65°度
    【分析】
    由点D为BC边的中点,得到BD=CD,根据折叠的性质得到DF=CD,∠EFD=∠C,得到DF=BD,根据等腰三角形的性质得到∠BFD=∠B,由三角形的内角和和平角的定义得到∠A=∠AFE,于是得到结论.
    【详解】
    解:∵点D为BC边的中点,
    ∴BD=CD,
    ∵将∠C沿DE翻折,使点C落在AB上的点F处,
    ∴DF=CD,∠EFD=∠C,
    ∴DF=BD,
    ∴∠BFD=∠B,
    ∵∠A=180°-∠C-∠B,∠AFE=180°-∠EFD-∠DFB,
    ∴∠A=∠AFE,
    ∵∠AEF=50°,
    ∴∠A=(180°-50°)=65°.
    故答案为:65°.
    【点睛】
    本题考查的是图形翻折变换的图形能够重合的性质,以及等边对等角的性质,熟知折叠的性质是解答此题的关键.
    4、AC=DC
    【分析】
    由题意可得,BC为公共边,AB=DB,即添加一组边对应相等,可证△ABC与△DBC全等.
    【详解】
    解:∵AB=DB,BC=BC,
    添加AC=DC,
    ∴在△ABC与△DBC中,

    ∴△ABC≌△DBC(SSS),
    故答案为:AC=DC.
    【点睛】
    本题考查了全等三角形的判定,灵活运用全等三角形的判定是本题的关键.
    5、7.5
    【分析】
    根据腰长是否为5,分两类情况进行求解即可.
    【详解】
    解:当腰长为5时,由周长可知:底边长为10,且
    故不满足三边关系,不成立,
    当腰长不为5时,则底边长为5,由周长可得:腰长为
    满足三边关系,故腰长为7.5,
    故答案为:7.5.
    【点睛】
    本题主要是考查了等腰三角形的性质以及三角形的三边关系,熟练根据腰长来进行分类讨论,这是解决本题的关键.
    三、解答题
    1、(1)见解析;(2)见解析;(3)108°
    【分析】
    (1)根据对顶角相等结合已知条件得出∠AEG=∠C,根据内错角相等两直线平行即可证得结论;
    (2)由∠AGE+∠AHF=180°等量代换得∠DGC+∠AHF=180°可判断EC//BF,两直线平行同位角相等得出∠B=∠AEG,结合(1)得出结论;
    (3)由(2)证得EC//BF,得∠BFC+∠C=180°,求得∠C的度数,由三角形内角和定理求得∠D的度数.
    【详解】
    证明:(1)∵∠AEG=∠AGE,∠C=∠DGC,∠AGE=∠DGC
    ∴∠AEG=∠C
    ∴AB//CD
    (2)∵∠AGE=∠DGC,∠AGE+∠AHF=180°
    ∴∠DGC+∠AHF=180°
    ∴EC//BF
    ∴∠B=∠AEG
    由(1)得∠AEG=∠C
    ∴∠B=∠C
    (3)由(2)得EC//BF
    ∴∠BFC+∠C=180°
    ∵∠BFC=4∠C
    ∴∠C=36°
    ∴∠DGC=36°
    ∵∠C+∠DGC+∠D=180°
    ∴∠D=108°
    【点睛】
    此题考查了平行线的判定与性质,三角形内角和定理,熟记“内错角相等,两直线平行”、“同旁内角互补,两直线平行”及“两直线平行,同旁内角互补”是解题的关键.
    2、(1)∠E=35°;(2)AH⊥BE.理由见解析.
    【分析】
    (1)根据等腰三角形两底角相等,已知顶角,可以求出底角,再根据角平分线的定义求出∠CBD的度数,最后根据两直线平行,内错角相等求出;
    (2)由“SAS”可证△ABD≌△AEF,可得AD=AF,由等腰三角形的性质可求解.
    【详解】
    解:(1)∵AB=AC,
    ∴∠ABC=∠ACB,
    ∵∠BAC=40°,
    ∴∠ABC=(180°-∠BAC)=70°,
    ∵BD平分∠ABC,
    ∴∠CBD=∠ABC=35°,
    ∵AE∥BC,
    ∴∠E=∠CBD=35°;
    (2)∵BD平分∠ABC,∠E=∠CBD,
    ∴∠CBD=∠ABD=∠E,
    ∴AB=AE,
    在△ABD和△AEF中,

    ∴△ABD≌△AEF(SAS),
    ∴AD=AF,
    ∵点H是DF的中点,
    ∴AH⊥BE.
    【点睛】
    本题考查了全等三角形的判定和性质,等腰三角形的性质,证明三角形全等是解题的关键.
    3、(1)40°;(2)10°;(3)AB∥CF,理由见解析
    【分析】
    (1)根据三角形的角和定理和角平分线的定义可求得∠BAC+∠ACB=140°即可求解;
    (2)根据三角形的外角性质求得∠B+∠BAE=47°即可求解;
    (3)延长AC到G,根据等腰三角形的性质和三角形的外角性质得到∠FCG=2∠F,再根据角平分线的定义和等角的余角相等得到∠BCF=2∠F,则有∠B=∠BCF,根据平行线在判定即可得出结论.
    【详解】
    解:(1)∵∠ADC=110°,
    ∴∠DAC+∠DCA=180°-110°=70°,
    ∵AE平分∠BAC,CD平分∠ACB,
    ∴∠BAC=2∠DAC,∠ACB=2∠DCA,
    ∴∠BAC+∠ACB=2(∠DAC+∠DCA)=140°,
    ∴∠B=180°-(∠BAC+∠ACB)=180°-140°=40°,
    故答案为:40°;
    (2)∵∠ADC=∠DCE+∠DEC=100°,∠DCE=53°,
    ∴∠DEC=100°-53°=47°,
    ∴∠B+∠BAE=∠DEC=47°,
    ∵∠B-∠BAE=27°,
    ∴∠BAE=10°,
    故答案为:10°;
    (3)AB∥CF,理由为:
    如图,延长AC到G,
    ∵AC=CF,
    ∴∠F=∠FAC,
    ∴∠FCG=∠F+∠FAC=2∠F,
    ∵CF⊥CD,
    ∴∠BCF+∠BCD=90°,∠FCG+∠ACD=90°,
    ∵CD平分∠ACB,
    ∴∠BCD=∠ACD,
    ∴∠BCF=∠FCG=2∠F,
    ∵∠B=2∠F,
    ∴∠B=∠BCF,
    ∴AB∥CF.

    【点睛】
    本题考查角平分线的定义、三角形的内角和定理、三角形的外角性质、等腰三角形的性质、等角的余角相等、平行线的判定,熟练掌握相关知识的联系与运用是解答的关键.
    4、见解析
    【分析】
    根据平行线的性质得出,运用“角角边”证明△AEB≌△CFD即可.
    【详解】
    证明:∵,
    ∴,
    在△AEB和△CFD中,

    ∴△AEB≌△CFD,
    ∴.
    【点睛】
    本题考查了全等三角形的判定与性质,解题关键是熟练运用全等三角形的判定定理进行证明.
    5、见解析
    【分析】
    根据SAS证明△AEC与△ADB全等,进而利用全等三角形的性质解答即可.
    【详解】
    证明:在△AEC与△ADB中,

    ∴△AEC≌△ADB(SAS),
    ∴∠ACE=∠ABD,
    ∵AB=AC,
    ∴∠ABC=∠ACB,
    ∴∠OBC=∠OCB,
    ∴OB=OC.
    【点睛】
    本题考查了全等三角形的判定和性质,等腰三角形的性质,证明△AEC≌△ADB是本题的关键.
    6、
    (1)证明见解析;
    (2)4
    【分析】
    (1)根据等边三角形的性质和平行线的性质可证得∠EDC=∠ECD=∠DEC=60°,再根据直角定义和三角形的外角性质证得∠F=∠FEC=30°,利用等角对等边即可证得结论;
    (2)由等角对等边可知CE=DC=2,结合(1)中结论即可求解.
    (1)
    证明:∵△ABC是等边三角形,
    ∴∠A=∠B=∠ACB=60°.
    ∵DE∥AB,
    ∴∠B=∠EDC=60°,∠A=∠CED=60°,
    ∴∠EDC=∠ECD=∠DEC=60°,
    ∵EF⊥ED,
    ∴∠DEF=90°,
    ∴∠F=30°
    ∵∠F+∠FEC=∠ECD=60°,
    ∴∠F=∠FEC=30°,
    ∴CE=CF.
    (2)
    解:由(1)可知∠EDC=∠ECD=∠DEC=60°,
    ∴CE=DC=2.
    又∵CE=CF,
    ∴CF=2.
    ∴DF=DC+CF=2+2=4.
    【点睛】
    本题考查等边三角形的性质、等腰三角形的判定、平行线的性质、三角形的外角性质、线段的和与差,熟练掌握相关知识的联系与运用是解答的关键.
    7、(1)见解析;(2)△AEF、△ADG、△DCF、△ECD
    【分析】
    (1)根据已知条件得到∠BAE=∠CAD,根据全等三角形的性质得到∠AED=∠ABC,根据等腰三角形的性质得到∠ABC=∠AEB,于是得到结论;
    (2)根据等腰三角形的判定定理即可得到结论.
    【详解】
    证明:(1)如图1,∵∠BAE=∠CAD,
    ∴∠BAE+∠CAE=∠CAD+∠CAE,
    即∠BAC=∠EAD,
    在△AED与△ABC中,

    ∴△AED≌△ABC,
    ∴∠AED=∠ABC,
    ∵∠BAE+∠ABC+∠AEB=180°,
    ∠CED+∠AED+∠AEB=180°,
    ∵AB=AE,
    ∴∠ABC=∠AEB,
    ∴∠BAE+2∠AEB=180°,
    ∠CED+2∠AEB=180°,
    ∴∠DEC=∠BAE;
    (2)解:如图2,
    ①∵∠BAE=∠CAD=30°,
    ∴∠ABC=∠AEB=∠ACD=∠ADC=75°,
    由(1)得:∠AED=∠ABC=75°,
    ∠DEC=∠BAE=30°,
    ∵AD⊥AB,
    ∴∠BAD=90°,
    ∴∠CAE=30°,
    ∴∠AFE=180°−30°−75°=75°,
    ∴∠AEF=∠AFE,
    ∴△AEF是等腰三角形,
    ②∵∠BEG=∠DEC=30°,∠ABC=75°,
    ∴∠G=45°,
    在Rt△AGD中,∠ADG=45°,
    ∴△ADG是等腰直角三角形,
    ③∠CDF=75°−45°=30°,
    ∴∠DCF=∠DFC=75°,
    ∴△DCF是等腰直角三角形;
    ④∵∠CED=∠EDC=30°,
    ∴△ECD是等腰三角形.
    【点睛】
    本题考查了全等三角形的判定与性质,等腰直角三角形的判定,等腰三角形的判定和性质,熟练掌握全等三角形的判定与性质是解题的关键.
    8、
    【分析】
    由题意结合角平分线性质和全等三角形判定得出,进而依据的周长进行求解即可.
    【详解】
    解:∵,,,
    ∴,
    ∵BD是的角平分线,
    ∴,
    在和中,
    ,
    ∴,
    ∴,
    ∵,
    ∴的周长.
    【点睛】
    本题考查全等三角形的判定与性质以及角平分线性质,熟练掌握利用全等三角形的判定与性质以及角平分线性质进行边的等量替换是解题的关键.
    9、
    (1)120°
    (2)①图形见解析;②
    【分析】
    (1)根据进而判断出点E在边AB上,得出△ADE≌△ABC(SAS),进而得出∠AED=∠ACB=90°最后用三角形的外角的性质即可得出结论;
    (2)①依题意补全图形即可;②先判断出△ADE≌△ABC(SAS),进而得出∠AEF=90°,即可判断出Rt△AEF≌Rt△ACF,进而求出∠CAF=∠CAE=30°,即可得出结论.
    (1)
    (1)如图1,

    在Rt△ABC中,∠B=30°,
    ∴∠BAC=60°,
    由旋转知,∠CAE=60°=∠CAB,
    ∴点E在边AB上,
    ∵AD=AB,AE=AC,
    ∴△ADE≌△ABC(SAS),
    ∴∠AED=∠ACB=90°,
    ∴∠CFE=∠B+∠BEF=30°+90°=120°,
    故答案为120°;
    (2)
    (2)①依题意补全图形如图2所示,

    ②如图2,连接AF,
    ∵∠BAD=∠CAE,
    ∴∠EAD=∠CAB,
    ∵AD=AB,AE=AC,
    ∴△ADE≌△ABC(SAS),
    ∴∠AED=∠C=90°,
    ∴∠AEF=90°,
    ∴Rt△AEF≌Rt△ACF(HL),
    ∴∠EAF=∠CAF,
    ∴∠CAF=∠CAE=30°,
    在Rt△ACF中,CF=AF,且AC2+CF2=AF2,

    【点睛】
    此题是三角形综合题,主要考查了旋转的性质,全等三角形的判定和性质,三角形的外角的性质,含30度角的直角三角形的性质,勾股定理,判断出△ADE≌△ABC是解本题的关键.
    10、(1)见解析;(2)
    【分析】
    (1)根据平行线的性质可得,根据线段的和差关系可得,进而根据即证明;
    (2)根据三角形内角和定理以及补角的意义求得∠E,进而根据(1)的结论即可求得∠F.
    【详解】
    (1)证明:




    又,

    (2)解:,,




    【点睛】
    本题考查了平行线的性质,三角形内角和定理,三角形全等的性质与判定,掌握全等三角形的性质与判定是解题的关键.

    相关试卷

    初中数学沪教版 (五四制)七年级下册第十四章 三角形综合与测试同步练习题:

    这是一份初中数学沪教版 (五四制)七年级下册第十四章 三角形综合与测试同步练习题,共34页。试卷主要包含了已知长方形纸片ABCD,点E等内容,欢迎下载使用。

    数学七年级下册第十四章 三角形综合与测试课堂检测:

    这是一份数学七年级下册第十四章 三角形综合与测试课堂检测,共33页。试卷主要包含了如图,在中,,定理等内容,欢迎下载使用。

    沪教版 (五四制)七年级下册第十四章 三角形综合与测试当堂检测题:

    这是一份沪教版 (五四制)七年级下册第十四章 三角形综合与测试当堂检测题,共32页。试卷主要包含了下列说法错误的是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map