数学七年级下册第十四章 三角形综合与测试课时练习
展开
这是一份数学七年级下册第十四章 三角形综合与测试课时练习,共33页。试卷主要包含了如图,ABC≌DEF,点B等内容,欢迎下载使用。
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,,于点,与交于点,若,则等于( )
A.20°B.50°C.70°D.110°
2、如图,在ABC中,AB=AC,D是BC的中点,∠B=35°,则∠BAD=( )
A.110°B.70°C.55°D.35°
3、如图,,AC,BD相交于点O.添加一个条件,不一定能使≌的是( )
A.B.
C.D.
4、若三条线段中a=3,b=5,c为奇数,那么以a、b、c为边组成的三角形共有( )
A.1个B.2个C.3个D.4个
5、等腰三角形的一个角是80°,则它的一个底角的度数是( )
A.50°B.80°C.50°或80°D.100°或80°
6、我们称网格线的交点为格点.如图,在4×4的长方形网格中有两个格点A、B,连接AB,在网格中再找一个格点C,使得△ABC是等腰直角三角形,则满足条件的格点C的个数是( )
A.3B.4C.5D.6
7、小明把一副含有45°,30°角的直角三角板如图摆放其中∠C=∠F=90°,∠A=45°,∠D=30°,则∠a+∠β等于( )
A.180°B.210°C.360°D.270°
8、下列所给的各组线段,能组成三角形的是:( )
A.2,11,13B.5,12,7C.5,5,11D.5,12,13
9、如图,ABC≌DEF,点B、E、C、F在同一直线上,若BC=7,EC=4,则CF的长是( )
A.2B.3C.4D.7
10、若等腰三角形的一个外角是70°,则它的底角的度数是( )
A.110°B.70°C.35°D.55°
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、一个三角形的其中两个内角为,,则这个第三个内角的度数为______.
2、已知:如图,AB = DB.只需添加一个条件即可证明.这个条件可以是______.(写出一个即可).
3、如图,在中,,交BC的延长线于点E,若,点C是BE中点,则______°.
4、如图,已知点是射线上一点,过作交射线于点,交射线于点,给出下列结论:①是的余角;②图中互余的角共有3对;③的补角只有;④与互补的角共有3个,其中正确结论有______(把你认为正确的结论的序号都填上).
5、已知△ABC是等腰三角形,若∠A=70°,则∠B=_____.
三、解答题(10小题,每小题5分,共计50分)
1、如图,是的中线,分别过点、作及其延长线的垂线,垂足分别为、.
(1)求证:;
(2)若的面积为8,的面积为6,求的面积.
2、在等腰中,,点D是BC边上的一个动点(点D不与点B,C重合),连接AD,作等腰,使,,点D,E在直线AC两旁,连接CE.
(1)如图1,当时,直接写出BC与CE的位置关系;
(2)如图2,当时,过点A作于点F,请你在图2中补全图形,用等式表示线段BD,CD,之间的数量关系,并证明.
3、如图,是等边三角形,D点是BC上一点,,于点E,CE交AD于点P.求的度数.
4、已知:直线AB、CR被直线UV所截,直线UV交直线AB于点B,交直线CR于点D,∠ABU+∠CDV=180°.
(1)如图1,求证:AB∥CD;
(2)如图2,BE∥DF,∠MEB=∠ABE+5°,∠FDR=35°,求∠MEB的度数;
(3)如图3,在(2)的条件下,点N在直线AB上,分别连接EN、ED,MG∥EN,连接ME,∠GME=∠GEM,∠EBD=2∠NEG,EB平分∠DEN,MH⊥UV于点H,若∠EDC=∠CDB,求∠GMH的度数.
5、如图是由边长为1的小等边三角形构成的网格,每个小等边三角形的顶点为格点,线段的端点都在格点上.要求以为边画一个等腰,且使得点为格点.请在下面的网格图中画出3种不同的等腰.
6、如图,是等边三角形,,分别交AB,AC于点D,E.
(1)求证:是等边三角形;
(2)点F在线段DE上,点G在外,,,求证:.
7、如图,CE⊥AB于点E,BF⊥AC于点F,BD=CD.
(1)求证:△BDE≌△CDF;
(2)求证:AE=AF.
8、如图,在△ABC中,AB=AC,CD⊥AB于点D,∠A=50°,求∠BCD的度数.
9、如图,已知AB=AC,AD=AE,BD和CE相交于点O.求证:OB=OC.
10、如图1,点O是线段AD的中点,分别以AO和DO为边在线段AD的同侧作等边三角形OAB和等边三角形OCD,连接AC和BD,相交于点E,连接BC.
(1)求证DOB≌AOC;
(2)求∠CEB的大小;
(3)如图2,OAB固定不动,保持△OCD的形状和大小不变,将OCD绕点O旋转(OAB和OCD不能重叠),求∠CEB的大小.
-参考答案-
一、单选题
1、C
【分析】
由与,即可求得的度数,又由,根据两直线平行,同位角相等,即可求得的度数.
【详解】
解:∵,
∴,
∵,
∴,
∵,
∴.
故选:C.
【点睛】
题目主要考查了平行线的性质与垂直的性质、三角形内角和定理,熟练掌握平行线的性质是解题关键.
2、C
【分析】
根据等腰三角形三线合一的性质可得AD⊥BC,然后利用直角三角形两锐角互余的性质解答.
【详解】
解:∵AB=AC,D是BC的中点,
∴AD⊥BC,
∵∠B=35°,
∴∠BAD=90°−35°=55°.
故选:C.
【点睛】
本题主要考查了等腰三角形三线合一的性质,直角三角形两锐角互余的性质,是基础题,熟记性质是解题的关键.
3、C
【分析】
直接利用直角三角形全等的判定定理(定理)即可判断选项;先根据等腰三角形的性质可得,再根据三角形全等的判定定理(定理)即可判断选项;直接利用三角形全等的判定定理(定理)即可判断选项,由此即可得出答案.
【详解】
解:当添加条件是时,
在和中,,
,则选项不符题意;
当添加条件是时,
,
在和中,,
,则选项不符题意;
当添加条件是时,
在和中,,
,则选项不符题意;
当添加条件是时,不一定能使,则选项符合题意;
故选:C.
【点睛】
本题考查了三角形全等的判定、等腰三角形的性质,熟练掌握三角形全等的判定方法是解题关键.
4、C
【分析】
根据三角形的三边关系,得到合题意的边,进而求得三角形的个数.
【详解】
解:c的范围是:5﹣3<c<5+3,即2<c<8.
∵c是奇数,
∴c=3或5或7,有3个值.
则对应的三角形有3个.
故选:C.
【点睛】
本题主要考查了三角形三边关系,准确分析判断是解题的关键.
5、C
【分析】
已知给出一个角的的度数为80º,没有明确是顶角还是底角,要分类讨论,联合内角和求出底角即可.
【详解】
解:等腰三角形的一个角是80°,
当80º为底角时,它的一个底角是80º,
当80º为顶角时,它的一个底角是,
则它的一个底角是50º或80º.
故选:C.
【点睛】
本题考查等腰三角形的性质,内角和定理,掌握分类讨论的思想是解决问题的关键.
6、A
【分析】
根据题意,结合图形,分两种情况讨论:①AB为等腰直角△ABC底边;②AB为等腰直角△ABC其中的一条腰.
【详解】
解:如图:分情况讨论:
①AB为等腰直角△ABC底边时,符合条件的格点C点有0个;
②AB为等腰直角△ABC其中的一条腰时,符合条件的格点C点有3个.
故共有3个点,
故选:A.
【点睛】
本题考查了等腰三角形的性质和判定;解答本题关键是根据题意,画出符合实际条件的图形,数形结合的思想是数学解题中很重要的解题思想.
7、B
【分析】
已知,得到,根据外角性质,得到,,再将两式相加,等量代换,即可得解;
【详解】
解:如图所示,
∵,
∴,
∵,,
∴,
∵,,
∴,
∵,,
∴;
故选D.
【点睛】
本题主要考查了三角形外角定理的应用,准确分析计算是解题的关键.
8、D
【分析】
根据三角形三边关系定理,判断选择即可.
【详解】
∵2+11=13,
∴A不符合题意;
∵5+7=12,
∴B不符合题意;
∵5+5=10<11,
∴C不符合题意;
∵5+12=17>13,
∴D符合题意;
故选D.
【点睛】
本题考查了构成三角形的条件,熟练掌握三角形三边关系是解题的关键.
9、B
【分析】
根据全等三角形的性质可得,根据即可求得答案.
【详解】
解:ABC≌DEF,
点B、E、C、F在同一直线上,BC=7,EC=4,
故选B
【点睛】
本题考查了全等三角形的性质,掌握全等三角形的性质是解题的关键.
10、C
【分析】
先求出与这个外角相邻的内角的度数为,再根据三角形的内角和定理即可得.
【详解】
解:等腰三角形的一个外角是,
与这个外角相邻的内角的度数为,
这个等腰三角形的顶角的度数为,底角的度数为,
故选:C.
【点睛】
本题考查了等腰三角形、三角形的内角和定理等知识点,判断出等腰三角形的顶角的度数为是解题关键.
二、填空题
1、60°
【分析】
依题意,利用三角形内角和为:,即可;
【详解】
由题得:一个三角形的内角和为:;又已知两个其中的内角为:,;
∴ 第三个角为:;
故填:
【点睛】
本题主要考查三角形的内角和,关键在于熟练并运用基本的计算;
2、AC=DC
【分析】
由题意可得,BC为公共边,AB=DB,即添加一组边对应相等,可证△ABC与△DBC全等.
【详解】
解:∵AB=DB,BC=BC,
添加AC=DC,
∴在△ABC与△DBC中,
,
∴△ABC≌△DBC(SSS),
故答案为:AC=DC.
【点睛】
本题考查了全等三角形的判定,灵活运用全等三角形的判定是本题的关键.
3、67.5°
【分析】
连接AE,先得出∠BAC=∠BAE,再根据,得出∠BAC=22.5°,最后得出结果.
【详解】
解:连接AE,
∵点C是BE中点,
∴BC=CE,
∵∠ACB=90°,
∴AC⊥BE,
∴AB=AE,
∴∠BAC=∠BAE,
∵DE⊥AB,
∴∠ADE=90°,
∵,
∴∠AED=∠DAE=45°,
∴∠BAC=∠BAE=22.5°,
∴∠B=90°-∠BAC=67.5°.
故答案为:67.5°.
【点睛】
本题考查了线段垂直平分线的性质,等腰三角形的性质及直角三角形的性质,正确作出辅助线是解题的关键.
4、①④
【分析】
根据垂直定义可得∠BAC=90°,∠ADC=∠ADB=∠CAE=90°,结合三角形的内角和,然后再根据余角定义和补角定义逐一进行分析即可.
【详解】
解: ,
是的余角;故①符合题意;
,
互为余角,互为余角,
,
互为余角,
所以图中互余的角共有4对,故②不符合题意;
与互补;
∵∠1+∠DAC=90°,∠BAD+∠DAC=90°,
∴∠1=∠BAD,
∵∠BAD+∠DAE=180°,
∴∠1+∠DAE=180°,
∴∠1与∠DAE互补, 故③不符合题意;
,
所以与互补的角有 共3个,故④符合题意;
所以正确的结论有:①④
故答案为:①④
【点睛】
本题考查的是垂直的定义,互余,互补的含义,三角形的内角和定理,掌握“互为余角的两个角之和为 互为补角是两个角之和为”是解本题的关键.
5、或或
【分析】
分①是顶角,是底角,②是底角,是底角,③是底角,是顶角三种情况,再根据等腰三角形的定义、三角形的内角和定理即可得.
【详解】
解:由题意,分以下三种情况:
①当是顶角,是底角时,
则;
②当是底角,是底角时,
则;
③当是底角,是顶角时,
则;
综上,的度数为或或,
故答案为:或或.
【点睛】
本题考查了等腰三角形、三角形的内角和定理,正确分三种情况讨论是解题关键.
三、解答题
1、
(1)见解析
(2)的面积为20.
【分析】
(1)根据已知条件得到、,然后利用全等三角形的判定,进行证明即可.
(2)分别根据和的面积,用CF表示AF、DF,通过,得到,,用CF表示出AE的长,最后利用面积公式求解即可.
(1)
(1)解:由题意可知:
是的中线
在与中
.
(2)
解:的面积为8,的面积为6.
,即
,即
由(1)可知:
,
.
【点睛】
本题主要是考查了全等三角形的判定和性质,熟练根据条件证明三角形全等,利用其性质,证明对应边相等,这是解决本题的关键.
2、
(1)
(2)或,见解析
【分析】
(1)根据已知条件求出∠B=∠ACB=45°,证明△BAD≌△CAE,得到∠ACE=∠B=45°,求出∠BCE=∠ACB+∠ACE=90°,即可得到结论;
(2)根据题意作图即可,证明≌.得到,,,推出.延长EF到点G,使,证明≌,推出.由此得到.同理可证.
(1)
解:,,
∴∠B=∠ACB=45°,
∵,
∴,即∠BAD=∠CAE,
∵,,
∴△BAD≌△CAE,
∴∠ACE=∠B=45°,
∴∠BCE=∠ACB+∠ACE=90°,
∴;
(2)
解:如图,补全图形;
.
证明:∵,
∴.
又∵,,
∴≌.
∴,,.
∵,
∴.
∴.
延长EF到点G,使.
∵,
∴.
∴.
∵,
∴.
∴.
∵,
∴≌.
∴.
∵,
∴.
如图,同理可证.
.
【点睛】
此题考查了全等三角形的判定及性质,等腰三角形的性质,熟记全等三角形的判定及性质是解题的关键.掌握分类思想解题是难点.
3、
【分析】
由题意易得,,则有,然后可得,进而可证,则有,最后问题可求解.
【详解】
解:∵是等边三角形,
∴,,
∵,
∴,
∴,
∴,
∵,
∴,
∴(SAS),
∴,
∵,
∴.
【点睛】
本题主要考查等边三角形的性质、含30度直角三角形的性质及全等三角形的性质与判定,熟练掌握等边三角形的性质、含30度直角三角形的性质及全等三角形的性质与判定是解题的关键.
4、(1)见详解;(2)∠MEB=40°,(3)∠GMH=80°
【分析】
(1)根据等角的补角性质得出∠ABD=∠CDV,根据同位角相等两直线平行可得AB∥CD;
(2)根据AB∥CD;利用内错角相等得出∠ABD=∠RDB,根据BE∥DF,得出∠EBD=∠FDB,利用等量减等量差相等得出∠ABE=∠FDR,根据∠FDR=35°,可得∠ABE=∠FDR=35°即可;
(3)设ME交AB于S,根据MG∥EN,得出∠NES=∠GMS=∠GES,设∠NES=y°,可得∠NEG=∠NES+∠GES=2∠NES=2y°,根据∠EBD=2∠NEG,得出∠EBD =4∠NES=4y°,根据∠EDC=∠CDB,设∠EDC=x°,得出∠CDB=7x°,根据AB∥CD,得出∠GBE+∠EBD+∠CDB=180°,可得35+4y+7x=180根据三角形内角和∠BDE=∠BDC-∠EDC=7x-x=6x,∠BED=180°-∠EBD-∠EDB=180°-4y°-6x°,利用EB平分∠DEN,得出y°+40°=180°-4y°-6x°,解方程组,解得,可证ME∥UV,根据MH⊥UV,可求∠SMH=90°,∠SMG=∠NES=10°即可.
【详解】
(1)证明:∵∠ABU+∠ABD=180°,∠ABU+∠CDV=180°.
∴∠ABU=180°-∠ABD,∠CDV=180°-∠ABU,
∴∠ABD=∠CDV,
∴AB∥CD;
(2)解:∵AB∥CD;
∴∠ABD=∠RDB,
∴∠ABE+∠EBD=∠FDB+∠FDR,
∵BE∥DF,
∴∠EBD=∠FDB,
∴∠ABE=∠FDR,
∵∠FDR=35°,
∴∠ABE=∠FDR=35°,
∴∠MEB=∠ABE+5°=35°+5°=40°,
(3)解:设ME交AB于S,
∵MG∥EN,
∴∠NES=∠GMS=∠GES,
设∠NES=y°,
∵∠EBD=2∠NEG
∴∠NEG=∠NES+∠GES=2∠NES=2y°,
∴∠EBD =4∠NES=4y°,
∵∠EDC=∠CDB,
设∠EDC=x°
∴∠CDB=7x°,
∵AB∥CD,
∴∠ABD+∠CDB=180°,即∠GBE+∠EBD+∠CDB=180°,
∴35+4y+7x=180,
∵∠BDE=∠BDC-∠EDC=7x-x=6x,
∴∠BED=180°-∠EBD-∠EDB=180°-4y°-6x°,
∵EB平分∠DEN,
∴∠NEB=∠BED,
∵∠NEB=∠NES+∠SEB=y°+40°,
∴y°+40°=180°-4y°-6x°,
∴,
解得,
∴∠EBD=4y°=40°=∠MEB,
∴ME∥UV,
∵MH⊥UV,
∴MH⊥ME,
∴∠SMH=90°,,
∵∠SMG=∠NES=10°,
∴∠GMH=90°-∠SMG=90°-10°=80°.
【点睛】
本题考查平行线判定与性质,三角形内角和,垂直性质,角平分线定义,角的倍分,二元一次方程组,掌握平行线判定与性质,三角形内角和,垂直性质,角平分线定义,角的倍分,二元一次方程组是解题关键.
5、答案见解析
【分析】
AB为4个等边三角形组成的平行四边形的对角线,因此只要找到另一腰也4个等边三角形组成的平行四边形的对角线即可
【详解】
解:如图,
……
[答案不唯一]
【点睛】
本题考查等腰三角形的绘图,掌握等边三角形和等腰三角形性质即可.
6、(1)见详解;(2)见详解
【分析】
(1)由题意易得,然后根据平行线的性质可得,进而问题可求证;
(2)连接AG,由题意易得AB=AC,然后可知△ABF≌△ACG,则有AF=AG,进而可得∠FAG=60°,最后问题可求证.
【详解】
证明:(1)∵是等边三角形,
∴,
∵DE∥BC,
∴,
∴,
∴是等边三角形;
(2)连接AG,如图所示:
∵是等边三角形,
∴,AB=AC,
∵,,
∴△ABF≌△ACG(SAS),
∴,
∵,
∴,
∴是等边三角形,
∴.
【点睛】
本题主要考查全等三角形及等边三角形的性质与判定,熟练掌握全等三角形及等边三角形的性质与判定是解题的关键.
7、(1)见解析;(2)见解析
【分析】
(1)根据CE⊥AB,BF⊥AC就可以得出∠BED=∠CFD=90°,就可以由AAS得出结论;
(2)由(1)得DE=DF,就可以得出BF=CE,由AAS就可以得出△AFB≌△AEC就可以得出结论.
【详解】
证明:(1)∵CE⊥AB,BF⊥AC,
∴∠BED=∠CFD=90°,
在△BED和△CFD中,
,
∴△BED≌△CFD(AAS);
(2)∵△BED≌△CFD,
∴DE=DF,
∴BD+DF=CD+DE,
∴BF=CE,
在△ABF和△ACE中,
,
∴△ABF≌△ACE(AAS),
∴AE=AF.
【点睛】
本题考查了垂直的性质的运用,全等三角形的判定与性质的运用,等式的性质的运用,解答时证明三角形全等是关键.
8、25°
【分析】
直接利用等腰三角形的性质得出∠ABC=∠ACB=65°,进而利用三角形内角和定理得出答案.
【详解】
∵AB=AC,∠A=50°,
∴∠ABC=∠ACB=65°,
∵CD⊥BC于点D,
∴∠BCD的度数为:180°−90°−65°=25°.
【点睛】
此题主要考查了等腰三角形的性质,正确得出∠B的度数是解题关键.
9、见解析
【分析】
根据SAS证明△AEC与△ADB全等,进而利用全等三角形的性质解答即可.
【详解】
证明:在△AEC与△ADB中,
,
∴△AEC≌△ADB(SAS),
∴∠ACE=∠ABD,
∵AB=AC,
∴∠ABC=∠ACB,
∴∠OBC=∠OCB,
∴OB=OC.
【点睛】
本题考查了全等三角形的判定和性质,等腰三角形的性质,证明△AEC≌△ADB是本题的关键.
10、(1)见详解;(2)120°;(2)120°.
【分析】
(1)如图1,根据等边三角形的性质得到OD=OC=OA=OB,∠COD=∠AOB=60°,则利用根据“SAS”判断△AOC≌△BOD;
(2)利用△AOC≌△BOD得到∠CAO=∠DBO,然后根据三角形内角和可得到∠AEB=∠AOB=60°,即可求出答案;
(3)如图2,与(1)的方法一样可证明△AOC≌△BOD;则∠CAO=∠DBO,然后根据三角形内角和可求出∠AEB=∠AOB=60°,即可得到答案.
【详解】
(1)证明:如图1,
∵△ODC和△OAB都是等边三角形,
∴OD=OC=OA=OB,∠COD=∠AOB=60°,
∴∠BOD=∠AOC=120°,
在△AOC和△BOD中
∴△AOC≌△BOD;
(2)解:∵△AOC≌△BOD,
∴∠CAO=∠DBO,
∵∠1=∠2,
∴∠AEB=∠AOB=60°,
∴;
(3)解:如图2,
∵△ODC和△OAB都是等边三角形,
∴OD=OC=OA=OB,∠COD=∠AOB=60°,
∴∠AOB+∠BOC=∠COD+∠BOC,即∠AOC=∠BOD,
在△AOC和△BOD中
∴△AOC≌△BOD;
∴∠CAO=∠DBO,
∵∠1=∠2,
∴∠AEB=∠AOB=60°,
∴;
即∠CEB的大小不变.
【点睛】
本题考查了几何变换综合题:熟练掌握旋转的性质、等边三角形的性质和全等三角形的判定与性质;利用类比的方法解决(3)小题.
相关试卷
这是一份2020-2021学年第十四章 三角形综合与测试同步测试题,共35页。
这是一份初中数学沪教版 (五四制)七年级下册第十四章 三角形综合与测试习题,共32页。试卷主要包含了如图,点D等内容,欢迎下载使用。
这是一份初中数学沪教版 (五四制)七年级下册第十四章 三角形综合与测试同步训练题,共31页。试卷主要包含了如图,若一个三角形的三个外角之比为3,下列叙述正确的是等内容,欢迎下载使用。