终身会员
搜索
    上传资料 赚现金

    2022年最新强化训练沪教版七年级数学第二学期第十四章三角形定向测试试题(含详解)

    立即下载
    加入资料篮
    2022年最新强化训练沪教版七年级数学第二学期第十四章三角形定向测试试题(含详解)第1页
    2022年最新强化训练沪教版七年级数学第二学期第十四章三角形定向测试试题(含详解)第2页
    2022年最新强化训练沪教版七年级数学第二学期第十四章三角形定向测试试题(含详解)第3页
    还剩29页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学沪教版 (五四制)七年级下册第十四章 三角形综合与测试同步训练题

    展开

    这是一份初中数学沪教版 (五四制)七年级下册第十四章 三角形综合与测试同步训练题,共32页。试卷主要包含了有下列说法等内容,欢迎下载使用。
    沪教版七年级数学第二学期第十四章三角形定向测试
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、如图,∠A=α,∠DBC=3∠DBA,∠DCB=3∠DCA,则∠BDC的大小为( )

    A. B. C. D.
    2、已知,,,的相关数据如图所示,则下列选项正确的是( )

    A. B. C. D.
    3、已知等腰三角形有一个角为50°,则这个等腰三角形的底角度数是( ).
    A.65° B.65°或80° C.50°或80° D.50°或65°
    4、如图,ABC中,∠ACB=90°,∠ABC=40°.将ABC绕点B逆时针旋转得到,使点C的对应点恰好落在边AB上,则的度数是( )

    A.50° B.70° C.110° D.120°
    5、在下列长度的四根木棒中,能与3cm,9cm的两根木棒首尾顺次相接钉成一个三角形的是( )
    A.3cm B.6cm C.10cm D.12cm
    6、如图,在ABC中,AB=AC,D是BC的中点,∠B=35°,则∠BAD=( )

    A.110° B.70° C.55° D.35°
    7、已知三角形的两边长分别为和,则下列长度的四条线段中能作为第三边的是( )
    A. B. C. D.
    8、如图,等边中,D为AC中点,点P、Q分别为AB、AD上的点,,,在BD上有一动点E,则的最小值为( )

    A.7 B.8 C.10 D.12
    9、有下列说法:①轴对称图形的对称轴是任何一对对应点所连线段的垂直平分线;②等腰三角形一腰上的高与底边的夹角与顶角互余;③等腰三角形顶角的平分线是它的对称轴;④等腰三角形两腰上的中线相等.其中正确的说法有( )个.
    A.1 B.2 C.3 D.4
    10、如图:将一张长为40cm的长方形纸条按如图所示折叠,若AB=3BC,则纸条的宽为( )

    A.12 B.14 C.16 D.18
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、如图,△ABC中,AB平分∠DAC,AB⊥BC,垂足为B,若∠ADC与∠ACB互补,BC=5,则CD的长为_________.

    2、等腰三角形的一条边长为5,周长为20,则该三角形的腰长为__________.
    3、如图,在△ABC中,CA=CB,∠ACB=120°,E为AB上一点,∠DCE=∠DAE=60°,AD=2.4,BE=7,则DE=_____.

    4、如图,在等边三角形中,,是边的高线,延长至点,使,则BE的长为__________.

    5、如图,在△ABC中,点D为BC边的中点,点E为AC上一点,将∠C沿DE翻折,使点C落在AB上的点F处,若∠AEF=50°,则∠A的度数为__.

    三、解答题(10小题,每小题5分,共计50分)
    1、如图,,,E为BC中点,DE平分.

    (1)求证:平分;
    (2)求证:;
    (3)求证:.
    2、如图,点B,F,C,E在一条直线上,AB=DE,∠B=∠E,BF=CE.求证:AC=DF.

    3、如图,在等边△ABC中,点P是BC边上一点,∠BAP=(30°<<60°),作点B关于直线AP的对称点D,连接DC并延长交直线AP于点E,连接BE.
    (1)依题意补全图形,并直接写出∠AEB的度数;
    (2)用等式表示线段AE,BE,CE之间的数量关系,并证明.
    分析:①涉及的知识要素:图形轴对称的性质;等边三角形的性质;全等三角形的判定与性质……
    ②通过截长补短,利用60°角构造等边三角形,进而构造出全等三角形,从而达到转移边的目的.
    请根据上述分析过程,完成解答过程.

    4、如图1,点O是线段AD的中点,分别以AO和DO为边在线段AD的同侧作等边三角形OAB和等边三角形OCD,连接AC和BD,相交于点E,连接BC.
    (1)求证DOB≌AOC;
    (2)求∠CEB的大小;
    (3)如图2,OAB固定不动,保持△OCD的形状和大小不变,将OCD绕点O旋转(OAB和OCD不能重叠),求∠CEB的大小.

    5、数学课上,王老师布置如下任务:
    如图,已知∠MAN<45°,点B是射线AM上的一个定点,在射线AN上求作点C,使∠ACB=2∠A.
    下面是小路设计的尺规作图过程.
    作法:①作线段AB的垂直平分线l,直线l交射线AN于点D;
    ②以点B为圆心,BD长为半径作弧,交射线AN于另一点C,则点C即为所求.

    根据小路设计的尺规作图过程,
    (1)使用直尺和圆规,补全图形;(保留作图痕迹)
    (2)完成下面的证明:
    证明:连接BD,BC,
    ∵直线l为线段AB的垂直平分线,
    ∴DA= ,( )(填推理的依据)
    ∴∠A=∠ABD,
    ∴∠BDC=∠A+∠ABD=2∠A.
    ∵BC=BD,
    ∴∠ACB=∠ ,( )(填推理的依据)
    ∴∠ACB=2∠A.
    6、如图,在长方形ABCD中,AD=3,DC=5,动点M从A点出发沿线段AD—DC以每秒1个单位长度的速度向终点C运动;动点N同时从C点出发沿线段CD—DA以每秒3个单位长度的速度向终点A运动.ME⊥PQ于点E,NF⊥PQ于点F,设运动的时间为秒.
    (1)在运动过程中当M、N两点相遇时,求t的值.
    (2)在整个运动过程中,求DM的长.(用含t的代数式表示)
    (3)当DEM与DFN全等时,请直接写出所有满足条件的DN的长.

    7、如图,将△ABC绕点A逆时针旋转得到△ADE,点D在BC上,已知∠B=70°,求∠CDE的大小.

    8、已知:如图,,,求证:

    9、如图,将一副直角三角板的直角顶点C叠放在一起.

    (1)如图(1),若∠DCE=33°,则∠BCD= ,∠ACB= .
    (2)如图(1),猜想∠ACB与∠DCE的大小有何特殊关系?并说明理由.
    (3)如图(2),若是两个同样的直角三角板60°锐角的顶点A重合在一起,则∠DAB与∠CAE的数量关系为 .
    10、如图,在等腰△ABC和等腰△ADE中,AB=AC,AD=AE,∠BAC=∠DAE且C、E、D三点共线,作AM⊥CD于M.若BD=5,DE=4,求CM.


    -参考答案-
    一、单选题
    1、A
    【分析】
    根据题意设,根据三角形内角和公式定理,进而表示出,进而根据三角形内角和定理根据即可求解
    【详解】
    解:∵∠A=α,∠DBC=3∠DBA,∠DCB=3∠DCA,设,





    故选A
    【点睛】
    本题考查了三角形内角和定理,掌握三角形内角和定理是解题的关键.
    2、D
    【分析】
    根据三角形内角和定理分别求出三个三角形中未知角的度数,然后依据全等三角形的判定定理,从三个三角形中寻找条件证明全等,即可得出选项.
    【详解】
    解:,

    在与ΔFED中,

    ∴≅ΔFED,
    ∴,
    A、B、C三个选项均不能证明,
    故选:D.
    【点睛】
    题目主要考查三角形内角和定理、全等三角形的判定和性质,理解题意,熟练运用全等三角形的判定定理是解题关键.
    3、D
    【分析】
    可以是底角,也可以是顶角,分情况讨论即可.
    【详解】
    当角为底角时,底角就是,
    当角为等腰三角形的顶角时,底角为,
    因此这个等腰三角形的底角为或.
    故选:D.
    【点睛】
    本题考查了等腰三角形的性质;若题目中没有明确顶角或底角的度数,做题时要注意分情况进行讨论,这是十分重要的,也是解答问题的关键.
    4、B
    【分析】
    根据旋转可得,,得.
    【详解】
    解:,,

    将绕点逆时针旋转得到△,使点的对应点恰好落在边上,
    ,,

    故选:B.
    【点睛】
    本题考查了旋转的性质,等腰三角形的性质,三角形内角和定理,解决本题的关键是掌握旋转的性质.
    5、C
    【分析】
    设第三根木棒的长度为cm,再确定三角形第三边的范围,再逐一分析各选项即可得到答案.
    【详解】
    解:设第三根木棒的长度为cm,则


    所以A,B,D不符合题意,C符合题意,
    故选C
    【点睛】
    本题考查的是三角形的三边的关系,掌握“利用三角形的三边关系确定第三边的范围”是解本题的关键.
    6、C
    【分析】
    根据等腰三角形三线合一的性质可得AD⊥BC,然后利用直角三角形两锐角互余的性质解答.
    【详解】
    解:∵AB=AC,D是BC的中点,
    ∴AD⊥BC,
    ∵∠B=35°,
    ∴∠BAD=90°−35°=55°.
    故选:C.
    【点睛】
    本题主要考查了等腰三角形三线合一的性质,直角三角形两锐角互余的性质,是基础题,熟记性质是解题的关键.
    7、C
    【分析】
    根据三角形的三边关系可得,再解不等式可得答案.
    【详解】
    解:设三角形的第三边为,由题意可得:

    即,
    故选:C.
    【点睛】
    本题主要考查了三角形的三边关系,解题的关键是掌握三角形两边之和大于第三边;三角形的两边差小于第三边.
    8、C
    【分析】
    作点关于的对称点,连接交于,连接,此时的值最小,最小值,据此求解即可.
    【详解】
    解:如图,

    是等边三角形,

    ∵D为AC中点,
    ∴,,,

    作点关于的对称点,连接交于,连接,此时的值最小.最小值,
    ,,




    是等边三角形,

    的最小值为.
    故选:C.
    【点睛】
    本题考查等边三角形的性质和判定,轴对称最短问题等知识,解题的关键是学会利用轴对称解决最短问题,属于中考常考题型.
    9、B
    【分析】
    根据轴对称的性质,轴对称图形的概念,等腰三角形的性质判断即可.
    【详解】
    解:①轴对称图形的对称轴是任何一对对应点所连线段的垂直平分线,说法正确;
    ②等腰三角形一腰上的高与底边的夹角与底角互余,原说法错误;
    ③等腰三角形的顶角平分线在它的对称轴上,原说法错误;
    ④等腰三角形两腰上的中线相等,说法正确.
    综上,正确的有①④,共2个,
    故选:B.
    【点睛】
    本题考查了轴对称的性质及等腰三角形的性质,掌握轴对称的性质,轴对称图形的概念,等腰三角形的性质是解题的关键.
    10、B
    【分析】
    如图,延长NO交AD的延长线于点P,设BC=x,则AB=3x,利用折叠的性质和等腰直角三角形的性质可表示出纸条的宽MO,NO的长,从而可表示出纸条的长2PN的长,然后根据长方形纸条的长为40,可得到关于x的方程,解方程求出x的值,即可求出纸条的宽.
    【详解】
    解:如图,延长NO交AD的延长线于点P,

    设BC=x,则AB=3x,
    ∵折叠,
    ∴AB=BM=CO=CD=PO=3x,
    ∴纸条的宽为:MO=NO=3x+3x+x=7x,
    ∴纸条的长为:2PN=2(7x+3x)=20x=40
    解得:x=2,
    ∴纸条的宽NO=7×2=14.
    故答案为:B.
    【点睛】
    此题考查了折叠的性质,等腰直角三角形的性质,一元一次方程应用题,解题的关键是正确分析题目中的等量关系列出方程求解.
    二、填空题
    1、10
    【分析】
    构造,再证得,求得EB=BC,再通过等量代换、等角的补角相等求得∠E=∠CDE,则CE=2BC=10.
    【详解】
    解:延长AD.和CB交于点E.

    ∵AB平分∠DAC
    ∴∠EAB=∠CAB
    又∵
    ∴∠ABE=∠ABC
    又∵AB=AB

    ∴BC=EB=5,∠E=∠ACB,
    又∵
    ∴∠ACB=∠CDE
    ∴∠E=∠CDE
    ∴.CD=CE
    又∵CE=2BC=10
    ∴CD=10
    故答案为:10.
    【点睛】
    本题考查了全等三角形的性质和判定,等角的补角相等,能根据全等三角形的性质找到角与角之间的关系是解答此题的关键.
    2、7.5
    【分析】
    根据腰长是否为5,分两类情况进行求解即可.
    【详解】
    解:当腰长为5时,由周长可知:底边长为10,且
    故不满足三边关系,不成立,
    当腰长不为5时,则底边长为5,由周长可得:腰长为
    满足三边关系,故腰长为7.5,
    故答案为:7.5.
    【点睛】
    本题主要是考查了等腰三角形的性质以及三角形的三边关系,熟练根据腰长来进行分类讨论,这是解决本题的关键.
    3、4.6
    【分析】
    在AB上截取BF=AD,连接CF,通过证明△ADC≌△BFC,可得∠ACD=∠BCF,CD=CF,由“SAS”可得△DCE≌△FCE,可得DE=EF,即可求得结果.
    【详解】
    解:如图,在AB上截取BF=AD,连接CF,

    ∵CA=CB,∠ACB=120°,
    ∴∠CAB=∠CBA=30°,
    ∵∠DAE=60°
    ∴∠DAC=∠DAE﹣∠CAB=30°
    ∴∠DAC=∠CBA,且AD=BF,AC=BC
    ∴△ADC≌△BFC(SAS)
    ∴∠ACD=∠BCF,CD=CF,
    ∵∠ACB=∠ACE+∠ECF+∠BCF=∠ACE+∠ECF+∠ACD=∠DCE+∠ECF=120°
    ∴∠ECF=60°=∠DCE,且CE=CE,DC=CF
    ∴△DCE≌△FCE(SAS)
    ∴DE=EF
    ∴DE=BE﹣BF=BE﹣AD=7﹣2.4=4.6,
    故答案为4.6
    【点睛】
    本题考查了全等三角形的判定和性质,等腰三角形的性质,添加恰当的辅助线构造全等三角形是本题的关键.
    4、3
    【分析】
    由等腰三角形三线合一的性质,得到AD=DC=1,由BE=BC+CE不难求解.
    【详解】
    解:三角形是等边三角形,
    BC=AC=2,
    又 是边的高线,
    DC=,
    =1,

    故答案为:3.
    【点睛】
    本题考查了等边三角形的性质,掌握等腰三角形三线合一的性质是解本题的关键.
    5、65°度
    【分析】
    由点D为BC边的中点,得到BD=CD,根据折叠的性质得到DF=CD,∠EFD=∠C,得到DF=BD,根据等腰三角形的性质得到∠BFD=∠B,由三角形的内角和和平角的定义得到∠A=∠AFE,于是得到结论.
    【详解】
    解:∵点D为BC边的中点,
    ∴BD=CD,
    ∵将∠C沿DE翻折,使点C落在AB上的点F处,
    ∴DF=CD,∠EFD=∠C,
    ∴DF=BD,
    ∴∠BFD=∠B,
    ∵∠A=180°-∠C-∠B,∠AFE=180°-∠EFD-∠DFB,
    ∴∠A=∠AFE,
    ∵∠AEF=50°,
    ∴∠A=(180°-50°)=65°.
    故答案为:65°.
    【点睛】
    本题考查的是图形翻折变换的图形能够重合的性质,以及等边对等角的性质,熟知折叠的性质是解答此题的关键.
    三、解答题
    1、(1)见解析;(2)见解析;(3)见解析
    【分析】
    (1)延长DE交AB延长线于F,由∠B=∠C=90°,推出AB∥CD,则∠CDE=∠F,再由DE平分∠ADC,即可推出∠ADF=∠F,得到AD=AF,即△ADF是等腰三角形,然后证明△CDE≌△BFE得到DE=FE,即E是DF的中点,即可证明AE平分∠BAD;
    (2)由(1)即可用三线合一定理证明;
    (3)由△CDE≌△BFE,得到CD=BF,则AD=AF=AB+BF=AB+CD.
    【详解】
    解:(1)如图所示,延长DE交AB延长线于F,
    ∵∠B=∠C=90°,
    ∴AB∥CD,
    ∴∠CDE=∠F,
    ∵DE平分∠ADC,
    ∴∠CDE=∠ADE,
    ∴∠ADF=∠F,
    ∴AD=AF,
    ∴△ADF是等腰三角形,
    ∵E是BC的中点,
    ∴CE=BE,
    ∴△CDE≌△BFE(AAS),
    ∴DE=FE,
    ∴E是DF的中点,
    ∴AE平分∠BAD;

    (2)由(1)得△ADF是等腰三角形,AD=AF,E是DF的中点,
    ∴AE⊥DE;
    (3)∵△CDE≌△BFE,
    ∴CD=BF,
    ∴AD=AF=AB+BF=AB+CD.
    【点睛】
    本题主要考查了平行线的性质与判定,全等三角形的性质与判定,等腰三角形的性质与判定,熟知相关知识是解题的关键.
    2、见解析
    【分析】
    先由BF=CE说明BC= EF.然后运用SAS证明△ABC≌△DEF,最后运用全等三角形的性质即可证明.
    【详解】
    证明:∵BF= CE,
    ∴BC= EF.
    在△ABC和△DEF中,

    ∴△ABC≌△DEF(SAS).
    ∴AC=DF.
    【点睛】
    本题主要考查了全等三角形的判定与性质,正确证明△ABC≌△DEF是解答本题的关键.
    3、(1)图见解析,∠AEB=60°;(2)AE=BE+CE,证明见解析
    【分析】
    (1)依题意补全图形,如图所示:然后连接AD,先求出,然后根据轴对称的性质得到,AD=AB=AC,∠AEC=∠AEB,求出,即可求出,再由进行求解即可;
    (2)如图,在AE上截取EG=BE,连接BG.先证明△BGE是等边三角形,得到BG=BE=EG,∠GBE=60°. 再证明∠ABG=∠CBE,即可证明△ABG≌△CBE得到AG=CE,则AE=EG+AG=BE+CE.
    【详解】
    解:(1)依题意补全图形,如图所示:连接AD,
    ∵△ABC是等边三角形,
    ∴∠BAC=60°,AB=AC,
    ∵,
    ∴,
    ∵B、D关于AP对称,
    ∴,AD=AB=AC,∠AEC=∠AEB,
    ∴,
    ∴,
    ∴,

    ∴∠AEB=60°.

    (2)AE=BE+CE.
    证明:如图,在AE上截取EG=BE,连接BG.
    ∵∠AEB=60°,
    ∴△BGE是等边三角形,
    ∴BG=BE=EG,∠GBE=60°.
    ∵△ABC是等边三角形,
    ∴AB=BC,∠ABC=60°,
    ∴∠ABG+∠GBC=∠GBC+∠CBE=60°,
    ∴∠ABG=∠CBE.
    在△ABG和△CBE中,

    ∴△ABG≌△CBE(SAS),
    ∴AG=CE,
    ∴AE=EG+AG=BE+CE.

    【点睛】
    本题主要考查了全等三角形的性质,等边三角形的性质与判定,轴对称的性质,等腰三角形的性质与判定,三角形内角和定理,三角形外角的性质等等,熟知相关知识是解题的关键
    4、(1)见详解;(2)120°;(2)120°.
    【分析】
    (1)如图1,根据等边三角形的性质得到OD=OC=OA=OB,∠COD=∠AOB=60°,则利用根据“SAS”判断△AOC≌△BOD;
    (2)利用△AOC≌△BOD得到∠CAO=∠DBO,然后根据三角形内角和可得到∠AEB=∠AOB=60°,即可求出答案;
    (3)如图2,与(1)的方法一样可证明△AOC≌△BOD;则∠CAO=∠DBO,然后根据三角形内角和可求出∠AEB=∠AOB=60°,即可得到答案.
    【详解】
    (1)证明:如图1,

    ∵△ODC和△OAB都是等边三角形,
    ∴OD=OC=OA=OB,∠COD=∠AOB=60°,
    ∴∠BOD=∠AOC=120°,
    在△AOC和△BOD中

    ∴△AOC≌△BOD;
    (2)解:∵△AOC≌△BOD,
    ∴∠CAO=∠DBO,
    ∵∠1=∠2,
    ∴∠AEB=∠AOB=60°,
    ∴;
    (3)解:如图2,

    ∵△ODC和△OAB都是等边三角形,
    ∴OD=OC=OA=OB,∠COD=∠AOB=60°,
    ∴∠AOB+∠BOC=∠COD+∠BOC,即∠AOC=∠BOD,
    在△AOC和△BOD中

    ∴△AOC≌△BOD;
    ∴∠CAO=∠DBO,
    ∵∠1=∠2,
    ∴∠AEB=∠AOB=60°,
    ∴;
    即∠CEB的大小不变.
    【点睛】
    本题考查了几何变换综合题:熟练掌握旋转的性质、等边三角形的性质和全等三角形的判定与性质;利用类比的方法解决(3)小题.
    5、(1)见解析;(2)DB;线段垂直平分线上的点到线段两端的距离相等;BDC; 等边对等角.
    【分析】
    (1)根据题目中的小路的尺规作图过程,直接作图即可.
    (2)根据垂直平分线的性质以及等边对等角进行解答即可.
    【详解】
    解:(1) 根据题目中的小路的设计步骤,补全的图形如图所示;

    (2)解:证明:连接BD,BC,
    ∵直线l为线段AB的垂直平分线,
    ∴DA= DB ,(线段垂直平分线上的点到线段两端的距离相等)(填推理的依据)
    ∴∠A=∠ABD,
    ∴∠BDC=∠A+∠ABD=2∠A.
    ∵BC=BD,
    ∴∠ACB=∠BDC ,(等边对等角)(填推理的依据)
    ∴∠ACB=2∠A.
    【点睛】
    本题主要是考查了尺规作图能力以及垂直平分线和等边对等角的性质,熟练掌握垂直平分线和等边对等角的性质,是解决该题的关键.
    6、(1)2;(2)当0≤t≤3时,DM=3-t,当3<t≤8时,DM=t-3;(3)2或1
    【分析】
    (1)根据题意得: ,解得:,即可求解;
    (2)根据题意得:当0≤t≤3时,AM=t,则DM=3-t,当3<t≤8时,DM=t-3,即可求解;
    (3)根据ME⊥PQ,NF⊥PQ,可得∠DEM=∠DFN=90°,再由∠ADC=90°,可得∠DME =∠FDN,从而得到当DEM与DFN全等时,DM=DN,根据题意可得M到达点D时, ,M到达点C时, ,N到达点D时, ,N到达点A时,,然后分两种情况:当时和当时,即可求解.
    【详解】
    解:(1)根据题意得: ,解得:,
    即在运动过程中当M、N两点相遇时,t的值为2;
    (2)根据题意得:当0≤t≤3时,AM=t,则DM=3-t,
    当3<t≤8时,DM=t-3;
    (3)∵ME⊥PQ,NF⊥PQ,
    ∴∠DEM=∠DFN=90°,
    ∴∠EDM+ ∠DME =90°,
    ∵∠ADC=90°,
    ∴∠EDM+∠FDN =90°,
    ∴∠DME =∠FDN,
    ∴当DEM与DFN全等时,DM=DN,
    ∵M到达点D时, ,M到达点C时, ,
    N到达点D时, ,N到达点A时,,
    当时,DM=3-t,CN=3t,则DN=5-3t,
    ∴3-t=5-3t,解得:t=1,
    ∴此时DN=5-3t=2,
    当时,DM=3-t,DN=3t-5,
    ∴3-t=3t-5,解得: ,
    ∴DN=3t-5=1,
    综上所述,当DEM与DFN全等时,所有满足条件的DN的长为2或1.
    【点睛】
    本题主要考查了全等三角形的判定和性质,动点问题,利用分类讨论思想解答是解题的关键.
    7、
    【分析】
    先由旋转的性质证明再利用等边对等角证明从而可得答案.
    【详解】
    解: 把△ABC绕点A逆时针旋转得到△ADE,∠B=70°,



    【点睛】
    本题考查的是旋转的性质,等腰三角形的性质,掌握“旋转前后的对应角相等与等边对等角”是解本题的关键.
    8、证明见解析
    【分析】
    由,,结合公共边 从而可得结论.
    【详解】
    证明:在与中,


    【点睛】
    本题考查的是全等三角形的判定,掌握“利用边边边公理证明三角形全等”是解本题的关键.
    9、(1)57°,147°;(2)∠ACB=180°-∠DCE,理由见解析;(3)∠DAB+∠CAE=120°
    【分析】
    (1)根据角的和差定义计算即可.
    (2)利用角的和差定义计算即可.
    (3)利用特殊三角板的性质,角的和差定义即可解决问题.
    【详解】
    解:(1)由题意,


    故答案为:57°,147°.
    (2)∠ACB=180°-∠DCE,
    理由如下:
    ∵ ∠ACE=90°-∠DCE,∠BCD=90°-∠DCE,
    ∴ ∠ACB=∠ACE+∠DCE+∠BCD
    =90°-∠DCE+∠DCE+90°-∠DCE
    =180°-∠DCE.
    (3)结论:∠DAB+∠CAE=120°.
    理由如下:
    ∵∠DAB+∠CAE=∠DAE+∠CAE+∠BAC+∠CAE=∠DAC+∠EAB,
    又∵∠DAC=∠EAB=60°,
    ∴∠DAB+∠CAE=60°+60°=120°.
    故答案为:∠DAB+∠CAE=120°.
    【点睛】
    本题考查三角形的内角和定理,角的和差定义等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
    10、CM=7.
    【分析】
    根据题意由“SAS”可证△AEC≌△ADB,可得BD=CE,由等腰三角形的性质可得DM=ME=2进行分析计算即可得出答案.
    【详解】
    解:∵∠BAC=∠DAE,
    ∴∠BAC﹣∠BAE=∠DAE﹣∠BAE,
    ∴∠BAD=∠CAE,
    在△AEC和△ADB中,

    ∴△AEC≌△ADB(SAS),
    又∵BD=5,
    ∴CE=BD=5,
    ∵AD=AE,AM⊥CD,DE=4,
    ∴,
    ∴CM=CE+EM=5+2=7.
    【点睛】
    本题考查全等三角形的判定和性质以及等腰三角形的性质,熟练掌握全等三角形的判定定理是解答本题的关键.

    相关试卷

    沪教版 (五四制)七年级下册第十四章 三角形综合与测试当堂检测题:

    这是一份沪教版 (五四制)七年级下册第十四章 三角形综合与测试当堂检测题,共36页。

    沪教版 (五四制)七年级下册第十四章 三角形综合与测试课后复习题:

    这是一份沪教版 (五四制)七年级下册第十四章 三角形综合与测试课后复习题,共34页。试卷主要包含了若一个三角形的三个外角之比为3等内容,欢迎下载使用。

    沪教版 (五四制)七年级下册第十四章 三角形综合与测试测试题:

    这是一份沪教版 (五四制)七年级下册第十四章 三角形综合与测试测试题,共38页。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map