终身会员
搜索
    上传资料 赚现金

    精品试卷沪教版七年级数学第二学期第十四章三角形章节训练试题(含解析)

    立即下载
    加入资料篮
    精品试卷沪教版七年级数学第二学期第十四章三角形章节训练试题(含解析)第1页
    精品试卷沪教版七年级数学第二学期第十四章三角形章节训练试题(含解析)第2页
    精品试卷沪教版七年级数学第二学期第十四章三角形章节训练试题(含解析)第3页
    还剩32页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    数学七年级下册第十四章 三角形综合与测试同步训练题

    展开

    这是一份数学七年级下册第十四章 三角形综合与测试同步训练题,共35页。试卷主要包含了三角形的外角和是,如图等内容,欢迎下载使用。
    沪教版七年级数学第二学期第十四章三角形章节训练
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、如图,ABC中,∠ACB=90°,∠ABC=40°.将ABC绕点B逆时针旋转得到,使点C的对应点恰好落在边AB上,则的度数是( )

    A.50° B.70° C.110° D.120°
    2、如图,E为线段BC上一点,∠ABE=∠AED=∠ECD=90°,AE=ED,BC=20,AB=8,则BE的长度为( )

    A.12 B.10 C.8 D.6
    3、下列四个命题是真命题的有(  )
    ①同位角相等;
    ②相等的角是对顶角;
    ③直角三角形两个锐角互余;
    ④三个内角相等的三角形是等边三角形.
    A.1个 B.2个 C.3个 D.4个
    4、如图,在中,,,,将绕点顺时针旋转得到,当点的对应点恰好落在边上时,的长为( )

    A.3 B.4 C.5 D.6
    5、如图点在同一条直线上,都是等边三角形,相交于点O,且分别与交于点,连接,有如下结论:①;②;③为等边三角形;④.其中正确的结论个数是( )

    A.1个 B.2个 C.3个 D.4个
    6、一副三角板如图放置,点A在DF的延长线上,∠D=∠BAC=90°,∠E=30°,∠C=45°,若BC//DA,则∠ABF的度数为(  )

    A.15° B.20° C.25° D.30°
    7、三角形的外角和是(  )
    A.60° B.90° C.180° D.360°
    8、如图:将一张长为40cm的长方形纸条按如图所示折叠,若AB=3BC,则纸条的宽为( )

    A.12 B.14 C.16 D.18
    9、等腰三角形的一个角是80°,则它的一个底角的度数是( )
    A.50° B.80° C.50°或80° D.100°或80°
    10、如图,在中,AD、AE分别是边BC上的中线与高,,CD的长为5,则的面积为( )

    A.8 B.10 C.20 D.40
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、若一个立体图形从正面看和从左面看都是等腰三角形,从上面看是带有圆心的圆,则这个立体图形是_____.
    2、如图,在△ABC中,∠ACB=90°,点D在AB上,将△ABC沿CD折叠,点A落在BC边上的点处,若∠B=35°,则的度数为___________.

    3、如图,在等边△ABC中,E为AC边的中点,AD垂直平分BC,P是AD上的动点.若AD=6,则EP+CP的最小值为_______________.

    4、如图,已知点是射线上一点,过作交射线于点,交射线于点,给出下列结论:①是的余角;②图中互余的角共有3对;③的补角只有;④与互补的角共有3个,其中正确结论有______(把你认为正确的结论的序号都填上).

    5、在新年联欢会上,老师设计了“你说我画”的游戏.游戏规则如下:甲同学需要根据乙同学提供的三个条件画出形状和大小都确定的三角形.已知乙同学说出的前两个条件是“,”.现仅存下列三个条件:①;②;③.为了甲同学画出形状和大小都确定的,乙同学可以选择的条件有: ______.(填写序号,写出所有正确答案)
    三、解答题(10小题,每小题5分,共计50分)
    1、如图,AB=AD,AC=AE,BC=DE,点E在BC上.

    (1)求证:∠EAC=∠BAD;
    (2)若∠EAC=42°,求∠DEB的度数.
    2、阅读以下材料,并按要求完成相应的任务:
    从正方形的一个顶点引出夹角为的两条射线,并连接它们与该顶点的两对边的交点构成的基本平面几何模型称为半角模型.半角模型可证出多个几何结论,例如:
    如下图1,在正方形中,以为顶点的,、与、边分别交于、两点.易证得.
    大致证明思路:如图2,将绕点顺时针旋转,得到,由可得、、三点共线,,进而可证明,故.


    任务:
    如图3,在四边形中,,,,以为顶点的,、与、边分别交于、两点.请参照阅读材料中的解题方法,你认为结论是否依然成立,若成立,请写出证明过程;若不成立,请说明理由.

    3、周老师带领同学们在数学课上探究下面命题的正确性:顶角为36°的等腰三角形具有一种特性,即经过它某一顶点的一条直线可把它分成两个小等腰三角形.为此,请你完成下列问题:

    (1)已知:如图①,在中,,,直线BD平分交AC于点D.求证:与都是等腰三角形;
    (2)在证明了该命题后,小尹同学发现:图②、③两个等腰三角形也具有这种特性,请你在图②、图③中分别画出一条直线,把它们分成两个小等腰三角形,并在图中标出所有等腰三角形两个底角的度数;
    (3)接着,小尹又发现:还有一些非等腰三角形也具有这样的特性:即过它其中一个顶点画一条直线可以将原三角形分成两个小等腰三角形,请你画出一个具有这种特性的三角形的示意图,并在图中标出可能的各内角的度数.
    (4)请你写出两个符合(3)中一般规律的非等腰三角形的特征.
    4、如图,在△ABC中,AB=AC,M,N分别是AB,AC边上的点,并且MN∥BC.
    (1)△AMN是否是等腰三角形?说明理由;
    (2)点P是MN上的一点,并且BP平分∠ABC,CP平分∠ACB.
    ①求证:△BPM是等腰三角形;
    ②若△ABC的周长为a,BC=b(a>2b),求△AMN的周长(用含a,b的式子表示).

    5、已知,在△ABC中,∠BAC=30°,点D在射线BC上,连接AD,∠CAD=,点D关于直线AC的对称点为E,点E关于直线AB的对称点为F,直线EF分别交直线AC,AB于点M,N,连接AF,AE,CE.
    (1)如图1,点D在线段BC上.
    ①根据题意补全图1;
    ②∠AEF = (用含有的代数式表示),∠AMF= °;
    ③用等式表示线段MA,ME,MF之间的数量关系,并证明.
    (2)点D在线段BC的延长线上,且∠CAD<60°,直接用等式表示线段MA,ME,MF之间的数量关系,不证明.

    6、探究与发现:如图①,在△ABC中,∠B=∠C=45°,点D在BC边上,点E在AC边上,且∠ADE=∠AED,连接DE.
    (1)当∠BAD=60°时,求∠CDE的度数;
    (2)当点D在BC(点B、C除外)边上运动时,试猜想∠BAD与∠CDE的数量关系,并说明理由.
    (3)深入探究:如图②,若∠B=∠C,但∠C≠45°,其他条件不变,试探究∠BAD与∠CDE的数量关系.

    7、如图,Rt△ACB中,∠ACB=90°,AC=BC,E点为射线CB上一动点,连结AE,作AF⊥AE且AF=AE.
    (1)如图1,过F点作FD⊥AC交AC于D点,求证:FD=BC;
    (2)如图2,连结BF交AC于G点,若AG=3,CG=1,求证:E点为BC中点.
    (3)当E点在射线CB上,连结BF与直线AC交子G点,若BC=4,BE=3,则   .(直接写出结果)

    8、如图,在中,AD是BC边上的高,CE平分,若,,求的度数.

    9、 “三等分角”是被称为几何三大难题的三个古希腊作图难题之一.如图1所示的“三等分角仪”是利用阿基米德原理做出的.这个仪器由两根有槽的棒PA,PB组成,两根棒在P点相连并可绕点P旋转,C点是棒PA上的一个固定点,点A,O可在棒PA,PB内的槽中滑动,且始终保持OA=OC=PC.∠AOB为要三等分的任意角.则利用“三等分角仪”可以得到∠APB =∠AOB.
    我们把“三等分角仪”抽象成如图2所示的图形,完成下面的证明.
    已知:如图2,点O,C分别在∠APB的边PB,PA上,且OA=OC=PC.
    求证:∠APB =∠AOB.

    10、已知:如图,AD是等腰三角形ABC的底边BC上的中线,DE∥AB,交AC于点E.求证:△AED是等腰三角形.


    -参考答案-
    一、单选题
    1、B
    【分析】
    根据旋转可得,,得.
    【详解】
    解:,,

    将绕点逆时针旋转得到△,使点的对应点恰好落在边上,
    ,,

    故选:B.
    【点睛】
    本题考查了旋转的性质,等腰三角形的性质,三角形内角和定理,解决本题的关键是掌握旋转的性质.
    2、A
    【分析】
    利用角相等和边相等证明,利用全等三角形的性质以及边的关系,即可求出BE的长度.
    【详解】
    解:由题意可知:∠ABE=∠AED=∠ECD=90°,
    ,,

    在和中,




    故选:A.
    【点睛】
    本题主要是考查了全等三角形的判定和性质,熟练通过已知条件证明三角形全等,利用全等性质及边的关系,来求解未知边的长度,这是解决本题的主要思路.
    3、B
    【分析】
    利用平行线的性质、对顶角的定义、直角三角形的性质及等边三角形的性质分别判断后即可确定正确的选项.
    【详解】
    ①两直线平行,同位角相等,故错误,是假命题;
    ②相等的角是对顶角,错误,是假命题;
    ③直角三角形两个锐角互余,正确,是真命题;
    ④三个内角相等的三角形是等边三角形,正确,是真命题,
    综上所述真命题有2个,
    故选:B.
    【点睛】
    本题考查了命题真假的判断,要说明一个命题是正确的,需要根据命题的题设和已学的有关公理、定理进行说明、推理、证明,正确的命题叫做真命题,错误的命题叫做假命题.
    4、A
    【分析】
    先根据旋转的性质可得,再根据等边三角形的判定与性质可得,然后根据线段的和差即可得.
    【详解】
    由旋转的性质得:,

    是等边三角形,



    故选:A.
    【点睛】
    本题考查了旋转的性质、等边三角形的判定与性质等知识点,熟练掌握旋转的性质是解题关键.
    5、D
    【分析】
    由SAS即可证明,则①正确;有∠CAE=∠CDB,然后证明△ACM≌△DCN,则②正确;由CM=CN,∠MCN=60°,即可得到为等边三角形,则③正确;由AD∥CE,则∠DAO=∠NEO=∠CBN,由外角的性质,即可得到答案.
    【详解】
    解:∵△DAC和△EBC均是等边三角形,
    ∴AC=CD,BC=CE,∠ACD=∠BCE=60°,
    ∴∠ACD+∠DCE=∠BCE+∠DCE,即∠ACE=∠BCD,∠MCN=180°-∠ACD-∠BCE=60°,
    在△ACE和△DCB中,


    ∴△ACE≌△DCB(SAS),则①正确;
    ∴AE=BD,∠CAE=∠CDB,
    在ACM和△DCN中,

    ∴△ACM≌△DCN(ASA),
    ∴CM=CN,;则②正确;
    ∵∠MCN=60°,
    ∴为等边三角形;则③正确;
    ∵∠DAC=∠ECB=60°,
    ∴AD∥CE,
    ∴∠DAO=∠NEO=∠CBN,
    ∴;则④正确;
    ∴正确的结论由4个;
    故选D.
    【点睛】
    本题考查了等边三角形的性质与判定,全等三角形的判定与性质,平行线的性质与判定,综合性较强,但难度不是很大,准确识图找出全等三角形是解题的关键.
    6、A
    【分析】
    先求出∠EFD=60°,∠ABC=45°,由BC∥AD,得到∠EFD=∠FBC=60°,则∠ABF=∠FBC-∠ABC=15°.
    【详解】
    解:∵∠D=∠BAC=90°,∠E=30°,∠C=45°,
    ∴∠EFD=60°,∠ABC=45°,
    ∵BC∥AD,
    ∴∠EFD=∠FBC=60°,
    ∴∠ABF=∠FBC-∠ABC=15°,
    故选A.

    【点睛】
    本题主要考查了直角三角形两锐角互余,平行线的性质,熟知直角三角形两锐角互余是解题的关键.
    7、D
    【分析】
    根据三角形的内角和定理、邻补角的性质即可得.
    【详解】
    解:如图,,

    又,

    即三角形的外角和是,
    故选:D.

    【点睛】
    本题考查了三角形的内角和定理、邻补角的性质,熟练掌握三角形的内角和定理是解题关键.
    8、B
    【分析】
    如图,延长NO交AD的延长线于点P,设BC=x,则AB=3x,利用折叠的性质和等腰直角三角形的性质可表示出纸条的宽MO,NO的长,从而可表示出纸条的长2PN的长,然后根据长方形纸条的长为40,可得到关于x的方程,解方程求出x的值,即可求出纸条的宽.
    【详解】
    解:如图,延长NO交AD的延长线于点P,

    设BC=x,则AB=3x,
    ∵折叠,
    ∴AB=BM=CO=CD=PO=3x,
    ∴纸条的宽为:MO=NO=3x+3x+x=7x,
    ∴纸条的长为:2PN=2(7x+3x)=20x=40
    解得:x=2,
    ∴纸条的宽NO=7×2=14.
    故答案为:B.
    【点睛】
    此题考查了折叠的性质,等腰直角三角形的性质,一元一次方程应用题,解题的关键是正确分析题目中的等量关系列出方程求解.
    9、C
    【分析】
    已知给出一个角的的度数为80º,没有明确是顶角还是底角,要分类讨论,联合内角和求出底角即可.
    【详解】
    解:等腰三角形的一个角是80°,
    当80º为底角时,它的一个底角是80º,
    当80º为顶角时,它的一个底角是,
    则它的一个底角是50º或80º.
    故选:C.
    【点睛】
    本题考查等腰三角形的性质,内角和定理,掌握分类讨论的思想是解决问题的关键.
    10、C
    【分析】
    根据三角形中线的性质得出CB的长为10,再用三角形面积公式计算即可.
    【详解】
    解:∵AD是边BC上的中线,CD的长为5,
    ∴CB=2CD=10,
    的面积为,
    故选:C.
    【点睛】
    本题考查了三角形中线的性质和面积公式,解题关键是明确中线的性质求出底边长.
    二、填空题
    1、圆锥
    【分析】
    根据立体图形视图、等腰三角形的性质分析,即可得到答案.
    【详解】
    根据题意,这个立体图形是圆锥
    故答案为:圆锥.
    【点睛】
    本题考查了等腰三角形、圆锥、立体图形视图的知识;解题的关键是熟练掌握立体图形视图的性质,从而完成求解.
    2、20°度
    【分析】
    先根据三角形内角和求出∠A,利用翻折不变性得出,再根据三角形外角的性质即可解决问题.
    【详解】
    解:,∠B=35°,

    是由翻折得到,



    故答案为:20°.

    【点睛】
    本题考查三角形内角和定理和三角形外角的性质,翻折变换等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
    3、6
    【分析】
    要求EP+CP的最小值,需考虑通过作辅助线转化EP,CP的值,从而找出其最小值求解.
    【详解】
    解:作点E关于AD的对称点F,连接CF,

    ∵△ABC是等边三角形,AD是BC边上的中垂线,
    ∴点E关于AD的对应点为点F,
    ∴CF就是EP+CP的最小值.
    ∵△ABC是等边三角形,E是AC边的中点,
    ∴F是AB的中点,
    ∴CF=AD=6,
    即EP+CP的最小值为6,
    故答案为6.
    【点睛】
    本题考查了等边三角形的性质和轴对称等知识,熟练掌握等边三角形和轴对称的性质是本题的关键.
    4、①④
    【分析】
    根据垂直定义可得∠BAC=90°,∠ADC=∠ADB=∠CAE=90°,结合三角形的内角和,然后再根据余角定义和补角定义逐一进行分析即可.
    【详解】
    解: ,

    是的余角;故①符合题意;


    互为余角,互为余角,

    互为余角,
    所以图中互余的角共有4对,故②不符合题意;

    与互补;
    ∵∠1+∠DAC=90°,∠BAD+∠DAC=90°,
    ∴∠1=∠BAD,
    ∵∠BAD+∠DAE=180°,
    ∴∠1+∠DAE=180°,
    ∴∠1与∠DAE互补, 故③不符合题意;


    所以与互补的角有 共3个,故④符合题意;
    所以正确的结论有:①④
    故答案为:①④
    【点睛】
    本题考查的是垂直的定义,互余,互补的含义,三角形的内角和定理,掌握“互为余角的两个角之和为 互为补角是两个角之和为”是解本题的关键.
    5、②
    【分析】
    根据两边及其夹角对应相等的两个三角形全等,即可求解.
    【详解】
    解:①若选,是边边角,不能得到形状和大小都确定的;
    ②若选,是边角边,能得到形状和大小都确定的;
    ③若选,是边边角,不能得到形状和大小都确定的;
    所以乙同学可以选择的条件有②.
    故答案为:②
    【点睛】
    本题主要考查了全等三角形的判定,熟练掌握两边及其夹角对应相等的两个三角形全等是解题的关键.
    三、解答题
    1、(1)见解析;(2)42°
    【分析】
    (1)利用边边边证得△ABC≌△ADE,可得∠BAC=∠DAE,即可求证;
    (2)根据等腰三角形的性质,可得∠AEC=∠C=69°,再由△ABC≌△ADE,可得∠AED=∠C=69°, 即可求解.
    【详解】
    (1)证明:∵AB=AD,AC=AE,BC=DE,
    ∴△ABC≌△ADE.
    ∴∠BAC=∠DAE.
    ∴∠BAC-∠BAE=∠DAE-∠BAE.
    即∠EAC=∠BAD;
    (2)解:∵AC=AE,∠EAC=42°,
    ∴∠AEC=∠C= ×(180°-∠EAC)= ×(180°-42°)=69°.
    ∵△ABC≌△ADE,
    ∴∠AED=∠C=69°,
    ∴∠DEB=180°-∠AED-∠C=180°-69°-69°=42°.
    【点睛】
    本题主要考查了全等三角形的判定和性质,等腰三角形的性质,熟练掌握全等三角形的判定和性质定理,等腰三角形的性质定理是解题的关键.
    2、成立,证明见解析
    【分析】
    根据阅读材料将△ADF旋转120°再证全等即可求得EF= BE+DF .
    【详解】
    解:成立.
    证明:将绕点顺时针旋转,得到,
    ,,,,,

    ,、、三点共线,

    ,,,


    【点睛】
    本题考查旋转中的三角形全等,读懂材料并运用所学的全等知识是本题关键.
    3、
    (1)见详解;
    (2)见详解;
    (3)见详解;
    (4)见详解;
    【分析】
    (1)根据等边对等角,及角平分线定义易得∠1=∠2=36°,∠C=72°,那么∠BDC=72°,则可得AD=BD=CB,所以△ABD与△DBC都是等腰三角形;
    (2)把等腰直角三角形分为两个小的等腰直角三角形即可,把108°的角分为36°和72°即可;
    (3)利用直角三角形的中线等于直角三角形斜边的一半可得任意直角三角形的中线把直角三角形分为两个等腰三角形;由(1),(2)易得所知的两个角要么是2倍关系,要么是3倍关系,可猜测只要所给的三个角中有2个角是2倍或3倍关系都可得到上述图形;
    (4)按照发现的(3)的特点来写,注意去掉特殊三角形的形式.
    (1)
    证明:在△ABC中,∵AB=AC,
    ∴∠ABC=∠C,
    ∵∠A=36°,
    ∴∠ABC=∠C=(180°-∠A)=72°,
    ∵BD平分∠ABC,
    ∴∠1=∠2=36°
    ∴∠3=∠1+∠A=72°,
    ∴∠1=∠A,∠3=∠C,
    ∴AD=BD,BD=BC,
    ∴△ABD与△BDC都是等腰三角形
    (2)
    解:如下图所示:

    (3)
    解:如图所示:

    (4)
    解:特征一:直角三角形(直角边不等);
    特征二:2倍内角关系,在△ABC中,∠A=2∠B,0°<∠B<45°,其中,∠B≠30°;
    【点睛】
    本题考查了等腰三角形的判定;注意应根据题中所给的范例用类比的方法推测出把一般三角形分为两个等腰三角形的一般结论.
    4、
    (1)△AMN是是等腰三角形;理由见解析;
    (2)①证明见解析;②a﹣b.
    【分析】
    (1)由等腰三角形的性质得到∠ABC=∠ACB,由平行线的性质得到∠AMN=∠ABC,∠ANM=∠ACB,于是得到∠AMN=∠ANM,根据等角对等边即可证得结论;
    (2)①由角平分线的定义得到∠PBM=∠PBC,由平行线的性质得到∠MPB=∠PBC,于是得到∠PBM=∠MPB,根据等角对等边即可证得结论;
    ②由①知MB=MP,同理可得:NC=NP,故△AMN的周长=AB+AC,再根据已知条件即可求出结果.
    (1)
    解:△AMN是是等腰三角形,
    理由如下:
    ∵AB=AC,
    ∴∠ABC=∠ACB,
    ∵MN∥BC,
    ∴∠AMN=∠ABC,∠ANM=∠ACB,
    ∴∠AMN=∠ANM,
    ∴AM=AN,
    ∴△AMN是等腰三角形;
    (2)
    ①证明:∵BP平分∠ABC,
    ∴∠PBM=∠PBC,
    ∵MN∥BC,
    ∴∠MPB=∠PBC
    ∴∠PBM=∠MPB,
    ∴MB=MP,
    ∴△BPM是等腰三角形;
    ②由①知MB=MP,
    同理可得:NC=NP,
    ∴△AMN的周长=AM+MP+NP+AN=AM+MB+NC+AN=AB+AC,
    ∵△ABC的周长为a,BC=b,
    ∴AB+AC+b=a,
    ∴AB+AC=a﹣b
    ∴△AMN的周长=a﹣b.
    【点睛】
    本题考查了等腰三角形的性质和判定,平行线的性质,列代数式,能够灵活应用这些性质是解决问题的关键.
    5、(1)①见解析; ②,;③MF=MA+ME,证明见解析;(2)
    【分析】
    (1)①按照要求旋转作图即可;②由旋转和等腰三角形性质解出∠AEF;再由三角形外角定理求出∠AMF; ③在FE上截取GF=ME,连接AG,证明△AFG ≌△AEM且△AGM为等边三角形后即可证得MF=MA+ME;
    (2)根据题意画出图形,根据含30°的直角三角形的性质,即可得到结论.
    【详解】
    解:(1)①补全图形如下图:

    ②∵∠CAE=∠DAC=,
    ∴∠BAE=30°+
    ∴∠FAE=2×(30°+)
    ∴∠AEF==60°-;
    ∵∠AMF=∠CAE+∠AEF=+60°-=60°,
    故答案是:60°-,60°;
    ③MF=MA+ME.
    证明:在FE上截取GF=ME,连接AG .

    ∵点D关于直线AC的对称点为E,
    ∴△ADC ≌△AEC.
    ∴∠CAE =∠CAD =.
    ∵∠BAC=30°,
    ∴∠EAN=30°+.
    又∵点E关于直线AB的对称点为F,
    ∴AB垂直平分EF.
    ∴AF=AE,∠FAN=∠EAN =30°+,
    ∴∠F=∠AEF=.
    ∴∠AMG =.
    ∵AF=AE,∠F=∠AEF, GF=ME,
    ∴△AFG ≌△AEM.
    ∴AG =AM.
    又∵∠AMG=,
    ∴△AGM为等边三角形.
    ∴MA=MG.
    ∴MF=MG+GF=MA+ME.
    (2),理由如下:
    如图1所示,
    ∵点E与点F关于直线AB对称,
    ∴∠ANM=90°,NE=NF,
    又∵∠NAM=30°,
    ∴AM=2MN,
    ∴AM=2NE+2EM =MF+ME,
    ∴MF=AM-ME;

    如图2所示,
    ∵点E与点F关于直线AB对称,
    ∴∠ANM=90°,NE=NF,
    ∵∠NAM=30°,
    ∴AM=2NM,
    ∴AM=2MF+2NF=2MF+NE+NF=ME+MF,
    ∴MF=MA-ME;

    综上所述:MF=MA-ME.
    【点睛】
    本题考查轴对称、三角形全等判定与性质、等边三角形判定与性质,掌握这些是本题关键.
    6、(1)30°;(2)∠BAD=2∠CDE,理由见解析;(3)∠BAD=2∠CDE.
    【分析】
    (1)根据三角形的外角的性质求出∠ADC,结合图形计算即可;
    (2)设∠BAD=x,根据三角形的外角的性质求出∠ADC,结合图形计算即可;
    (3)设∠BAD=x,仿照(2)的解法计算.
    【详解】
    解:(1)∵∠ADC是△ABD的外角,
    ∴∠ADC=∠BAD+∠B=105°,
    ∠DAE=∠BAC﹣∠BAD=30°,
    ∴∠ADE=∠AED=75°,
    ∴∠CDE=105°﹣75°=30°;
    (2)∠BAD=2∠CDE,
    理由如下:设∠BAD=x,
    ∴∠ADC=∠BAD+∠B=45°+x,
    ∠DAE=∠BAC﹣∠BAD=90°﹣x,
    ∴∠ADE=∠AED=,
    ∴∠CDE=45°+x﹣=x,
    ∴∠BAD=2∠CDE;
    (3)设∠BAD=x,
    ∴∠ADC=∠BAD+∠B=∠B+x,
    ∠DAE=∠BAC﹣∠BAD=180°﹣2∠C﹣x,
    ∴∠ADE=∠AED=∠C+x,
    ∴∠CDE=∠B+x﹣(∠C+x)=x,
    ∴∠BAD=2∠CDE.
    【点睛】
    本题考查了三角形内角和和外角的性质,解题关键是熟练掌握三角形内角和和外角性质,通过设参数计算,发现角之间的关系
    7、(1)证明见解析;(2)证明见解析;(3)或
    【分析】
    (1)证明△AFD≌△EAC,根据全等三角形的性质得到DF=AC,等量代换证明结论;
    (2)作FD⊥AC于D,证明△FDG≌△BCG,得到DG=CG,求出CE,CB的长,得到答案;
    (3)过F作FD⊥AG的延长线交于点D,根据全等三角形的性质得到CG=GD,AD=CE=7,代入计算即可.
    【详解】
    (1)证明:∵FD⊥AC,
    ∴∠FDA=90°,
    ∴∠DFA+∠DAF=90°,
    同理,∠CAE+∠DAF=90°,
    ∴∠DFA=∠CAE,
    在△AFD和△EAC中,

    ∴△AFD≌△EAC(AAS),
    ∴DF=AC,
    ∵AC=BC,
    ∴FD=BC;
    (2)作FD⊥AC于D,
    由(1)得,FD=AC=BC,AD=CE,
    在△FDG和△BCG中,

    ∴△FDG≌△BCG(AAS),
    ∴DG=CG=1,
    ∴AD=2,
    ∴CE=2,
    ∵BC=AC=AG+CG=4,
    ∴E点为BC中点;
    (3)当点E在CB的延长线上时,过F作FD⊥AG的延长线交于点D,
    BC=AC=4,CE=CB+BE=7,
    由(1)(2)知:△ADF≌△ECA,△GDF≌△GCB,
    ∴CG=GD,AD=CE=7,
    ∴CG=DG=1.5,
    ∴AG=CG+AC=5.5,
    ∴,
    同理,当点E在线段BC上时,AG= AC -CG+=2.5,
    ∴,
    故答案为:或.
    【点睛】
    本题考查的是全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理是解题的关键.
    8、85°
    【分析】
    由高的定义可得出∠ADB=∠ADC=90,在△ACD中利用三角形内角和定理可求出∠ACB的度数,结合CE平分∠ACB可求出∠ECB的度数.由三角形外角的性质可求出∠AEC的度数,
    【详解】
    解:∵AD是BC边上的高,
    ∴∠ADB=∠ADC=90.
    在△ACD中,∠ACB=180°﹣∠ADC﹣∠CAD=180°﹣90°﹣20°=70°.
    ∵CE平分∠ACB,
    ∴∠ECB=∠ACB=35°.
    ∵∠AEC是△BEC的外角,,
    ∴∠AEC=∠B+∠ECB=50°+35°=85°.
    答:∠AEC的度数是85°.
    【点睛】
    本题考查了三角形内角和定理、角平分线的定义以及三角形外角的性质,利用三角形内角和定理及角平分线的性质,求出∠ECB的度数是解题的关键.
    9、见解析
    【分析】
    由,得出为等腰三角形,由外角的性质及等量代换得,再次利用外角的性质及等量代换得,即可证明.
    【详解】
    解:,
    为等腰三角形,

    由外角的性质得:,

    再由外角的性质得:,


    【点睛】
    本题考查了等腰三角形、外角的性质、解题的关键是掌握外角的性质及等量代换的思想进行求解.
    10、见解析
    【分析】
    根据等腰三角形的性质得到∠BAD=∠CAD,根据平行线的性质得到∠ADE=∠BAD,等量代换得到∠ADE=∠CAD于是得到结论.
    【详解】
    解:∵△ABC是等腰三角形,AB=AC,AD是底边BC上的中线,
    ∴∠BAD=∠CAD,
    ∵DE∥AB,
    ∴∠ADE=∠BAD,
    ∴∠ADE=∠CAD,
    ∴AE=ED,
    ∴△AED是等腰三角形.
    【点睛】
    本题主要考查等腰三角形的判定与性质以及平行线的性质,熟练掌握等腰三角形的判定和性质定理是解题的关键.

    相关试卷

    初中沪教版 (五四制)第十四章 三角形综合与测试同步测试题:

    这是一份初中沪教版 (五四制)第十四章 三角形综合与测试同步测试题,共33页。试卷主要包含了下列四个命题是真命题的有,有下列说法,三角形的外角和是等内容,欢迎下载使用。

    数学第十四章 三角形综合与测试复习练习题:

    这是一份数学第十四章 三角形综合与测试复习练习题,共33页。试卷主要包含了如图,直线l1l2,被直线l3等内容,欢迎下载使用。

    沪教版 (五四制)七年级下册第十四章 三角形综合与测试测试题:

    这是一份沪教版 (五四制)七年级下册第十四章 三角形综合与测试测试题,共32页。试卷主要包含了如图,点A等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map