数学七年级下册第十四章 三角形综合与测试同步训练题
展开
这是一份数学七年级下册第十四章 三角形综合与测试同步训练题,共31页。试卷主要包含了有下列说法,若一个三角形的三个外角之比为3,三角形的外角和是等内容,欢迎下载使用。
沪教版七年级数学第二学期第十四章三角形综合测评
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,将△OAB绕点O逆时针旋转80°得到△OCD,若∠A的度数为110°,∠D的度数为40°,则∠AOD的度数是( )
A.50° B.60° C.40° D.30°
2、将三根木条钉成一个三角形木架,这个三角形木架具有稳定性.解释这个现象的数学原理是( )
A.SSS B.SAS C.ASA D.AAS
3、如图,若绕点A按逆时针方向旋转40°后与重合,则( ) .
A.40° B.50° C.70° D.100
4、有下列说法:①轴对称图形的对称轴是任何一对对应点所连线段的垂直平分线;②等腰三角形一腰上的高与底边的夹角与顶角互余;③等腰三角形顶角的平分线是它的对称轴;④等腰三角形两腰上的中线相等.其中正确的说法有( )个.
A.1 B.2 C.3 D.4
5、在平面直角坐标系xOy中,点A(0,2),B(a,0),C(m,n)().若ABC是等腰直角三角形,且,当时,点C的横坐标m的取值范围是( )
A. B. C. D.
6、三个等边三角形的摆放位置如图所示,若,则的度数为
A. B. C. D.
7、若一个三角形的三个外角之比为3:4:5,则该三角形为( )
A.直角三角形 B.等腰三角形 C.等边三角形 D.等腰直角三角形
8、三角形的外角和是( )
A.60° B.90° C.180° D.360°
9、在下列长度的四根木棒中,能与3cm,9cm的两根木棒首尾顺次相接钉成一个三角形的是( )
A.3cm B.6cm C.10cm D.12cm
10、下列各条件中,不能作出唯一的的是( )
A.,, B.,,
C.,, D.,,
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、等腰三角形中,一条边长是2cm,另一条边长是3cm,这个等腰三角形的周长是________.
2、如图,在边长为4,面积为的等边中,点、分别是、边的中点,点是边上的动点,求的最小值___.
3、如图,在△ABC中,点D为BC边的中点,点E为AC上一点,将∠C沿DE翻折,使点C落在AB上的点F处,若∠AEF=50°,则∠A的度数为__.
4、如图,,的平分线交于点,是上的一点,的平分线交于点,且,下列结论:
①平分;
②;
③与互余的角有个;
④若,则.
其中正确的是________.(请把正确结论的序号都填上)
5、如图,已知∠A=60°,∠B=20°,∠C=30°,则∠BDC的度数为_____.
三、解答题(10小题,每小题5分,共计50分)
1、已知:
(1)O是∠BAC内部的一点.
①如图1,求证:∠BOC>∠A;
②如图2,若OA=OB=OC,试探究∠BOC与∠BAC的数量关系,给出证明.
(2)如图3,当点O在∠BAC的外部,且OA=OB=OC,继续探究∠BOC与∠BAC的数量关系,给出证明.
2、如图,在等腰△ABC和等腰△ADE中,AB=AC,AD=AE,∠BAC=∠DAE且C、E、D三点共线,作AM⊥CD于M.若BD=5,DE=4,求CM.
3、如图1,点O是线段AD的中点,分别以AO和DO为边在线段AD的同侧作等边三角形OAB和等边三角形OCD,连接AC和BD,相交于点E,连接BC.
(1)求证DOB≌AOC;
(2)求∠CEB的大小;
(3)如图2,OAB固定不动,保持△OCD的形状和大小不变,将OCD绕点O旋转(OAB和OCD不能重叠),求∠CEB的大小.
4、如图,在中,,,点D是内一点,连接CD,过点C作且,连接AD,BE.求证:.
5、在四边形ABCD中,,点E在直线AB上,且.
(1)如图1,若,,,求AB的长;
(2)如图2,若DE交BC于点F,,求证:.
6、已知:如图,,,求证:
7、如图,,,求证:.
8、如图,在中,AD平分,于点E.求证:.
9、如图,AB=AD,AC=AE,BC=DE,点E在BC上.
(1)求证:∠EAC=∠BAD;
(2)若∠EAC=42°,求∠DEB的度数.
10、如图,Rt△ACB中,∠ACB=90°,AC=BC,E点为射线CB上一动点,连结AE,作AF⊥AE且AF=AE.
(1)如图1,过F点作FD⊥AC交AC于D点,求证:FD=BC;
(2)如图2,连结BF交AC于G点,若AG=3,CG=1,求证:E点为BC中点.
(3)当E点在射线CB上,连结BF与直线AC交子G点,若BC=4,BE=3,则 .(直接写出结果)
-参考答案-
一、单选题
1、A
【分析】
根据旋转的性质求解再利用三角形的内角和定理求解再利用角的和差关系可得答案.
【详解】
解: 将△OAB绕点O逆时针旋转80°得到△OCD,
∠A的度数为110°,∠D的度数为40°,
故选A
【点睛】
本题考查的是三角形的内角和定理的应用,旋转的性质,掌握“旋转前后的对应角相等”是解本题的关键.
2、A
【分析】
根据三根木条即为三角形的三边长,利用全等三角形判定定理确定唯一三角形即可得.
【详解】
解:三根木条即为三角形的三边长,
即为利用确定三角形,
故选:A.
【点睛】
题目主要考查利用全等三角形判定确定唯一三角形,熟练掌握全等三角形的判定是解题关键.
3、C
【分析】
根据旋转的性质,可得 , ,从而得到,即可求解.
【详解】
解:∵绕点A按逆时针方向旋转40°后与重合,
∴ , ,
∴.
故选:C
【点睛】
本题主要考查了图形的旋转,等腰三角形的性质,熟练掌握图形旋转前后对应线段相等,对应角相等是解题的关键.
4、B
【分析】
根据轴对称的性质,轴对称图形的概念,等腰三角形的性质判断即可.
【详解】
解:①轴对称图形的对称轴是任何一对对应点所连线段的垂直平分线,说法正确;
②等腰三角形一腰上的高与底边的夹角与底角互余,原说法错误;
③等腰三角形的顶角平分线在它的对称轴上,原说法错误;
④等腰三角形两腰上的中线相等,说法正确.
综上,正确的有①④,共2个,
故选:B.
【点睛】
本题考查了轴对称的性质及等腰三角形的性质,掌握轴对称的性质,轴对称图形的概念,等腰三角形的性质是解题的关键.
5、B
【分析】
过点作轴于,由“”可证,可得,,即可求解.
【详解】
解:如图,过点作轴于,
点,
,
是等腰直角三角形,且,
,
,
,
在和中,
,
,
,,
,
,
,
故选:B.
【点睛】
本题考查了全等三角形的判定和性质,等腰直角三角形的性质,解题的关键是画图及添加恰当辅助线构造全等三角形.
6、A
【分析】
利用三个平角的和减去中间三角形的内角和,再减去三个的角即可.
【详解】
解:,,
,
,
,
,
故选:.
【点睛】
本题主要考查了三角形的内角和定理,灵活运用三角形内角和定理成为解答本题的关键.
7、A
【分析】
根据三角形外角和为360°计算,求出内角的度数,判断即可.
【详解】
解:设三角形的三个外角的度数分别为3x、4x、5x,
则3x+4x+5x=360°,
解得,x=30°,
∴三角形的三个外角的度数分别为90°、120°、150°,
对应的三个内角的度数分别为90°、60°、30°,
∴此三角形为直角三角形,
故选:A.
【点睛】
本题考查的是三角形的外角和,掌握三角形外角和为360°是解题的关键.
8、D
【分析】
根据三角形的内角和定理、邻补角的性质即可得.
【详解】
解:如图,,
,
又,
,
即三角形的外角和是,
故选:D.
【点睛】
本题考查了三角形的内角和定理、邻补角的性质,熟练掌握三角形的内角和定理是解题关键.
9、C
【分析】
设第三根木棒的长度为cm,再确定三角形第三边的范围,再逐一分析各选项即可得到答案.
【详解】
解:设第三根木棒的长度为cm,则
所以A,B,D不符合题意,C符合题意,
故选C
【点睛】
本题考查的是三角形的三边的关系,掌握“利用三角形的三边关系确定第三边的范围”是解本题的关键.
10、B
【分析】
根据三角形全等的判定及三角形三边关系即可得出结果.
【详解】
解:A、,不能组成三角形;
B、根据不可以确定选项中条件能作出唯一三角形;
C、根据可以确定选项中条件能作出唯一三角形;
D、根据可以确定选项中条件能作出唯一三角形;
故答案为:B.
【点睛】
本题考查确定唯一三角形所需要的条件及三角形三边关系,解题关键在于对全等判定条件的理解.
二、填空题
1、或
【分析】
因为已知长度为和两边,没有明确是底边还是腰,所以有两种情况,需要分类讨论.
【详解】
解:①当为底时,其它两边都为,
、、可以构成三角形,
周长为;
②当为底时,其它两边都为,
、、可以构成三角形,
周长为;
故答案为:或.
【点睛】
本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,解题的关键是利用分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要.
2、
【分析】
连接,交于点,连接,则的最小值为,再由已知求出的长即可.
【详解】
解:连接,交于点,连接,
是等边三角形,是边中点,
点与点关于对称,
,
,
的最小值为,
是的中点,
,
,的面积为,
,
的最小值为,
故答案为:.
【点睛】
本题考查了等边三角形的性质,将军饮马河原理,熟练掌握等边三角形的性质,灵活运用将军饮马河原理是解题的关键.
3、65°度
【分析】
由点D为BC边的中点,得到BD=CD,根据折叠的性质得到DF=CD,∠EFD=∠C,得到DF=BD,根据等腰三角形的性质得到∠BFD=∠B,由三角形的内角和和平角的定义得到∠A=∠AFE,于是得到结论.
【详解】
解:∵点D为BC边的中点,
∴BD=CD,
∵将∠C沿DE翻折,使点C落在AB上的点F处,
∴DF=CD,∠EFD=∠C,
∴DF=BD,
∴∠BFD=∠B,
∵∠A=180°-∠C-∠B,∠AFE=180°-∠EFD-∠DFB,
∴∠A=∠AFE,
∵∠AEF=50°,
∴∠A=(180°-50°)=65°.
故答案为:65°.
【点睛】
本题考查的是图形翻折变换的图形能够重合的性质,以及等边对等角的性质,熟知折叠的性质是解答此题的关键.
4、①②
【分析】
由BD⊥BC及BD平分∠GBE,可判断①正确;由CB平分∠ACF、AE∥CF及①的结论可判断②正确;由前两个的结论可对③作出判断;由AE∥CF及AC∥BG、三角形外角的性质可求得∠BDF,从而可对④作出判断.
【详解】
∵BD平分∠GBE
∴∠EBD=∠GBD=∠GBE
∵BD⊥BC
∴∠GBD+∠GBC=∠CBD=90°
∴∠DBE+∠ABC=90°
∴∠GBC=∠ABC
∴BC平分∠ABG
故①正确
∵CB平分∠ACF
∴∠ACB=∠GCB
∵AE∥CF
∴∠ABC=∠GCB
∴∠ACB=∠GCB=∠ABC=∠GBC
∴AC∥BG
故②正确
∵∠DBE+∠ABC=90°,∠ACB=∠GCB=∠ABC=∠GBC
∴与∠DBE互余的角共有4个
故③错误
∵AC∥BG,∠A=α
∴∠GBE=α
∴
∵AE∥CF
∴∠BGD=180°-∠GBE=180°−α
∴∠BDF=∠GBD+∠BGD=
故④错误
即正确的结论有①②
故答案为:①②
【点睛】
本题考查了平行线的判定与性质,互余概念,垂直的定义,角平分线的性质等知识,掌握这些知识并正确运用是关键.
5、110°
【分析】
延长BD交AC于点E,根据三角形的外角性质计算,得到答案.
【详解】
延长BD交AC于点E,
∵∠DEC是△ABE的外角,∠A=60°,∠B=20°,
∴∠DEC=∠A+∠B=80°,
则∠BDC=∠DEC+∠C=110°,
故答案为:110°.
【点睛】
本题考查了三角形外角的性质,三角形的一个外角等于与它不相邻的两个内角的和,作辅助线DE是解题的关键.
三、解答题
1、(1)①见解析;②∠BOC=2∠A,见解析;(2)∠BOC=2∠BAC,见解析
【分析】
(1)①连接AO并延长AO至点E,根据三角形外角性质解答即可;
②延长AO至点E,根据三角形外角性质解答即可;
(2)根据三角形外角性质和三角形内角和定理解答即可.
【详解】
证明:(1)①如图所示:连接AO并延长AO至点E,则∠BOE>∠BAO,∠COE>∠CAO,
∴∠BOC>∠A;
②∠BOC与∠BAC的数量关系:∠BOC=2∠A;
证明:如图所示,延长AO至点E,则∠BOE=∠BAO+∠B,∠COE=∠CAO+∠C,
∵OA=OB=OC,
∴∠BAO=∠B,∠CAO=∠C,
∴∠BOC=∠COE+∠COE=∠BAO+∠B+∠CAO+∠C=2(∠BAO+∠CAO)=2∠BAC;
(2)∠BOC与∠BAC的数量关系:∠BOC=2∠BAC;
证明:如图所示,设∠B=x,
∵OA=OB=OC,
∴∠B=∠BAO=x,∠C=∠OAC=∠BAC+x;
在△BEO和△AEC中,有:∠B+∠BOC=∠C+∠CAE;
即x+∠BOC=∠CAE+x+∠CAE=2∠BAC+x;
即∠BOC=2∠BAC.
【点睛】
此题考查三角形综合题,关键是根据三角形外角性质和三角形内角和定理解答.
2、CM=7.
【分析】
根据题意由“SAS”可证△AEC≌△ADB,可得BD=CE,由等腰三角形的性质可得DM=ME=2进行分析计算即可得出答案.
【详解】
解:∵∠BAC=∠DAE,
∴∠BAC﹣∠BAE=∠DAE﹣∠BAE,
∴∠BAD=∠CAE,
在△AEC和△ADB中,
,
∴△AEC≌△ADB(SAS),
又∵BD=5,
∴CE=BD=5,
∵AD=AE,AM⊥CD,DE=4,
∴,
∴CM=CE+EM=5+2=7.
【点睛】
本题考查全等三角形的判定和性质以及等腰三角形的性质,熟练掌握全等三角形的判定定理是解答本题的关键.
3、(1)见详解;(2)120°;(2)120°.
【分析】
(1)如图1,根据等边三角形的性质得到OD=OC=OA=OB,∠COD=∠AOB=60°,则利用根据“SAS”判断△AOC≌△BOD;
(2)利用△AOC≌△BOD得到∠CAO=∠DBO,然后根据三角形内角和可得到∠AEB=∠AOB=60°,即可求出答案;
(3)如图2,与(1)的方法一样可证明△AOC≌△BOD;则∠CAO=∠DBO,然后根据三角形内角和可求出∠AEB=∠AOB=60°,即可得到答案.
【详解】
(1)证明:如图1,
∵△ODC和△OAB都是等边三角形,
∴OD=OC=OA=OB,∠COD=∠AOB=60°,
∴∠BOD=∠AOC=120°,
在△AOC和△BOD中
∴△AOC≌△BOD;
(2)解:∵△AOC≌△BOD,
∴∠CAO=∠DBO,
∵∠1=∠2,
∴∠AEB=∠AOB=60°,
∴;
(3)解:如图2,
∵△ODC和△OAB都是等边三角形,
∴OD=OC=OA=OB,∠COD=∠AOB=60°,
∴∠AOB+∠BOC=∠COD+∠BOC,即∠AOC=∠BOD,
在△AOC和△BOD中
∴△AOC≌△BOD;
∴∠CAO=∠DBO,
∵∠1=∠2,
∴∠AEB=∠AOB=60°,
∴;
即∠CEB的大小不变.
【点睛】
本题考查了几何变换综合题:熟练掌握旋转的性质、等边三角形的性质和全等三角形的判定与性质;利用类比的方法解决(3)小题.
4、证明见解析.
【分析】
先根据角的和差可得,再根据三角形全等的判定定理证出,然后根据全等三角形的性质即可得证.
【详解】
证明:,
,
,
,
,
在和中,,
,
.
【点睛】
本题考查了三角形全等的判定定理与性质等知识点,熟练掌握三角形全等的判定方法是解题关键.
5、(1)5;(2)证明见解析
【分析】
(1)推出∠ADE=∠BEC,根据AAS证△AED≌△CEB,推出AE=BC,BE=AD,代入求出即可;
(2)推出∠A=∠EBC,∠AED=∠BCE,根据AAS证△AED≌△BCE,推出AD=BE,AE=BC,即可得出结论.
【详解】
(1)解:∵∠DEC=∠A=90°,
∴∠ADE+∠AED=90°,∠AED+∠BEC=90°,
∴∠ADE=∠BEC,
∵,∠A=90°,
∴∠B+∠A=180°,
∴∠B=∠A=90°,
在△AED和△CEB中
,
∴△AED≌△BCE(AAS),
∴AE=BC=3,BE=AD=2,
∴AB=AE+BE=2+3=5.
(2)证明:∵,
∴∠A=∠EBC,
∵∠DFC=∠AEC,
∠DFC=∠BCE+∠DEC,∠AEC=∠AED+∠DEC,
∴∠AED=∠BCE,
在△AED和△BCE中
,
∴△AED≌△BCE(AAS),
∴AD=BE,AE=BC,
∵BC=AE=AB+BE=AB+AD,
即AB+AD=BC.
【点睛】
本题考查了三角形的外角的性质,全等三角形的性质和判定,平行线的性质等知识点的运用,掌握“利用证明两个三角形全等”是解本题的关键.
6、证明见解析
【分析】
由,,结合公共边 从而可得结论.
【详解】
证明:在与中,
【点睛】
本题考查的是全等三角形的判定,掌握“利用边边边公理证明三角形全等”是解本题的关键.
7、证明过程见解析
【分析】
先证明,得到,,再证明,即可得解;
【详解】
由题可得,在和中,
,
∴,
∴,,
又∵,
∴,
在和中,
,
∴,
∴.
【点睛】
本题主要考查了全等三角形的判定与性质,准确分析证明是解题的关键.
8、证明见解析.
【分析】
延长CE交AB于F,求出∠AEC=∠AEF,∠FAE=∠CAE,根据ASA证△FAE≌△CAE,推出∠ACE=∠AFC,根据三角形外角性质得出∠AFC=∠B+∠ECD,代入即可.
【详解】
证明:延长CE交AB于F,
∵CE⊥AD,
∴∠AEC=∠AEF,
∵AD平分∠BAC,
∴∠FAE=∠CAE,
在△FAE和△CAE中,
∵ ,
∴△FAE≌△CAE(ASA),
∴∠ACE=∠AFC,
∵∠AFC=∠B+∠ECD,
∴∠ACE=∠B+∠ECD.
【点睛】
本题考查了全等三角形的性质和判定,三角形的外角性质等知识点,关键是作辅助线后求出∠AFC=∠ACE.
9、(1)见解析;(2)42°
【分析】
(1)利用边边边证得△ABC≌△ADE,可得∠BAC=∠DAE,即可求证;
(2)根据等腰三角形的性质,可得∠AEC=∠C=69°,再由△ABC≌△ADE,可得∠AED=∠C=69°, 即可求解.
【详解】
(1)证明:∵AB=AD,AC=AE,BC=DE,
∴△ABC≌△ADE.
∴∠BAC=∠DAE.
∴∠BAC-∠BAE=∠DAE-∠BAE.
即∠EAC=∠BAD;
(2)解:∵AC=AE,∠EAC=42°,
∴∠AEC=∠C= ×(180°-∠EAC)= ×(180°-42°)=69°.
∵△ABC≌△ADE,
∴∠AED=∠C=69°,
∴∠DEB=180°-∠AED-∠C=180°-69°-69°=42°.
【点睛】
本题主要考查了全等三角形的判定和性质,等腰三角形的性质,熟练掌握全等三角形的判定和性质定理,等腰三角形的性质定理是解题的关键.
10、(1)证明见解析;(2)证明见解析;(3)或
【分析】
(1)证明△AFD≌△EAC,根据全等三角形的性质得到DF=AC,等量代换证明结论;
(2)作FD⊥AC于D,证明△FDG≌△BCG,得到DG=CG,求出CE,CB的长,得到答案;
(3)过F作FD⊥AG的延长线交于点D,根据全等三角形的性质得到CG=GD,AD=CE=7,代入计算即可.
【详解】
(1)证明:∵FD⊥AC,
∴∠FDA=90°,
∴∠DFA+∠DAF=90°,
同理,∠CAE+∠DAF=90°,
∴∠DFA=∠CAE,
在△AFD和△EAC中,
,
∴△AFD≌△EAC(AAS),
∴DF=AC,
∵AC=BC,
∴FD=BC;
(2)作FD⊥AC于D,
由(1)得,FD=AC=BC,AD=CE,
在△FDG和△BCG中,
,
∴△FDG≌△BCG(AAS),
∴DG=CG=1,
∴AD=2,
∴CE=2,
∵BC=AC=AG+CG=4,
∴E点为BC中点;
(3)当点E在CB的延长线上时,过F作FD⊥AG的延长线交于点D,
BC=AC=4,CE=CB+BE=7,
由(1)(2)知:△ADF≌△ECA,△GDF≌△GCB,
∴CG=GD,AD=CE=7,
∴CG=DG=1.5,
∴AG=CG+AC=5.5,
∴,
同理,当点E在线段BC上时,AG= AC -CG+=2.5,
∴,
故答案为:或.
【点睛】
本题考查的是全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理是解题的关键.
相关试卷
这是一份初中数学沪教版 (五四制)七年级下册第十四章 三角形综合与测试巩固练习,共34页。试卷主要包含了如图,在中,等内容,欢迎下载使用。
这是一份沪教版 (五四制)七年级下册第十四章 三角形综合与测试当堂检测题,共36页。
这是一份沪教版 (五四制)七年级下册第十四章 三角形综合与测试综合训练题,共33页。试卷主要包含了下列命题是真命题的是等内容,欢迎下载使用。