2020-2021学年第十四章 三角形综合与测试课后测评
展开
这是一份2020-2021学年第十四章 三角形综合与测试课后测评,共33页。试卷主要包含了下列说法错误的是,下列叙述正确的是等内容,欢迎下载使用。
沪教版七年级数学第二学期第十四章三角形综合测试
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、若一个三角形的三个外角之比为3:4:5,则该三角形为( )
A.直角三角形 B.等腰三角形 C.等边三角形 D.等腰直角三角形
2、如图,将的BC边对折,使点B与点C重合,DE为折痕,若,,则( ).
A.45° B.60° C.35° D.40°
3、如图,在ABC中,AB=AC,D是BC的中点,∠B=35°,则∠BAD=( )
A.110° B.70° C.55° D.35°
4、如图,等边中,D为AC中点,点P、Q分别为AB、AD上的点,,,在BD上有一动点E,则的最小值为( )
A.7 B.8 C.10 D.12
5、下列说法错误的是( )
A.任意一个直角三角形都可以被分割成两个等腰三角形
B.任意一个等腰三角形都可以被分割成两个等腰三角形
C.任意一个直角三角形都可以被分割成两个直角三角形
D.任意一个等腰三角形都可以被分割成两个直角三角形
6、已知,,,的相关数据如图所示,则下列选项正确的是( )
A. B. C. D.
7、下列叙述正确的是( )
A.三角形的外角大于它的内角 B.三角形的外角都比锐角大
C.三角形的内角没有小于60°的 D.三角形中可以有三个内角都是锐角
8、一副三角板如图放置,点A在DF的延长线上,∠D=∠BAC=90°,∠E=30°,∠C=45°,若BC//DA,则∠ABF的度数为( )
A.15° B.20° C.25° D.30°
9、如图,,点E在线段AB上,,则的度数为( )
A.20° B.25° C.30° D.40°
10、如图,在△ABC中,BD平分∠ABC,∠C=2∠CDB,AB=12,CD=3,则△ABC的周长为( )
A.21 B.24 C.27 D.30
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,在△中,已知点分别为的中点,若△的面积为,则阴影部分的面积为 _________
2、如图,,,BE平分交AD于点E,连接CE,AF交CD的延长线于点F,,若,,则的度数为______.
3、一个等腰三角形的一边长为2,另一边长为9,则它的周长是________________.
4、如图,,点G分别为AD与CF的中点,若,则AC=______.
5、如图,在△ABC中,AB=AC.在AB、AC上分别截取AP,AQ,使AP=AQ.再分别以点P,Q为圆心,以大于PQ的长为半径作弧,两弧在∠BAC内交于点R,作射线AR,交BC于点D.若BC=6,则BD的长为______________.
三、解答题(10小题,每小题5分,共计50分)
1、如图,在中,,,,BD是的角平分线,点E在AB边上,.求的周长.
2、如图,在中,,AD是角平分线,E是AB边上一点,连接ED,CB是的平分线,ED的延长线与CF交于点F.
(1)求证:;
(2)若,,则______度.
3、如图,在等边三角形ABC中,点D,E分别在边BC,AC上,且DE∥AB,过点E作EF⊥DE,交BC的延长线于点F.
(1)求证:CE=CF;
(2)若CD=2,求DF的长.
4、如图,点C是线段AB上一点,与都是等边三角形,连接AE,BF.
(1)求证:;
(2)若点M,N分别是AE,BF的中点,连接CM,MN,NC.
①依题意补全图形;
②判断的形状,并证明你的结论.
5、已知:如图,AD,BE相交于点O,AB⊥BE,DE⊥AD,垂足分别为B,D,OA=OE.求证:△ABO≌△EDO.
6、已知,如图,AB=AD,∠B=∠D,∠1=∠2=60°.
(1)求证:△ADE≌△ABC;
(2)求证:AE=CE.
7、中,,以点为中心,分别将线段,逆时针旋转得到线段,,连接,延长交于点.
(1)如图1,若,的度数为________;
(2)如图2,当吋,
①依题意补全图2;
②猜想与的数量关系,并加以证明.
8、下面是“作一个角的平分线”的尺规作图过程.
已知:如图,钝角.
求作:射线OC,使.
作法:如图,
①在射线OA上任取一点D;
②以点О为圆心,OD长为半径作弧,交OB于点E;
③分别以点D,E为圆心,大于长为半径作弧,在内,两弧相交于点C;
④作射线OC.
则OC为所求作的射线.
完成下面的证明.
证明:连接CD,CE
由作图步骤②可知______.
由作图步骤③可知______.
∵,
∴.
∴(________)(填推理的依据).
9、如图,点D,E在△ABC的边BC上,AB=AC,AD=AE,求证:BD=CE.
10、如图,,,E为BC中点,DE平分.
(1)求证:平分;
(2)求证:;
(3)求证:.
-参考答案-
一、单选题
1、A
【分析】
根据三角形外角和为360°计算,求出内角的度数,判断即可.
【详解】
解:设三角形的三个外角的度数分别为3x、4x、5x,
则3x+4x+5x=360°,
解得,x=30°,
∴三角形的三个外角的度数分别为90°、120°、150°,
对应的三个内角的度数分别为90°、60°、30°,
∴此三角形为直角三角形,
故选:A.
【点睛】
本题考查的是三角形的外角和,掌握三角形外角和为360°是解题的关键.
2、A
【分析】
由折叠得到∠B=∠BCD,根据三角形的内角和得∠A+∠B+∠ACB=180°,代入度数计算即可.
【详解】
解:由折叠得∠B=∠BCD,
∵∠A+∠B+∠ACB=180°,,,
∴65°+2∠B+25°=180°,
∴∠B=45°,
故选:A.
【点睛】
此题考查了折叠的性质,三角形内角和定理,熟记折叠的性质是解题的关键.
3、C
【分析】
根据等腰三角形三线合一的性质可得AD⊥BC,然后利用直角三角形两锐角互余的性质解答.
【详解】
解:∵AB=AC,D是BC的中点,
∴AD⊥BC,
∵∠B=35°,
∴∠BAD=90°−35°=55°.
故选:C.
【点睛】
本题主要考查了等腰三角形三线合一的性质,直角三角形两锐角互余的性质,是基础题,熟记性质是解题的关键.
4、C
【分析】
作点关于的对称点,连接交于,连接,此时的值最小,最小值,据此求解即可.
【详解】
解:如图,
是等边三角形,
,
∵D为AC中点,
∴,,,
,
作点关于的对称点,连接交于,连接,此时的值最小.最小值,
,,
,
,
,
,
是等边三角形,
,
的最小值为.
故选:C.
【点睛】
本题考查等边三角形的性质和判定,轴对称最短问题等知识,解题的关键是学会利用轴对称解决最短问题,属于中考常考题型.
5、B
【分析】
根据等腰三角形和直角三角形的性质判断各选项即可得出答案.
【详解】
解:、任意一个直角三角形一定能分成两个等腰三角形,本选项正确,不符合题意;
、任意一个等腰三角形不一定能分成两个等腰三角形,本选项错误,符合题意;
、任意一个直角三角形都可以被分割成两个直角三角形,本选项正确,不符合题意;
、任意一个等腰三角形都可以被分割成两个直角三角形,本选项正确,不符合题意;
故选:B.
【点睛】
本题考查了等腰三角形和直角三角形的知识,解题的关键是能判断等腰三角形及直角三角形,可动手操作进行判断.
6、D
【分析】
根据三角形内角和定理分别求出三个三角形中未知角的度数,然后依据全等三角形的判定定理,从三个三角形中寻找条件证明全等,即可得出选项.
【详解】
解:,
,
在与ΔFED中,
,
∴≅ΔFED,
∴,
A、B、C三个选项均不能证明,
故选:D.
【点睛】
题目主要考查三角形内角和定理、全等三角形的判定和性质,理解题意,熟练运用全等三角形的判定定理是解题关键.
7、D
【分析】
结合直角三角形,钝角三角形,锐角三角形的内角与外角的含义与大小逐一分析即可.
【详解】
解:三角形的外角不一定大于它的内角,锐角三角形的任何一个外角都大于内角,故A不符合题意;
三角形的外角可以是锐角,不一定比锐角大,故B不符合题意;
三角形的内角可以小于60°,一个三角形的三个角可以为: 故C不符合题意;
三角形中可以有三个内角都是锐角,这是个锐角三角形,故D符合题意;
故选D
【点睛】
本题考查的是三角形的的内角与外角的含义与大小,掌握“直角三角形,钝角三角形,锐角三角形的内角与外角”是解本题的关键.
8、A
【分析】
先求出∠EFD=60°,∠ABC=45°,由BC∥AD,得到∠EFD=∠FBC=60°,则∠ABF=∠FBC-∠ABC=15°.
【详解】
解:∵∠D=∠BAC=90°,∠E=30°,∠C=45°,
∴∠EFD=60°,∠ABC=45°,
∵BC∥AD,
∴∠EFD=∠FBC=60°,
∴∠ABF=∠FBC-∠ABC=15°,
故选A.
【点睛】
本题主要考查了直角三角形两锐角互余,平行线的性质,熟知直角三角形两锐角互余是解题的关键.
9、C
【分析】
根据全等三角形的性质可证得BC=CE,∠ACB=∠DCE即∠ACD=∠BCE,根据等腰三角形的性质和三角形的内角和定理求解∠B=∠BEC和∠BCE即可.
【详解】
解:∵,
∴BC=CE,∠ACB=∠DCE,
∴∠B=∠BEC,∠ACD=∠BCE,
∵,
∴∠ACD=∠BCE=180°-2×75°=30°,
故选:C.
【点睛】
本题考查全等三角形的性质、等腰三角形的性质、三角形的内角和定理,熟练掌握全等三角形的性质和等腰三角形的性质是解答的关键.
10、C
【分析】
根据题意在AB上截取BE=BC,由“SAS”可证△CBD≌△EBD,可得∠CDB=∠BDE,∠C=∠DEB,可证∠ADE=∠AED,可得AD=AE,进而即可求解.
【详解】
解:如图,在AB上截取BE=BC,连接DE,
∵BD平分∠ABC,
∴∠ABD=∠CBD,
在△CBD和△EBD中,
,
∴△CBD≌△EBD(SAS),
∴∠CDB=∠BDE,∠C=∠DEB,
∵∠C=2∠CDB,
∴∠CDE=∠DEB,
∴∠ADE=∠AED,
∴AD=AE,
∴△ABC的周长=AD+AE+BE+BC+CD=AB+AB+CD=27,
故选:C.
【点睛】
本题考查全等三角形的判定和性质以及等腰三角形的性质,注意掌握添加恰当辅助线构造全等三角形是解题的关键.
二、填空题
1、1
【分析】
根据三角形的中线把三角形分成两个面积相等的三角形解答.
【详解】
解:∵点E是AD的中点,
∴S△ABE=S△ABD,S△ACE=S△ADC,
∴S△ABE+S△ACE=S△ABC=×4=2cm2,
∴S△BCE=S△ABC=×4=2cm2,
∵点F是CE的中点,
∴S△BEF=S△BCE=×2=1cm2.
故答案为:1.
【点睛】
本题考查了三角形的面积,主要利用了三角形的中线把三角形分成两个面积相等的三角形,原理为等底等高的三角形的面积相等.
2、80°
【分析】
先根据,,得出,可证AD∥BC,再证∠BAD=∠BCD,得出∠AEB=∠F,然后证∠ABC=2∠CBE=2∠F,得出∠ADC=2∠F,利用三角形内角和得出∠CED=180°-∠EDC-∠ECD=180°-2∠F-3∠F=180°-5∠F,根据平角得出∠AEB+∠CED=180°-∠BEC=180°-80°=100°,列方程∠F+180°-5∠F=100°求出∠F=20°即可.
【详解】
解:∵,
∴∠ABC+∠BCD=180°,
∵
∴,
∴AD∥BC,
∵,
∴∠BAD+∠ADC=180°,∠BAF+∠F=180°,
∵∠ADC+∠BCD=180°,
∴∠BAD=∠BCD,
∵,
∴,
∵∠BAF=∠BAD+∠DAF,
∴∠BAF+∠AEB=180°,
∴∠AEB=∠F,
∵AD∥BC,
∴∠CBE=∠AEB,
∵BE平分,
∴∠ABC=2∠CBE=2∠F,
∴∠ADC=2∠F,
∵,
在△CED中,∠CED=180°-∠EDC-∠ECD=180°-2∠F-3∠F=180°-5∠F,
∵,
∴∠AEB+∠CED=180°-∠BEC=180°-80°=100°,
∴∠F+180°-5∠F=100°,
解得∠F=20°,
∴,
故答案为80°.
【点睛】
本题考查平行线的判定与性质,三角形内角和,角平分线定义,平角,解一元一次方程,掌握平行线的判定与性质,三角形内角和,角平分线定义,平角,解一元一次方程,关键是证出∠ADC=2∠F.
3、20
【分析】
题目给出等腰三角形有两条边长为2和9,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.
【详解】
解:分两种情况:当腰为2时,2+2<9,所以不能构成三角形;
当腰为9时,2+9>9,所以能构成三角形,周长是:2+9+9=20.
故答案为:20.
【点睛】
本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.
4、4
【分析】
根据SAS证明,由全等三角形的性质得,,由,得,推出,都是等腰三角形,故得,设,则,,,列出等量关系式解出,即可得出.
【详解】
∵点G分别为AD与CF的中点,
∴,,,
∴,
∴,,
∵,,
∴,
∴,都是等腰三角形,
∴,
设,则,,,
∴,
解得:,
∴.
故答案为:4.
【点睛】
本题考查全等三角形的判定与性质,等腰三角形的判定与性质,根据题意找出关系式是解题的关键.
5、3
【分析】
根据题意依据等腰三角形的性质,即可得到BD=BC,进而分析计算即可得出结论.
【详解】
解:由题可得,AR平分∠BAC,
又∵AB=AC,
∴AD是三角形ABC的中线,
∴BD=BC=×6=3.
故答案为:3.
【点睛】
本题主要考查基本作图以及等腰三角形的性质,注意掌握等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.
三、解答题
1、
【分析】
由题意结合角平分线性质和全等三角形判定得出,进而依据的周长进行求解即可.
【详解】
解:∵,,,
∴,
∵BD是的角平分线,
∴,
在和中,
,
∴,
∴,
∵,
∴的周长.
【点睛】
本题考查全等三角形的判定与性质以及角平分线性质,熟练掌握利用全等三角形的判定与性质以及角平分线性质进行边的等量替换是解题的关键.
2、(1)见解析,(2)46
【分析】
(1)根据等腰三角形的性质和角平分线得到∠B=∠ACB=∠BCF,由AD是角平分线,得到BD=CD,证△BDE≌△CDF即可;
(2)根据全等三角形的性质得到DE=DF=DA,根据求得∠DAB,进而求出∠B的度数即可.
【详解】
(1)证明:∵,
∴∠B=∠ACB,
∵CB是的平分线,
∴∠ACB=∠BCF,
∴∠B=∠BCF,
∵AD是角平分线,AB=AC,
∴BD=CD,
∵∠BDE=∠CDF,
∴△BDE≌△CDF(AAS);
∴;
(2)∵△BDE≌△CDF;
∴ED=FD,
∵,
∴ED=AD,
∵,
∴,
∴,
∴∠B=∠ACB=∠BCF=23°,
∴,
故答案为:46.
【点睛】
本题考查了等腰三角形的性质和全等三角形的判定与性质,解题关键是熟练运用相关知识进行推理证明和计算.
3、
(1)证明见解析;
(2)4
【分析】
(1)根据等边三角形的性质和平行线的性质可证得∠EDC=∠ECD=∠DEC=60°,再根据直角定义和三角形的外角性质证得∠F=∠FEC=30°,利用等角对等边即可证得结论;
(2)由等角对等边可知CE=DC=2,结合(1)中结论即可求解.
(1)
证明:∵△ABC是等边三角形,
∴∠A=∠B=∠ACB=60°.
∵DE∥AB,
∴∠B=∠EDC=60°,∠A=∠CED=60°,
∴∠EDC=∠ECD=∠DEC=60°,
∵EF⊥ED,
∴∠DEF=90°,
∴∠F=30°
∵∠F+∠FEC=∠ECD=60°,
∴∠F=∠FEC=30°,
∴CE=CF.
(2)
解:由(1)可知∠EDC=∠ECD=∠DEC=60°,
∴CE=DC=2.
又∵CE=CF,
∴CF=2.
∴DF=DC+CF=2+2=4.
【点睛】
本题考查等边三角形的性质、等腰三角形的判定、平行线的性质、三角形的外角性质、线段的和与差,熟练掌握相关知识的联系与运用是解答的关键.
4、
(1)证明见解析;
(2)①补全图形见解析;②是等边三角形,证明见解析.
【分析】
(1)由等边三角形的性质可知,,.结合题意易得出.即可利用“SAS”证明,即得出;
(2)①根据题意补全图形即可;
②由全等三角形的性质可知,.再由题意点M,N分别是AE,BF的中点,即得出.即可利用“SAS”证明,得出结论,.最后根据,即得出,即可判定是等边三角形.
(1)
∵与都是等边三角形,
∴,,,
∴,即,
在和中,
∴,
∴,
∴.
(2)
①画图如下:
②是等边三角形.
理由如下:∵,
∴,.
∵点M,N分别是AE,BF的中点,
∴,
在和中,
∵,
∴,
∴,,
∴,即,
∴是等边三角形.
【点睛】
本题考查等边三角形的判定和性质,全等三角形的判定和性质,线段的中点.利用数形结合的思想是解答本题的关键.
5、见解析
【分析】
利用AAS即可证明△ABO≌△EDO.
【详解】
证明:∵AB⊥BE,DE⊥AD,
∴∠B=∠D=90°.
在△ABO和△EDO中
,
∴△ABO≌△EDO.
【点睛】
本题考查了全等三角形的判定,熟练掌握三角形全等的判定方法是解题的关键.
6、(1)见解析;(2)见解析
【分析】
(1)根据∠1=∠2可推出∠DAE=∠BAC,然后结合全等三角形的判定定理进行证明;
(2)由全等三角形的性质可得AE=AC,结合∠2=60°可推出△AEC为等边三角形,据此证明.
【详解】
(1)证明:∵∠1=∠2
∴∠1+=∠2+
即∠DAE=∠BAC
在△ADE和△ABC中
∴△ADE≌△ABC(ASA)
(2)证明:∵△ADE≌△ABC
∴AE=AC
又∵∠2=60°
∴△AEC为等边三角形
∴AE=CE
【点睛】
此题考查了全等三角形的性质和判定,等边三角形的性质和判定,解题的关键是熟练掌握全等三角形的性质和判定方法,等边三角形的性质和判定方法.
7、
(1)120°
(2)①图形见解析;②
【分析】
(1)根据进而判断出点E在边AB上,得出△ADE≌△ABC(SAS),进而得出∠AED=∠ACB=90°最后用三角形的外角的性质即可得出结论;
(2)①依题意补全图形即可;②先判断出△ADE≌△ABC(SAS),进而得出∠AEF=90°,即可判断出Rt△AEF≌Rt△ACF,进而求出∠CAF=∠CAE=30°,即可得出结论.
(1)
(1)如图1,
在Rt△ABC中,∠B=30°,
∴∠BAC=60°,
由旋转知,∠CAE=60°=∠CAB,
∴点E在边AB上,
∵AD=AB,AE=AC,
∴△ADE≌△ABC(SAS),
∴∠AED=∠ACB=90°,
∴∠CFE=∠B+∠BEF=30°+90°=120°,
故答案为120°;
(2)
(2)①依题意补全图形如图2所示,
②如图2,连接AF,
∵∠BAD=∠CAE,
∴∠EAD=∠CAB,
∵AD=AB,AE=AC,
∴△ADE≌△ABC(SAS),
∴∠AED=∠C=90°,
∴∠AEF=90°,
∴Rt△AEF≌Rt△ACF(HL),
∴∠EAF=∠CAF,
∴∠CAF=∠CAE=30°,
在Rt△ACF中,CF=AF,且AC2+CF2=AF2,
∴
【点睛】
此题是三角形综合题,主要考查了旋转的性质,全等三角形的判定和性质,三角形的外角的性质,含30度角的直角三角形的性质,勾股定理,判断出△ADE≌△ABC是解本题的关键.
8、OE; CE;全等三角形的对应角相等
【分析】
根据圆的半径相等可得OD=OE,CD=CE,再利用SSS可证明,从而根据全等三角形的性质可得结论.
【详解】
证明:连接CD,CE
由作图步骤②可知___OE___.
由作图步骤③可知__CE___.
∵,
∴.
∴(__全等三角形对应角相等__)
故答案为:OE; CE;全等三角形的对应角相等
【点睛】
本题考查了作图-基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了全等三角形的判定和性质.
9、见解析
【分析】
过A作AF⊥BC于F,根据等腰三角形的性质得出BF=CF,DF=EF,即可求出答案.
【详解】
证明:如图,过A作AF⊥BC于F,
∵AB=AC,AD=AE,
∴BF=CF,DF=EF,
∴BF-DF=CF-EF,
∴BD=CE.
【点睛】
本题考查了等腰三角形的性质的应用,注意:等腰三角形的底边上的高,底边上的中线,顶角的平分线互相重合.
10、(1)见解析;(2)见解析;(3)见解析
【分析】
(1)延长DE交AB延长线于F,由∠B=∠C=90°,推出AB∥CD,则∠CDE=∠F,再由DE平分∠ADC,即可推出∠ADF=∠F,得到AD=AF,即△ADF是等腰三角形,然后证明△CDE≌△BFE得到DE=FE,即E是DF的中点,即可证明AE平分∠BAD;
(2)由(1)即可用三线合一定理证明;
(3)由△CDE≌△BFE,得到CD=BF,则AD=AF=AB+BF=AB+CD.
【详解】
解:(1)如图所示,延长DE交AB延长线于F,
∵∠B=∠C=90°,
∴AB∥CD,
∴∠CDE=∠F,
∵DE平分∠ADC,
∴∠CDE=∠ADE,
∴∠ADF=∠F,
∴AD=AF,
∴△ADF是等腰三角形,
∵E是BC的中点,
∴CE=BE,
∴△CDE≌△BFE(AAS),
∴DE=FE,
∴E是DF的中点,
∴AE平分∠BAD;
(2)由(1)得△ADF是等腰三角形,AD=AF,E是DF的中点,
∴AE⊥DE;
(3)∵△CDE≌△BFE,
∴CD=BF,
∴AD=AF=AB+BF=AB+CD.
【点睛】
本题主要考查了平行线的性质与判定,全等三角形的性质与判定,等腰三角形的性质与判定,熟知相关知识是解题的关键.
相关试卷
这是一份初中数学沪教版 (五四制)七年级下册第十四章 三角形综合与测试课时训练,共33页。试卷主要包含了三角形的外角和是,如图,点A,如图,为估计池塘岸边A等内容,欢迎下载使用。
这是一份沪教版 (五四制)七年级下册第十四章 三角形综合与测试测试题,共30页。
这是一份初中沪教版 (五四制)第十四章 三角形综合与测试当堂达标检测题,共36页。试卷主要包含了下列三个说法,定理等内容,欢迎下载使用。