初中数学沪教版 (五四制)七年级下册第十四章 三角形综合与测试同步练习题
展开
这是一份初中数学沪教版 (五四制)七年级下册第十四章 三角形综合与测试同步练习题,共32页。
沪教版七年级数学第二学期第十四章三角形专项测评
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,,AC,BD相交于点O.添加一个条件,不一定能使≌的是( )
A. B.
C. D.
2、已知三角形的两边长分别是3cm和7cm,则下列长度的线段中能作为第三边的是( )
A.3cm B.4cm C.7cm D.10cm
3、在平面直角坐标系xOy中,点A(0,2),B(a,0),C(m,n)().若ABC是等腰直角三角形,且,当时,点C的横坐标m的取值范围是( )
A. B. C. D.
4、在下列长度的四根木棒中,能与3cm,9cm的两根木棒首尾顺次相接钉成一个三角形的是( )
A.3cm B.6cm C.10cm D.12cm
5、如图,AD∥BC,∠C=30°,∠ADB:∠BDC=1:2,∠EAB=72°,以下四个说法:
①∠CDF=30°;②∠ADB=50°;
③∠ABD=22°;④∠CBN=108°
其中正确说法的个数是( )
A.1个 B.2个 C.3个 D.4个
6、如图,△ABC中,∠ABC与∠ACB的平分线交于点F,过点F作DE∥BC交AB于点D,交AC于点E,那么下列结论:①△BDF是等腰三角形;②DE=BD+CE;③若∠A=50°,则∠BFC=115°;④DF=EF.其中正确的有( )
A.1个 B.2个 C.3个 D.4个
7、BP是∠ABC的平分线,CP是∠ACB的邻补角的平分线,∠ABP=20°,∠ACP=50°,则∠P=( )
A.30° B.40° C.50° D.60°
8、满足下列条件的两个三角形不一定全等的是( )
A.周长相等的两个三角形 B.有一腰和底边对应相等的两个等腰三角形
C.三边都对应相等的两个三角形 D.两条直角边对应相等的两个直角三角形
9、根据下列已知条件,不能画出唯一的是( )
A.,, B.,,
C.,, D.,,
10、如图,是等边三角形,点在边上,,则的度数为( ).
A.25° B.60° C.90° D.100°
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,△ABC的面积等于35,AE=ED,BD=3DC,则图中阴影部分的面积等于 _______
2、如图,______.
3、如图,已知,请添加一个条件,使得,则添加的条件可以为___(只填写一个即可).
4、如图,一把直尺的一边缘经过直角三角形的直角顶点,交斜边于点;直尺的另一边缘分别交、于点、,若,,则___________度.
5、如图,在正方形网格中,∠BAC______∠DAE.(填“>”、“=”或“<”)
三、解答题(10小题,每小题5分,共计50分)
1、已知:如图,在△ABC中,AB=3,AC=5.
(1)直接写出BC的取值范围是 .
(2)若点D是BC边上的一点,∠BAC=85°,∠ADC=140°,∠BAD=∠B,求∠C.
2、已知:如图,∠ABC=∠DCB,∠1=∠2.求证AB=DC.
3、命题:如图,已知,共线,(1),那么.
(1)从①和②两个条件中,选择一个填入横线,使得上述命题为真命题,你选择的条件为_______(填序号);
(2)根据你选择的条件,判定的方法是________;
(3)根据你选择的条件,完成的证明.
4、在四边形ABCD中,,点E在直线AB上,且.
(1)如图1,若,,,求AB的长;
(2)如图2,若DE交BC于点F,,求证:.
5、如图,点C是线段AB上一点,与都是等边三角形,连接AE,BF.
(1)求证:;
(2)若点M,N分别是AE,BF的中点,连接CM,MN,NC.
①依题意补全图形;
②判断的形状,并证明你的结论.
6、已知:如图,在ABC中,AB=AC,点D、E分别在边BC,AC上,AD=AE.
(1)若∠BAD=30°,则∠EDC= °;若∠EDC=20°,则∠BAD= °.
(2)设∠BAD=x,∠EDC=y,写出y与x之间的关系式,并给出证明.
7、如图,在中,是角平分线,,.
(1)求的度数;
(2)若,求的度数.
8、如图,在中,点D、E分别在边AB、AC上,BE与CD交于点F,,,.求和的度数.
9、针对于等腰三角形三线合一的这条性质,老师带领同学们做了进一步的猜想和证明,提问:如果一个三角形中,一个角的平分线和它所对的边的中线重合,那么这个三角形是等腰三角形.
已知:在△ABC中,AD 平分∠CAB,交BC 边于点 D,且CD=BD,
求证:AB=AC.
以下是甲、乙两位同学的作法.
甲:根据角平分线和中线的性质分别能得出一组角等和一组边等,再加一组公共边,可证△ACD≌△ABD,所以这个三角形为等腰三角形;
乙:延长AD到E,使DE=AD,连接BE,可证△ACD≌△EBD,依据已知条件可推出AB=AC,所以这个三角形为等腰三角形
(1)对于甲、乙两人的作法,下列判断正确的是( );
A.两人都正确 B.甲正确,乙错误 C.甲错误,乙正确
(2)选择一种你认为正确的作法,并证明.
10、如图,在四边形ABCD中,E是CB上一点,分别延长AE,DC相交于点F,,.
(1)求证:;
(2)若,求BE的长.
-参考答案-
一、单选题
1、C
【分析】
直接利用直角三角形全等的判定定理(定理)即可判断选项;先根据等腰三角形的性质可得,再根据三角形全等的判定定理(定理)即可判断选项;直接利用三角形全等的判定定理(定理)即可判断选项,由此即可得出答案.
【详解】
解:当添加条件是时,
在和中,,
,则选项不符题意;
当添加条件是时,
,
在和中,,
,则选项不符题意;
当添加条件是时,
在和中,,
,则选项不符题意;
当添加条件是时,不一定能使,则选项符合题意;
故选:C.
【点睛】
本题考查了三角形全等的判定、等腰三角形的性质,熟练掌握三角形全等的判定方法是解题关键.
2、C
【分析】
设三角形第三边的长为x cm,再根据三角形的三边关系求出x的取值范围,找出符合条件的x的值即可.
【详解】
解:设三角形的第三边是xcm.则
7-3<x<7+3.
即4<x<10,
四个选项中,只有选项C符合题意,
故选:C.
【点睛】
本题主要考查了三角形三边关系的应用.此类求三角形第三边的范围的题,实际上就是根据三角形三边关系定理列出不等式,然后解不等式即可.
3、B
【分析】
过点作轴于,由“”可证,可得,,即可求解.
【详解】
解:如图,过点作轴于,
点,
,
是等腰直角三角形,且,
,
,
,
在和中,
,
,
,,
,
,
,
故选:B.
【点睛】
本题考查了全等三角形的判定和性质,等腰直角三角形的性质,解题的关键是画图及添加恰当辅助线构造全等三角形.
4、C
【分析】
设第三根木棒的长度为cm,再确定三角形第三边的范围,再逐一分析各选项即可得到答案.
【详解】
解:设第三根木棒的长度为cm,则
所以A,B,D不符合题意,C符合题意,
故选C
【点睛】
本题考查的是三角形的三边的关系,掌握“利用三角形的三边关系确定第三边的范围”是解本题的关键.
5、D
【分析】
根据AD∥BC,∠C=30°,利用内错角相等得出∠FDC=∠C=30°,可判断①正确;根据邻补角性质可求∠ADC=180°-∠FDC=180°-30°=150°,根据∠ADB:∠BDC=1:2,得出方程3∠ADB=150°,解方程可判断②正确;根据∠EAB=72°,可求邻补角∠DAN=180°-∠EAB=180°-72°=108°,利用三角形内角和可求∠ABD=180°-∠NAD-∠ADB=180°-108°-50°=22°可判断③正确,利用AD∥BC,同位角相等的∠CBN=∠DAN=108°可判断④正确即可.
【详解】
解:∵AD∥BC,∠C=30°,
∴∠FDC=∠C=30°,故①正确;
∴∠ADC=180°-∠FDC=180°-30°=150°,
∵∠ADB:∠BDC=1:2,
∴∠BDC=2∠ADB,
∵∠ADC=∠ADB+∠BDC=∠ADB+2∠ADB=3∠ADB=150°,
解得∠ADB=50°,故②正确
∵∠EAB=72°,
∴∠DAN=180°-∠EAB=180°-72°=108°,
∴∠ABD=180°-∠NAD-∠ADB=180°-108°-50°=22°,故③正确
∵AD∥BC,
∴∠CBN=∠DAN=108°,故④正确
其中正确说法的个数是4个.
故选择D.
【点睛】
本题考查平行线性质,角的倍分,邻补角性质,三角形内角和,一元一次方程,掌握平行线性质,邻补角性质,三角形内角和,一元一次方程地解题关键.
6、C
【分析】
根据平行线的性质和角平分线的定义以及等腰三角形的判定和性质逐个判定即可解答.
【详解】
解:∵BF是∠AB的角平分线,
∴∠DBF=∠CBF,
∵DE∥BC,
∴∠DFB=∠CBF,
∴∠DBF=∠DFB,
∴BD=DF,
∴△BDF是等腰三角形;故①正确;
同理,EF=CE,
∴DE=DF+EF=BD+CE,故②正确;
∵∠A=50°,
∴∠ABC+∠ACB=130°,
∵BF平分∠ABC,CF平分∠ACB,
∴,
∴∠FBC+∠FCB=(∠ABC+∠ACB)=65°,
∴∠BFC=180°﹣65°=115°,故③正确;
当△ABC为等腰三角形时,DF=EF,
但△ABC不一定是等腰三角形,
∴DF不一定等于EF,故④错误.
故选:C.
【点睛】
本题主要考查等腰三角形的性质、角平分线的定义及平行线的性质等知识点,根据两直线平行、内错角相等以及等角对等边来判定等腰三角形是解答本题的关键.
7、A
【分析】
根据角平分线的定义以及一个三角形的外角等于与它不相邻的两个内角和,可求出∠P的度数.
【详解】
∵BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,
∴∠ABP=∠CBP=20°,∠ACP=∠MCP=50°,
∵∠PCM是△BCP的外角,
∴∠P=∠PCM−∠CBP=50°−20°=30°,
故选:A.
【点睛】
本题考查三角形外角性质以及角平分线的定义,解题时注意:一个三角形的外角等于与它不相邻的两个内角的和.
8、A
【分析】
根据全等三角形的判定方法求解即可.判定三角形全等的方法有:SSS,SAS对各选项进行一一判断即可.
【详解】
解:A、周长相等的两个三角形不一定全等,符合题意;
B、有一腰和底边对应相等的两个等腰三角形根据三边对应相等判定定理可判定全等,不符合题意;
C、三边都对应相等的两个三角形根据三边对应相等判定定理可判定全等,不符合题意;
D、两条直角边对应相等的两个直角三角形根据SAS判定定理可判定全等,不符合题意.
故选:A.
【点睛】
此题考查了全等三角形的判定方法,解题的关键是熟练掌握全等三角形的判定方法.判定三角形全等的方法有:SSS,SAS,AAS,ASA,HL(直角三角形).
9、B
【分析】
根据三角形存在的条件去判断.
【详解】
∵,,,满足ASA的要求,
∴可以画出唯一的三角形,A不符合题意;
∵,,,∠A不是AB,BC的夹角,
∴可以画出多个三角形,B符合题意;
∵,,,满足SAS的要求,
∴可以画出唯一的三角形,C不符合题意;
∵,,,AB最大,
∴可以画出唯一的三角形,D不符合题意;
故选B.
【点睛】
本题考查了三角形的存在性,熟练掌握三角形全等的判定方法是解题的关键.
10、D
【分析】
由等边三角形的性质及三角形外角定理即可求得结果.
【详解】
∵是等边三角形
∴∠C=60°
∴∠ADB=∠DBC+∠C=40°+60°=100°
故选:D
【点睛】
本题考查了等边三角形的性质、三角形外角的性质,掌握这两个性质是关键.
二、填空题
1、15
【分析】
连接DF,根据AE=ED,BD=3DC,可得 ,, ,,然后设△AEF的面积为x,△BDE的面积为y,则,,,,再由△ABC的面积等于35,即可求解.
【详解】
解:如图,连接DF,
∵AE=ED,
∴ ,,
∵BD=3DC,
∴ ,
设△AEF的面积为x,△BDE的面积为y,则,,,,
∵△ABC的面积等于35,
∴ ,
解得: .
故答案为:15
【点睛】
本题主要考查了与三角形中线有关的面积问题,根据题意得到 ,, ,是解题的关键.
2、180度
【分析】
如图,连接 记的交点为 先证明再利用三角形的内角和定理可得答案.
【详解】
解:如图,连接 记的交点为
故答案为:
【点睛】
本题考查的是三角形的内角和定理,作出合适的辅助线构建三角形是解本题的关键.
3、或
【分析】
根据全等三角形的判定方法即可解决问题.
【详解】
解:由题意,,
根据,可以添加,使得,
根据,可以添加,使得.
故答案为:或
【点睛】
本题主要考查了全等三角形的判定,熟练掌握全等三角形的判定方法——边角边、角边角、角角边、边边边是解题的关键.
4、20
【分析】
利用平行线的性质求出∠1,再利用三角形外角的性质求出∠DCB即可.
【详解】
解:∵EF∥CD,
∴,
∵∠1是△DCB的外角,
∴∠1-∠B=50°-30°=20º,
故答案为:20.
【点睛】
本题考查了平行线的性质,三角形外角的性质等知识,解题的关键是熟练掌握基本知识.
5、
【分析】
找到点,连接(见解析),根据等腰直角三角形的性质、网格特点即可得.
【详解】
解;如图,找到点,连接,
则是等腰直角三角形,
,
又是等腰直角三角形,
,
故答案为:.
【点睛】
本题考查了等腰直角三角形、角的大小比较,正确找出点是解题关键.
三、解答题
1、(1)2<BC<8;(2)25°
【分析】
(1)根据三角形三边关系解答即可;
(2)根据三角形外角性质和三角形内角和解答即可.
【详解】
解:(1)∵AC-AB<BC<AC+AB,AB=3,AC=5.
∴2<BC<8,
故答案为:2<BC<8
(2)∵∠ADC是△ABD的外角
∴∠ADC=∠B+∠BAD=140
∵∠B=∠BAD
∴∠B=
∵∠B+∠BAC+∠C=180
∴∠C=180﹣∠B﹣∠BAC
即∠C=180﹣70﹣85=25
【点睛】
本题考查了三角形第三边的取值范围,三角形内角和定理和三角形外角的性质,能根据三角形的外角的性质求出∠B的度数是解此题的关键.
2、见解析
【分析】
由“ASA”可证△ABO≌△DCO,可得结论.
【详解】
证明:如图,记的交点为
∵∠ABC=∠DCB,∠1=∠2,
又∵∠OBC=∠ABC−∠1,∠OCB=∠DCB−∠2,
∴∠OBC=∠OCB,
∴OB=OC,
在△ABO和△DCO中,,
∴△ABO≌△DCO(ASA),
∴AB=DC.
【点睛】
本题考查了全等三角形的判定和性质,掌握全等三角形的判定定理是本题的关键.
3、
(1)①
(2)SAS
(3)见解析
【分析】
(1)根据全等三角形的判定方法分析得出答案;
(2)根据(1)直接填写即可;
(3)利用SAS进行证明.
(1)
解:∵,
∴∠A=∠F,
∵AC=EF,
∴当时,可根据SAS证明;
当时,不能证明,
故答案为:①;
(2)
解:当时,可根据SAS证明,
故答案为:SAS;
(3)
证明:在△ABC和△FDE中,
,
∴.
【点睛】
此题考查了添加条件证明两个三角形全等,正确掌握全等三角形的判定定理是解题的关键.
4、(1)5;(2)证明见解析
【分析】
(1)推出∠ADE=∠BEC,根据AAS证△AED≌△CEB,推出AE=BC,BE=AD,代入求出即可;
(2)推出∠A=∠EBC,∠AED=∠BCE,根据AAS证△AED≌△BCE,推出AD=BE,AE=BC,即可得出结论.
【详解】
(1)解:∵∠DEC=∠A=90°,
∴∠ADE+∠AED=90°,∠AED+∠BEC=90°,
∴∠ADE=∠BEC,
∵,∠A=90°,
∴∠B+∠A=180°,
∴∠B=∠A=90°,
在△AED和△CEB中
,
∴△AED≌△BCE(AAS),
∴AE=BC=3,BE=AD=2,
∴AB=AE+BE=2+3=5.
(2)证明:∵,
∴∠A=∠EBC,
∵∠DFC=∠AEC,
∠DFC=∠BCE+∠DEC,∠AEC=∠AED+∠DEC,
∴∠AED=∠BCE,
在△AED和△BCE中
,
∴△AED≌△BCE(AAS),
∴AD=BE,AE=BC,
∵BC=AE=AB+BE=AB+AD,
即AB+AD=BC.
【点睛】
本题考查了三角形的外角的性质,全等三角形的性质和判定,平行线的性质等知识点的运用,掌握“利用证明两个三角形全等”是解本题的关键.
5、
(1)证明见解析;
(2)①补全图形见解析;②是等边三角形,证明见解析.
【分析】
(1)由等边三角形的性质可知,,.结合题意易得出.即可利用“SAS”证明,即得出;
(2)①根据题意补全图形即可;
②由全等三角形的性质可知,.再由题意点M,N分别是AE,BF的中点,即得出.即可利用“SAS”证明,得出结论,.最后根据,即得出,即可判定是等边三角形.
(1)
∵与都是等边三角形,
∴,,,
∴,即,
在和中,
∴,
∴,
∴.
(2)
①画图如下:
②是等边三角形.
理由如下:∵,
∴,.
∵点M,N分别是AE,BF的中点,
∴,
在和中,
∵,
∴,
∴,,
∴,即,
∴是等边三角形.
【点睛】
本题考查等边三角形的判定和性质,全等三角形的判定和性质,线段的中点.利用数形结合的思想是解答本题的关键.
6、(1)15,40;(2)y=x,见解析
【分析】
(1)设∠EDC=m,则∠B=∠C=n,根据∠ADE=∠AED=m+n,∠ADC=∠B+∠BAD即可列出方程,从而求解.
(2)设∠BAD=x,∠EDC=y,根据等腰三角形的性质可得∠B=∠C,∠ADE=∠AED=∠C+∠EDC=∠B+y,由∠ADC=∠B+∠BAD=∠ADE+∠EDC即可得∠B+x=∠B+y+y,从而求解.
【详解】
解:(1)设∠EDC=m,∠B=∠C=n,
∵∠AED=∠EDC+∠C=m+n,
又∵AD=AE,
∴∠ADE=∠AED=m+n,
则∠ADC=∠ADE+∠EDC=2m+n,
又∵∠ADC=∠B+∠BAD,
∴∠BAD=2m,
∴2m+n=n+30,解得m=15°,
∴∠EDC的度数是15°;
若∠EDC=20°,则∠BAD=2m=2×20°=40°.
故答案是:15;40;
(2)y与x之间的关系式为y=x,
证明:设∠BAD=x,∠EDC=y,
∵AB=AC,AD=AE,
∴∠B=∠C,∠ADE=∠AED,
∵∠AED=∠C+∠EDC=∠B+y,
∴∠ADC=∠B+∠BAD=∠ADE+∠EDC,
∴∠B+x=∠B+y+y,
∴2y=x,
∴y=x.
【点睛】
本题主要考查了等腰三角形的性质、三角形外角的性质以及一元一次方程的应用,灵活运用等腰三角形的性质成为解答本题的关键.
7、
(1);
(2).
【分析】
(1)根据三角形内角和定理可求出,然后利用角平分线进行计算即可得;
(2)根据垂直得出,然后根据三角形内角和定理即可得.
(1)
解:∵,,
∴,
∵AD是角平分线,
∴,
∴;
(2)
∵,
∴,
∴,
∴.
【点睛】
题目主要考查三角形内角和定理,角平分线的计算等,熟练运用三角形内角和定理是解题关键.
8、87°,40°
【分析】
根据三角形外角的性质可得,,代入计算即可求出,再根据三角形内角和定理求解即可.
【详解】
解:∵,,
∴,
∵,
∴.
【点睛】
本题考查了三角形内角和和外角的性质,解题关键是准确识图,理清角之间的关系,准确进行计算.
9、(1)C ;(2)见解析
【分析】
(1)甲同学证明的两个三角形全等,没有边边角的判定,故错误,而乙的证明则正确,因此可作出判断;
(2)按照乙的分析方法进行即可.
【详解】
(1)甲同学证明的两个三角形全等,边边角不能判定两个三角形全等,故错误,而乙的证明则正确,
故选C;
(2)依据题意,延长AD至E,使DE=AD,连接BE,如图.
∵D为BC中点.
∴.
在△CAD和△BED中
∴△CAD≌△BED(SAS).
∴,
∵AD平分∠BAC,
∴
∴
∴
∴AB=AC
∴△ABC为等腰三角形
【点睛】
本题考查了全等三角形的判定与性质,等腰三角形的判定,关键是构造辅助线得到全等三角形.
10、
(1)见解析
(2)
【分析】
(1)利用是的外角,以及证明即可.
(2)证明≌,可知,从而得出答案.
(1)
证明:∵是的外角,
∴.
又∵,∴.
(2)
解:在和中,
,
∴≌.
∴.
∵,
∴.
【点睛】
本题考查了三角形的外角以及三角形全等的性质和判定,掌握三角形全等的性质和判定是解题的关键.
相关试卷
这是一份初中数学沪教版 (五四制)七年级下册第十四章 三角形综合与测试习题,共33页。试卷主要包含了如图,ABC≌DEF,点B等内容,欢迎下载使用。
这是一份数学七年级下册第十四章 三角形综合与测试同步训练题,共39页。
这是一份数学第十四章 三角形综合与测试当堂达标检测题,共29页。