搜索
    上传资料 赚现金
    英语朗读宝

    精品试题沪教版七年级数学第二学期第十四章三角形综合训练试题(含答案解析)

    精品试题沪教版七年级数学第二学期第十四章三角形综合训练试题(含答案解析)第1页
    精品试题沪教版七年级数学第二学期第十四章三角形综合训练试题(含答案解析)第2页
    精品试题沪教版七年级数学第二学期第十四章三角形综合训练试题(含答案解析)第3页
    还剩36页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    数学七年级下册第十四章 三角形综合与测试课时训练

    展开

    这是一份数学七年级下册第十四章 三角形综合与测试课时训练,共39页。试卷主要包含了若一个三角形的三个外角之比为3等内容,欢迎下载使用。
    沪教版七年级数学第二学期第十四章三角形综合训练
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、尺规作图:作角等于已知角.示意图如图所示,则说明的依据是( )


    A.SSS B.SAS C.ASA D.AAS
    2、如图,直线l1l2,被直线l3、l4所截,并且l3⊥l4,∠1=46°,则∠2等于(  )

    A.56° B.34° C.44° D.46°
    3、如图,为估计池塘岸边A、B两点的距离,小方在池塘的一侧选取一点O,OA=15米,OB=10米,A、B间的距离不可能是(  )

    A.5米 B.10米 C.15米 D.20米
    4、若三条线段中a=3,b=5,c为奇数,那么以a、b、c为边组成的三角形共有( )
    A.1个 B.2个 C.3个 D.4个
    5、下列各条件中,不能作出唯一的的是( )
    A.,, B.,,
    C.,, D.,,
    6、已知三条线段的长分别是4,4,m,若它们能构成三角形,则整数m的最大值是( )
    A.10 B.8 C.7 D.4
    7、根据下列已知条件,不能画出唯一的是( )
    A.,, B.,,
    C.,, D.,,
    8、已知三角形的两边长分别为和,则下列长度的四条线段中能作为第三边的是( )
    A. B. C. D.
    9、若一个三角形的三个外角之比为3:4:5,则该三角形为(  )
    A.直角三角形 B.等腰三角形 C.等边三角形 D.等腰直角三角形
    10、如图,在和中,,,,,连接,交于点,连接.下列结论:①;②;③平分;④平分.其中正确的个数为( )

    A.1个 B.2个 C.3个 D.4个
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、在平面直角坐标系中,△ABC的顶点A、B、C的坐标分别为(0,3)、(4,0)、(0,0),AB=5,点P为x轴上一点,若使得△ABP为等腰三角形,那么点P的坐标除点(,0)外,还可以是_____.
    2、如图,△ABC的面积等于35,AE=ED,BD=3DC,则图中阴影部分的面积等于 _______

    3、在中,若,则_______.
    4、如图,在三角形ABC中,,点D为射线CB上一点,过点D作交直线AB于点E,交直线AC于点F,CG平分交DF于点G.若,则______°.

    5、如图,,为上的定点,、分别为、上两个动点,当的值最小时,的度数为______.

    三、解答题(10小题,每小题5分,共计50分)
    1、如图,在中,AD是BC边上的高,CE平分,若,,求的度数.

    2、针对于等腰三角形三线合一的这条性质,老师带领同学们做了进一步的猜想和证明,提问:如果一个三角形中,一个角的平分线和它所对的边的中线重合,那么这个三角形是等腰三角形.
    已知:在△ABC中,AD 平分∠CAB,交BC 边于点 D,且CD=BD,
    求证:AB=AC.
    以下是甲、乙两位同学的作法.
    甲:根据角平分线和中线的性质分别能得出一组角等和一组边等,再加一组公共边,可证△ACD≌△ABD,所以这个三角形为等腰三角形;
    乙:延长AD到E,使DE=AD,连接BE,可证△ACD≌△EBD,依据已知条件可推出AB=AC,所以这个三角形为等腰三角形
    (1)对于甲、乙两人的作法,下列判断正确的是( );
    A.两人都正确 B.甲正确,乙错误 C.甲错误,乙正确
    (2)选择一种你认为正确的作法,并证明.

    3、如图是由边长为1的小等边三角形构成的网格,每个小等边三角形的顶点为格点,线段的端点都在格点上.要求以为边画一个等腰,且使得点为格点.请在下面的网格图中画出3种不同的等腰.

    4、如图,AD是的高,CE是的角平分线.若,,求的度数.

    5、如图,四边形中,,,于点.

    (1)如图1,求证:;
    (2)如图2,延长交的延长线于点,点在上,连接,且,求证:;
    (3)如图3,在(2)的条件下,点在的延长线上,连接,交于点,连接,且,当,时,求的长.
    6、如图,在△ABC中,AB=AC,M,N分别是AB,AC边上的点,并且MN∥BC.
    (1)△AMN是否是等腰三角形?说明理由;
    (2)点P是MN上的一点,并且BP平分∠ABC,CP平分∠ACB.
    ①求证:△BPM是等腰三角形;
    ②若△ABC的周长为a,BC=b(a>2b),求△AMN的周长(用含a,b的式子表示).

    7、已知∠POQ=120°,点A,B分别在OP,OQ上,OA<OB,连接AB,在AB上方作等边△ABC,点D是BO延长线上一点,且AB=AD,连接AD
    (1)补全图形;
    (2)连接OC,求证:∠COP=∠COQ;
    (3)连接CD,CD交OP于点F,请你写出一个∠DAB的值,使CD=OB+OC一定成立,并证明


    8、在等腰中,,点D是BC边上的一个动点(点D不与点B,C重合),连接AD,作等腰,使,,点D,E在直线AC两旁,连接CE.

    (1)如图1,当时,直接写出BC与CE的位置关系;
    (2)如图2,当时,过点A作于点F,请你在图2中补全图形,用等式表示线段BD,CD,之间的数量关系,并证明.
    9、如图,△ABC是等边三角形,点D、E、F分别同时从A、B、C以同样的速度沿AB、BC、CA方向运动,当点D运动到点B时,三个点都停止运动.
    (1)在运动过程中△DEF是什么形状的三角形,并说明理由;
    (2)若运动到某一时刻时,BE=4,∠DEC=150°,求等边△ABC的周长;

    10、△ABC中,AB=AC,BD平分∠ABC交AC于点D,从点A作AE∥BC交BD的延长线于点E.

    (1)若∠BAC=40°,求∠E的度数;
    (2)点F是BE上一点,且FE=BD.取DF的中点H,请问AH⊥BE吗?试说明理由.

    -参考答案-
    一、单选题
    1、A
    【分析】
    利用基本作图得到OD=OC=OD′=OC′,CD=C′D′,则根据全等三角形的判定方法可根据“SSS”可判断△OCD≌△O′C′D′,然后根据全等三角形的性质得到∠A′OB′=∠AOB.
    【详解】
    解:由作法可得OD=OC=OD′=OC′,CD=C′D′,
    所以根据“SSS”可判断△OCD≌△O′C′D′,
    所以∠A′OB′=∠AOB.
    故选:A.
    【点睛】
    本题考查了作图﹣基本作图和全等三角形的判定与性质,解题关键是熟练掌握基本作图和全等三角形的判定定理.
    2、C
    【分析】
    依据l1∥l2,即可得到∠3=∠1=46°,再根据l3⊥l4,可得∠2=90°﹣46°=44°.
    【详解】
    解:如图:

    ∵l1∥l2,∠1=46°,
    ∴∠3=∠1=46°,
    又∵l3⊥l4,
    ∴∠2=90°﹣46°=44°,
    故选:C.
    【点睛】
    本题考查了平行线性质以及三角形内角和,平行线的性质:两直线平行,同位角相等以及三角形内角和是180°.
    3、A
    【分析】
    根据三角形的三边关系得出5<AB<25,根据AB的范围判断即可.
    【详解】
    解:连接AB,

    根据三角形的三边关系定理得:
    15﹣10<AB<15+10,
    即:5<AB<25,
    ∴A、B间的距离在5和25之间,
    ∴A、B间的距离不可能是5米;
    故选:A.
    【点睛】
    本题主要考查对三角形的三边关系定理的理解和掌握,能正确运用三角形的三边关系定理是解此题的关键.
    4、C
    【分析】
    根据三角形的三边关系,得到合题意的边,进而求得三角形的个数.
    【详解】
    解:c的范围是:5﹣3<c<5+3,即2<c<8.
    ∵c是奇数,
    ∴c=3或5或7,有3个值.
    则对应的三角形有3个.
    故选:C.
    【点睛】
    本题主要考查了三角形三边关系,准确分析判断是解题的关键.
    5、B
    【分析】
    根据三角形全等的判定及三角形三边关系即可得出结果.
    【详解】
    解:A、,不能组成三角形;
    B、根据不可以确定选项中条件能作出唯一三角形;
    C、根据可以确定选项中条件能作出唯一三角形;
    D、根据可以确定选项中条件能作出唯一三角形;
    故答案为:B.
    【点睛】
    本题考查确定唯一三角形所需要的条件及三角形三边关系,解题关键在于对全等判定条件的理解.
    6、C
    【分析】
    根据三角形三边关系列出不等式,根据不等式的解集求整数m的最大值.
    【详解】
    解:条线段的长分别是4,4,m,若它们能构成三角形,则
    ,即
    又为整数,则整数m的最大值是7
    故选C
    【点睛】
    本题考查了求不等式的整数解,三角形三边关系,根据三角形的三边关系列出不等式是解题的关键.
    7、B
    【分析】
    根据三角形存在的条件去判断.
    【详解】
    ∵,,,满足ASA的要求,
    ∴可以画出唯一的三角形,A不符合题意;
    ∵,,,∠A不是AB,BC的夹角,
    ∴可以画出多个三角形,B符合题意;
    ∵,,,满足SAS的要求,
    ∴可以画出唯一的三角形,C不符合题意;
    ∵,,,AB最大,
    ∴可以画出唯一的三角形,D不符合题意;
    故选B.
    【点睛】
    本题考查了三角形的存在性,熟练掌握三角形全等的判定方法是解题的关键.
    8、C
    【分析】
    根据三角形的三边关系可得,再解不等式可得答案.
    【详解】
    解:设三角形的第三边为,由题意可得:

    即,
    故选:C.
    【点睛】
    本题主要考查了三角形的三边关系,解题的关键是掌握三角形两边之和大于第三边;三角形的两边差小于第三边.
    9、A
    【分析】
    根据三角形外角和为360°计算,求出内角的度数,判断即可.
    【详解】
    解:设三角形的三个外角的度数分别为3x、4x、5x,
    则3x+4x+5x=360°,
    解得,x=30°,
    ∴三角形的三个外角的度数分别为90°、120°、150°,
    对应的三个内角的度数分别为90°、60°、30°,
    ∴此三角形为直角三角形,
    故选:A.
    【点睛】
    本题考查的是三角形的外角和,掌握三角形外角和为360°是解题的关键.
    10、C
    【分析】
    由全等三角形的判定及性质对每个结论推理论证即可.
    【详解】



    又∵,


    故①正确


    由三角形外角的性质有


    故②正确
    作于,于,如图所示:

    则°,
    在和中,,
    ∴,
    ∴,
    在和中,
    ∴,

    ∴平分
    故④正确
    假设平分




    由④知
    又∵为对顶角



    ∴在和中,

    即AB=AC
    又∵
    故假设不符,故不平分
    故③错误.
    综上所述①②④正确,共有3个正确.
    故选:C.
    【点睛】
    本题考查了全等三角形的判定及性质,灵活的选择全等三角形的判定的方法是解题的关键,从判定两个三角形全等的方法可知,要判定两个三角形全等,需要知道这两个三角形分别有三个元素(其中至少一个元素是边)对应相等,这样就可以利用题目中的已知边角迅速、准确地确定要补充的边角,有目的地完善三角形全等的条件,从而得到判定两个三角形全等的思路.
    二、填空题
    1、(,0)、(,0)、(9,0)
    【分析】
    先表示出PB=|a-4|,PB2=a2+9,AB=5,再分三种情况①当PB=AB时.②当PA=PB时,③当PA=AB时,讨论计算即可.
    【详解】
    设P(a,0),
    ∵A(0,3),B(4,0),
    ∴PB=|a-4|,PA2=a2+9,AB=5,
    ∵△ABP是等腰三角形,
    ∴①当PB=AB时,
    ∴|a-4|=5,
    ∴a=-1或9,
    ∴P(-1,0)或(9,0),
    ②当PA=PB时,
    ∴(a-4)2=a2+9,
    ∴a=,
    ∴P(,0),
    ③当PA=AB时,
    ∴a2+9=25,
    ∴a=4(舍)或a=-4,
    ∴P(-4,0).
    即:满足条件的点P的坐标为(-1,0)、(-4,0)、(9,0).

    【点睛】
    本题考查了平面直角坐标系中点的坐标规律,等腰三角形的性质,分类讨论和用方程思想解决问题是解本题的关键.
    2、15
    【分析】
    连接DF,根据AE=ED,BD=3DC,可得 ,, ,,然后设△AEF的面积为x,△BDE的面积为y,则,,,,再由△ABC的面积等于35,即可求解.
    【详解】
    解:如图,连接DF,

    ∵AE=ED,
    ∴ ,,
    ∵BD=3DC,
    ∴ ,
    设△AEF的面积为x,△BDE的面积为y,则,,,,
    ∵△ABC的面积等于35,
    ∴ ,
    解得: .
    故答案为:15
    【点睛】
    本题主要考查了与三角形中线有关的面积问题,根据题意得到 ,, ,是解题的关键.
    3、65°65度
    【分析】
    由三角形的内角和定理,得到,即可得到答案;
    【详解】
    解:在中,,
    ∵,
    ∴,
    ∴;
    故答案为:65°.
    【点睛】
    本题考查了三角形的内角和定理,解题的关键是掌握三角形的内角和等于360°.
    4、80
    【分析】
    先求解 再求解 再利用三角形的外角的性质可得答案.
    【详解】
    解: ,,






    CG平分,


    故答案为:
    【点睛】
    本题考查的是角平分线的定义,平行线的性质,三角形的内角和定理,三角形的外角的性质,熟练的运用平行线的性质探究角之间的关系是解本题的关键.
    5、6°
    【分析】
    作点关于直线的对称点,连接,交于点,过点作,交于点,根据,且当时最小,所以当的值最小时,当点与点重合,点与点重合时,此时等于,进而根据直角三角形的两锐角互余,以及角度的和差关系求得即可
    【详解】
    解:如图,作点关于直线的对称点,连接,交于点,过点作,交于点,


    ,且当时最小,
    所以当的值最小时,当点与点重合,点与点重合时,此时等于,


    ,


    根据对称性可得

    当的值最小时,的度数为
    故答案为:
    【点睛】
    本题考查了根据轴对称求最短线段和,垂线段最短,直角三角形的,根据题意作出图形是解题的关键.
    三、解答题
    1、85°
    【分析】
    由高的定义可得出∠ADB=∠ADC=90,在△ACD中利用三角形内角和定理可求出∠ACB的度数,结合CE平分∠ACB可求出∠ECB的度数.由三角形外角的性质可求出∠AEC的度数,
    【详解】
    解:∵AD是BC边上的高,
    ∴∠ADB=∠ADC=90.
    在△ACD中,∠ACB=180°﹣∠ADC﹣∠CAD=180°﹣90°﹣20°=70°.
    ∵CE平分∠ACB,
    ∴∠ECB=∠ACB=35°.
    ∵∠AEC是△BEC的外角,,
    ∴∠AEC=∠B+∠ECB=50°+35°=85°.
    答:∠AEC的度数是85°.
    【点睛】
    本题考查了三角形内角和定理、角平分线的定义以及三角形外角的性质,利用三角形内角和定理及角平分线的性质,求出∠ECB的度数是解题的关键.
    2、(1)C ;(2)见解析
    【分析】
    (1)甲同学证明的两个三角形全等,没有边边角的判定,故错误,而乙的证明则正确,因此可作出判断;
    (2)按照乙的分析方法进行即可.
    【详解】
    (1)甲同学证明的两个三角形全等,边边角不能判定两个三角形全等,故错误,而乙的证明则正确,
    故选C;
    (2)依据题意,延长AD至E,使DE=AD,连接BE,如图.
    ∵D为BC中点.
    ∴.
    在△CAD和△BED中

    ∴△CAD≌△BED(SAS).
    ∴,
    ∵AD平分∠BAC,



    ∴AB=AC
    ∴△ABC为等腰三角形

    【点睛】
    本题考查了全等三角形的判定与性质,等腰三角形的判定,关键是构造辅助线得到全等三角形.
    3、答案见解析
    【分析】
    AB为4个等边三角形组成的平行四边形的对角线,因此只要找到另一腰也4个等边三角形组成的平行四边形的对角线即可
    【详解】
    解:如图,
    ……
    [答案不唯一]
    【点睛】
    本题考查等腰三角形的绘图,掌握等边三角形和等腰三角形性质即可.
    4、
    【分析】
    AD是的高,有;由知;CE是的角平分线可得;,;在中,.
    【详解】
    解:∵AD是的高



    ∵CE是的角平分线



    ∴在中,.
    【点睛】
    本题考查了角平分线.解题的关键在于正确表示各角度之间的数量关系.
    5、(1)见解析;(2)见解析;(3)2
    【分析】
    (1)过点B作于点Q,根据AAS证明△得,再证明四边形是矩形得BQ=CG,从而得出结论;
    (2) 在GF上截取GH=GE,连接AH,证明AH=FH,GE=GH即可;
    (3) 过点A作于点P,在FC上截取,连接,证明得,可证明AC是EH的垂直平分线,再证明和△得可求出,从而可得结论.
    【详解】
    解:(1)证明:过点B作于点Q,如图1





    又,
    ∴△


    ∴四边形是矩形


    (2)在GF上截取GH=GE,连接AH,如图2,











    (3)过点A作于点P,在FC上截取,连接,如图3,

    由(1)、(2)知,,





    ∴∠

    ∴∠


    ∴∠

    ∴AC是EH的垂直平分线,


    又∵

    ∴∠
    ∴∠
    ∵∠,
    ∴∠




    ∵∠
    ∴,即

    ∵,即

    在和中,
    AH=AM∠HAB=∠MADAB=AD
    ∴△




    【点睛】
    本题考查的是全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理是解题的关键.
    6、
    (1)△AMN是是等腰三角形;理由见解析;
    (2)①证明见解析;②a﹣b.
    【分析】
    (1)由等腰三角形的性质得到∠ABC=∠ACB,由平行线的性质得到∠AMN=∠ABC,∠ANM=∠ACB,于是得到∠AMN=∠ANM,根据等角对等边即可证得结论;
    (2)①由角平分线的定义得到∠PBM=∠PBC,由平行线的性质得到∠MPB=∠PBC,于是得到∠PBM=∠MPB,根据等角对等边即可证得结论;
    ②由①知MB=MP,同理可得:NC=NP,故△AMN的周长=AB+AC,再根据已知条件即可求出结果.
    (1)
    解:△AMN是是等腰三角形,
    理由如下:
    ∵AB=AC,
    ∴∠ABC=∠ACB,
    ∵MN∥BC,
    ∴∠AMN=∠ABC,∠ANM=∠ACB,
    ∴∠AMN=∠ANM,
    ∴AM=AN,
    ∴△AMN是等腰三角形;
    (2)
    ①证明:∵BP平分∠ABC,
    ∴∠PBM=∠PBC,
    ∵MN∥BC,
    ∴∠MPB=∠PBC
    ∴∠PBM=∠MPB,
    ∴MB=MP,
    ∴△BPM是等腰三角形;
    ②由①知MB=MP,
    同理可得:NC=NP,
    ∴△AMN的周长=AM+MP+NP+AN=AM+MB+NC+AN=AB+AC,
    ∵△ABC的周长为a,BC=b,
    ∴AB+AC+b=a,
    ∴AB+AC=a﹣b
    ∴△AMN的周长=a﹣b.
    【点睛】
    本题考查了等腰三角形的性质和判定,平行线的性质,列代数式,能够灵活应用这些性质是解决问题的关键.
    7、(1)见解析;(2)见解析;(3)∠DAB=150°,见解析
    【分析】
    (1)依据题意作出相应图形即可;
    (2)在BQ上截取BE=AO,连接CE,由等边三角形的性质得,CA=CB,∠ACB=60°
    由同角的补角相等得∠CAO=∠CBE,由SAS证得△CAO和△CBE全等,即可得证;
    (3)由∠DAB=150°, DA=AB,得∠ADB=∠ABD=15°,由等边三角形性质,可得∠CAB=∠CBA=∠ACB =60°,故∠CAD=150°,由等边对等角得∠ADC=∠ACD=15°,由此∠DBC=∠DCB=75°,由等角对等边得DB=DC 再由∠POQ=120°,∠BDC=30°,得∠DFO=90°,等量代换即可得证.
    【详解】
    解:(1)如图所示:

    (2)证明如下:
    在BQ上截取BE=AO,连接CE,

    ∵△ABC为等边三角形,
    ∴CA=CB,∠ACB=60°
    ∵∠POQ=120°,
    ∴∠CAO+∠CBO=180°
    ∵∠CBO+∠CBE=180°,
    ∴∠CAO=∠CBE,
    在△CAO和△CBE中,,
    ∴△CAO≌△CBE(SAS),
    ∴CO=CE,∠COA=∠CEB,
    ∴∠COE=∠CEB,
    ∴∠COP=∠COQ;
    (3)∠DAB=150°,
    如图:

    ∵∠DAB=150°, DA=AB,
    ∴∠ADB=∠ABD=15°
    ∵△ABC为等边三角形,
    ∴∠CAB=∠CBA=∠ACB =60°,
    ∴∠CAD=150°,
    ∵AD=AC,
    ∴∠ADC=∠ACD=15°,
    ∴∠DBC=∠DCB=75°,
    ∴DB=DC,
    ∵∠POQ=120°,∠BDC=30°,
    ∴∠DFO=90°
    ∵AD=AC,
    ∴DF=FC
    ∴DO=OC
    ∵DB=DO+OB,
    ∴DB=CO+OB,
    ∴CD= OB + OC.
    【点睛】
    此题考查全等三角形的判定和性质、等腰三角形的判定和性质,等边三角形的判定和性质,以及添加辅助线构造全等三角形,掌握相应的判定和性质是解答此题的关键.
    8、
    (1)
    (2)或,见解析
    【分析】
    (1)根据已知条件求出∠B=∠ACB=45°,证明△BAD≌△CAE,得到∠ACE=∠B=45°,求出∠BCE=∠ACB+∠ACE=90°,即可得到结论;
    (2)根据题意作图即可,证明≌.得到,,,推出.延长EF到点G,使,证明≌,推出.由此得到.同理可证.
    (1)
    解:,,
    ∴∠B=∠ACB=45°,
    ∵,
    ∴,即∠BAD=∠CAE,
    ∵,,
    ∴△BAD≌△CAE,
    ∴∠ACE=∠B=45°,
    ∴∠BCE=∠ACB+∠ACE=90°,
    ∴;
    (2)
    解:如图,补全图形;


    证明:∵,
    ∴.
    又∵,,
    ∴≌.
    ∴,,.
    ∵,
    ∴.
    ∴.
    延长EF到点G,使.
    ∵,
    ∴.
    ∴.
    ∵,
    ∴.
    ∴.
    ∵,
    ∴≌.
    ∴.
    ∵,
    ∴.
    如图,同理可证.

    【点睛】
    此题考查了全等三角形的判定及性质,等腰三角形的性质,熟记全等三角形的判定及性质是解题的关键.掌握分类思想解题是难点.
    9、(1)△DEF是等边三角形,理由见解析(2)等边△ABC的周长为
    【分析】
    (1)利用△DEF是等边三角形的性质以及三点的运动情况,求证和,进而证明,最后即可说明△DEF是等边三角形.
    (2)利用题(1)的条件即∠DEC=150°,得出是含角的直角三角形,求出,最后求解出等边△ABC的长,最后即可求出等边△ABC的周长.
    【详解】
    (1)解:△DEF是等边三角形,
    证明:由点D、E、F的运动情况可知:,
    △ABC是等边三角形,
    ,,
    ,

    在与中,



    同理可证,进而有,

    故△DEF是等边三角形.
    (2)解:由(1)可知△DEF是等边三角形,且,
    ,,,


    在中,,



    等边△ABC的周长为.
    【点睛】
    本题主要是考查了全等三角形的性质及判定、等边三角形的判定及性质和含角直角三角形的性质,熟练利用等边三角形的性质,找到相等条件,进而证明全等三角形,综合利用全等三角形以及含角直角三角形的性质,求出对应边长,是解决该题的关键.
    10、(1)∠E=35°;(2)AH⊥BE.理由见解析.
    【分析】
    (1)根据等腰三角形两底角相等,已知顶角,可以求出底角,再根据角平分线的定义求出∠CBD的度数,最后根据两直线平行,内错角相等求出;
    (2)由“SAS”可证△ABD≌△AEF,可得AD=AF,由等腰三角形的性质可求解.
    【详解】
    解:(1)∵AB=AC,
    ∴∠ABC=∠ACB,
    ∵∠BAC=40°,
    ∴∠ABC=(180°-∠BAC)=70°,
    ∵BD平分∠ABC,
    ∴∠CBD=∠ABC=35°,
    ∵AE∥BC,
    ∴∠E=∠CBD=35°;
    (2)∵BD平分∠ABC,∠E=∠CBD,
    ∴∠CBD=∠ABD=∠E,
    ∴AB=AE,
    在△ABD和△AEF中,

    ∴△ABD≌△AEF(SAS),
    ∴AD=AF,
    ∵点H是DF的中点,
    ∴AH⊥BE.
    【点睛】
    本题考查了全等三角形的判定和性质,等腰三角形的性质,证明三角形全等是解题的关键.

    相关试卷

    2020-2021学年第十四章 三角形综合与测试习题:

    这是一份2020-2021学年第十四章 三角形综合与测试习题,共37页。试卷主要包含了如图,AB=AC,点D等内容,欢迎下载使用。

    初中数学沪教版 (五四制)七年级下册第十四章 三角形综合与测试课时训练:

    这是一份初中数学沪教版 (五四制)七年级下册第十四章 三角形综合与测试课时训练,共33页。试卷主要包含了三角形的外角和是,如图,点A,如图,为估计池塘岸边A等内容,欢迎下载使用。

    数学七年级下册第十四章 三角形综合与测试一课一练:

    这是一份数学七年级下册第十四章 三角形综合与测试一课一练,共32页。试卷主要包含了如图,ABC≌DEF,点B,下列三角形与下图全等的三角形是等内容,欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map